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Abstract

Optimization techniques have been widely used in de-

formable registration, allowing for the incorporation of

similarity metrics with regularization mechanisms. These

regularization mechanisms are designed to mitigate the ef-

fects of trivial solutions to ill-posed registration problems

and to otherwise ensure the resulting deformation fields are

well-behaved. This paper introduces a novel deformable

registration (DR) algorithm, RANCOR, which uses iter-

ative convexification to address DR problems under non-

smooth total-variation regularization. Initial comparative

results against four state-of-the-art registration algorithms

and under smooth regularization, respectively, are pre-

sented using the Internet Brain Segmentation Repository

(IBSR) database.

1. Introduction

Registration is the systematic spatial deformation of one

medical image as to align it with another, either in the same

or a different modality. Although registration of images

common to a single patient can rely largely on rigid trans-

formations, registration between patient images, common

in techniques such as atlas construction or atlas-based seg-

mentation, have relied on highly non-linear deformations

often in the absence of highly detectable and localizable

landmarks. Deformable registration (DR) aims to address

these problems, using a similarity metric to judge the qual-

ity of the alignment after deformation, and a regularization

mechanism to ensure that the deformation field avoid trivial

and otherwise undesirable components such as gaps or sin-

gularities. Deformable registration is indeed a challenging

problem with many competing facets. Our algorithm is in-

tended to provide an additional option that could facilitate

atlas building and segmentation techniques.

Many components of our DR algorithm display a large

amount of inherent parallelism between image voxels. Such

algorithms have been of growing interest to the medical

imaging community because of the ability to implement

them on commercially available general purpose graphics

processing units (GPGPUs) to dramatically improve their

speed and computational efficiency for both registration[13]

and segmentation problems [17, 16, 18].

1.1. Contributions

We propose a novel DR algorithm, RANCOR (RegistrA-

tioN via COnvex Relaxation), that allows for the combi-

nation of any pointwise error metric (e.g. as the sum of

absolute intensity differences (SAD) for intra-modality reg-

istration, and mutual information (MI) [24, 19] or modal-

ity independent neighbourhood descriptors (MIND) [9] for

inter-modality registration) while regularizing the deforma-

tion field by its total variation. Employing total variation

regularization (TVR) in registration problems has been suc-

cessfully investigated in former studies [10, 15, 27, 23]. The

proposed method builds upon recent work [22], from which

we generalise the formulation to incorporate any pointwise

similarity metrics and replace and compare the employed

quadratic regularizer (QR). The newly proposed regularizer

employs an L1 penalty, thus allowing for non-smooth regu-

larization of the deformation field, leading to accuracy im-

provements in registration of structures with high variabil-

ity. To ensure high performance, the proposed algorithm is

implemented using GPGPU.

1.2. Previous studies

Recent surveys provide a good overview of existing DR

methods [6, 8, 21] and we would like to emphasize the study

performed by Klein et al. [12], where 14 DR algorithms

were compared across four open brain image databases. We
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will compare our proposed method against the four highest

ranked methods identified in [12]:

Advanced Normalization Tools (ANTs): The Symmet-

ric Normalization (SyN) DR method in [3] uses a multi-

resolution scheme to enforce a bi-directional diffeomor-

phism while maximizing a cross-correlation metric. It has

been shown in several open challenges [7, 12, 14] to out-

perform well established methods. SyN regularizes the de-

formation field through Gaussian smoothing and enforcing

transformation symmetry.

Image Registration Toolkit (IRTK): The well-known Fast

Free-Form deformations (F3D) method in [20] defines a lat-

tice of equally spaced control points over the target image

and, by moving each point, locally modifies the deforma-

tion field. Normalized mutual information combined with a

cubic b-spline bending energy is used as the objective func-

tion. Its multi-resolution implementation employs coarsely-

to-finely spaced lattices and Gaussian smoothing.

Automatic Registration Toolbox (ART): [1] presents

a homeomorphic DR method using normalized cross-

correlation as similarity metric in a multi-resolution frame-

work. The deformation field is regularized via median and

low-pass Gaussian filtering.

Statistical Parametric Mapping DARTEL Toolbox

(SPM D): The DARTEL algorithm presented in [2] em-

ploys a static finite difference model of a velocity field.

The flow field is considered as a member of the Lie

algebra, which is exponentiated to produce a deformation

inherently enforcing a diffeomorphism. It is implemented

in a recursive, multi-resolution manner.

2. Methods

In this section, we propose a multi-scale dual optimiza-

tion based method to estimate the non-linear deformation

field u(x) = [u1(x), u2(x), u3(x)]
T, between two given im-

ages I1(x) and I2(x), which explores the minimization of

the variational optical-flow energy function. The approach

is based on recent advances in DR using a Gauss-Newton

(GN) optimizer with smooth regularization [9, 22]:

min
u

P (I1, I2;u) + R(u) (1)

where the function term P (I1, I2;u) stands for a dissimilar-

ity measure of the two input images I1(x) and I2(x) under

deformation by u, and R(u) gives the regularization func-

tion to single out a smooth deformation field. In this paper,

we use the sum of absolute intensity differences (SAD):

P (I1, I2;u) :=

∫

Ω

|I1(x+ u)− I2(x)| dx , (2)

as a simple similarity metric for two input images from the

same modality.

The proposed framework can also be directly adapted for

more advanced image dissimilarity measures designed for

registration between different modalities.

A regularization term, R(u), is often incorporated to

make the minimization problem (1) well-posed. Otherwise,

minimizing the image dissimilarity function P (I1, I2;u)
can result in trivial or infinite solutions. We consider the

total variation of the deformation field as the regularization

term:

R(u) := α

∫

Ω

(|∇u1|+ |∇u2|+ |∇u3|) dx . (3)

The expected non-convexity of I1(x) and I2(x), makes

it challenging to directly minimize (1), even with convex

regularization. To address this issue, we introduce an in-

cremental convexification approach, which lends itself to a

standard coarse-to-fine framework and allows for a more

global perspective and avoiding local optima by capturing

large deformations.

In Section 2.1, we develop the multi-scale optimization

framework, developing a sequence of related minimization

problems. Each of these problems are solved through a

new non-smooth Gauss-Newton (GN) approach introduced

in Section 2.2. which employs a novel sequential convexifi-

cation and dual optimization procedure.

2.1. CoarsetoFine Optimization Framework

The first stage in our approach is the construction of the

image pyramid. Let I11 (x) . . . IL1 (x) be the L-level pyramid

representation of I1(x) from the coarsest resolution I11 (x)
to the finest resolution IL1 (x) = I1(x), and I12 (x) . . . IL2 (x)
the L-level coarse-to-fine pyramid representation of I2(x).
The optimization process is started from the coarsest level,

ℓ = 1, which extracts the deformation field u1(x) between

I11 (x) and I12 (x) such that:

min
u1

P (I11 (x), I
1
2 (x);u

1) + R(u1) . (4)

The vector field u1(x) denotes the optimal deformation field

at the coarsest scale. It is upsampled to the next finer-

resolved level, ℓ = 2, to compute the optimal finer-level

deformation field u2(x). The process is repeated, obtaining

the deformation field u3(x) . . .uL(x) at each level sequen-

tially.

Second, at each resolution level ℓ, ℓ = 2 . . . L, we

compute an incremental deformation field tℓ(x) based on

the two image functions Iℓ2(x) and Iℓ1(x + uℓ−1), where

Iℓ1(x + uℓ−1) is warped by the deformation field uℓ−1(x)
computed at the previous resolution level ℓ− 1, i.e.

min
tℓ

P (Iℓ1(x+ uℓ−1), Iℓ2(x); t
ℓ) + R(uℓ−1 + tℓ) . (5)

The optimization problem (4) can be viewed as a special

case of (5), i.e. for ℓ = 1, we define u0(x) = 0 and
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u1(x) = (u0 + t1)(x). Therefore, the proposed coarse-to-

fine optimization framework sequentially explores the min-

imization of (5) at each image resolution level, from the

coarsest ℓ = 1 to the finest ℓ = L.

2.2. Sequential Convexification and Dual Optimiza
tion

Now we consider the optimization problem (5) for each

image resolution level ℓ. Given the highly non-linear func-

tion P (Iℓ1(x + uℓ−1), Iℓ2(x); t
ℓ) in (5), we introduce a se-

quential linearization and convexification procedure for this

challenging non-linear optimization problem (5). This re-

sults in a series of incremental warping steps in which

each step approximates an update of the deformation field

tℓ(x) = (tℓ1(x), t
ℓ
2(x), t

ℓ
3(x))

T, until the updated deforma-

tion is sufficiently small, i.e., it iterates through the fol-

lowing sequence of convex minimization steps until con-

vergence is attained:

• Initialize (hℓ)0(x) = 0 and let k = 1;

• At the kth iteration, define the deformation field as

ũℓ−1(x) :=
(

uℓ−1 +

k−1
∑

i=0

(hℓ)i
)

(x)

and compute the update deformation (hℓ)k to ũℓ−1(x)
by minimizing the following convex energy function:

min
(hℓ)k

∫

Ω

∣

∣

∣
P̃ k
0 +∇P̃ k · (hℓ)k

∣

∣

∣
dx + R(uℓ−1+(hℓ)k) ,

(6)

where

P̃ k((hℓ)k) = P (Iℓ1(x+ ũℓ−1), Iℓ2(x); (h
ℓ)k)

and P̃ k
0 (x) = P (Iℓ1(x+ ũℓ−1), Iℓ2(x); 0).

• Let k = k + 1 and repeat the second step till the new

update (hℓ)k is small enough. Then, we have the total

incremental deformation field tℓ(x) at the image reso-

lution level ℓ as:

tℓ(x) =

k
∑

i=0

(hℓ)i(x) .

These steps can be viewed as a non-smooth GN method

for the non-linear optimization problem (5), in contrast to

the classical GN method proposed in [4, 22]. Moreover,

the L1-norm and the convex regularization term R(·), (6)

results in a convex optimization problem. The non-smooth

L1-norm from (6) provides more robustness in practice than

the conventional smooth L2-norm used in the classical GN

method [22].

Solving the convex minimization problem (6) is the most

essential step in the proposed algorithmic framework. The

introduced primal-dual variational analysis not only pro-

vides an equivalent dual formulation to the optimization

problem (6) but also derives an efficient solution algorithm.

First, we simplify the expression of the convex problem (6)

as:

min
h

∫

Ω

|P0 +∇P · h| dx + R(ũ+ h) , (7)

where ũ(x) represents the deformation field.

Through variational analysis, we can derive an equiva-

lent dual model to (7):

Proposition 2.1 The convex minimization problem (7) can

be represented by its primal-dual model (15) and dual

model:

max
|w(x)|≤1,q

E(w, q) :=

∫

(wP0 +

3
∑

i=1

ũi div qi)dx − R∗(q)

(8)

subject to

Fi(x) := (w · ∂iP + div qi)(x) = 0 , i = 1, 2, 3 . (9)

The dual regularization function R∗(q) is given by (13).

Given the conjugate representation of the absolute func-

tion:

|v| = max
w

w · v , s.t. |w| ≤ 1 , (10)

we can rewrite the first L1-norm term of (7) as follows:

∫

Ω

|P0 +∇P · h| dx = max
|w(x)|≤1

∫

Ω

w(P0 +∇P · h)dx .

(11)
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Additionally, given R(ũ+ h) in terms of (3), we have

α

3
∑

i=1

∫

Ω

|∇(ui + hi)|dx

= max
|q|2=α2

3
∑

i=1

−

∫

Ω

q · ∇(ui + hi)dx

= max
|q|≤α

3
∑

i=1

−

∫

Ω

q · ∇(ui + hi)dx

= max
|q|≤α

3
∑

i=1

∫

δΩ

(ui + hi)qi · ds−

∫

Ω

q · ∇(ui + hi)dx

= max
|q|≤α

3
∑

i=1

∫

Ω

div(ui + hi)qi)dx−

∫

Ω

q · ∇(ui + hi)dx

= max
|q|≤α

3
∑

i=1

∫

Ω

(ui + hi) div qidx

=max
q

3
∑

i=1

∫

Ω

(ui + hi) div qidx−R∗(q)

(12)

where each dual variable qi(x), i = 1, 2, 3, has characteris-

tic function of the constraint |qi(x)| ≤ α, i = 1, 2, 3:

R∗(q) = χ|q1,2,3(x)|≤α(q) . (13)

Considering (11) and (12), one can see that the convex mini-

mization problem (6) is equivalent to the minimax problem:

min
h

max
|w(x)|≤1,q

∫

w(P0 +∇P · h)dx

+

3
∑

i=1

∫

div qi(ũi + hi)dx − R∗(q) (14)

that is

min
h

max
|w(x)|≤1,q

∫

(wP0 +

3
∑

i=1

ũi div qi)dx

+
3

∑

i=1

∫

hi(w · ∂iP + div qi)dx − R∗(q) (15)

which is called the primal-dual formulation in this paper.

After variation by the free variable hi(x), i = 1, 2, 3,

the minimization of the primal-dual formulation (15) over

hi(x), i = 1, 2, 3, results in the linear equalities’ constraints

(w · ∂iP + div qi)(x) = 0 , i = 1, 2, 3 , (16)

and the maximization problem

max
|w(x)|≤1,q

E(w, q) :=

∫

(wP0 +

3
∑

i=1

ũi div qi)dx − R∗(q)

thereby proving Prop. 2.1.

Each component of the deformation field

[h1(x), h2(x), h3(x)]
T works as the optimal multiplier

functions to their respective constraints, (9). Therefore, the

energy function of the primal-dual model (15) is exactly

the Lagrangian function to the dual model (8):

L(h,w, q) =E(w, q) +

3
∑

i=1

〈hi, Fi〉 ,

where E(w, q) and the linear functions Fi(x), i = 1, 2, 3,

are defined in (8) and (9) respectively. We can now derive

an efficient duality-based Lagrangian augmented algorithm

based on modern convex optimization theory (see [5, 25,

26] for details), using the augmented Lagrangian function:

Lc(h,w, q) = L(h,w, q)−
c

2

3
∑

i=1

‖Fi‖
2
, (17)

where c > 0 is a positive constant and the additional

quadratic penalty function is applied to ensure the functions

(9) vanish. Our proposed duality-based optimization algo-

rithm is:

• Set the initial values of w0, q0 and h0, and let k = 0.

• Fix qk and hk, optimize wk+1 by

wk+1 := arg max
|w(x)|≤1

Lc(h
k, w, qk) (18)

generating the convex minimization problem:

min
|w(x)|≤1

∫

wP0dx+
c

2

3
∑

i=1

∫

(w∂iP − T k
i )

2dx ;

(19)

where T k
i (x) (i = 1, 2, 3) is computed from the fixed

variables qk and hk. wk+1 is computed by threshold-

ing:

wk+1 = Threshold|w(x)|≤1(w
k+1/2(x)) , (20)

where

wk+1/2 =
c
∑3

i=1(∂iP · T k
i )− P0

c
∑3

i=1(∂iP )2
.

• Fixing wk+1 and hk, optimize qk+1 by

qk+1 := argmin
q

Lc(h
k, wk+1, q) ; (21)

which amounts to three convex minimization prob-

lems:

min
qi

∫

qi · ∇ũidx+
c

2

∫

(div qi − Uk
i )

2dx+R∗(q) ;

i = 1, 2, 3 ; (22)
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where Uk
i is computed from the fixed variables wk+1

and hk. Hence, qk+1
i , i = 1, 2, 3, can be approximated

by a gradient-projection step corresponding to (13).

• Once wk+1 and qk+1 are obtained, update hk+1 by

hk+1
i = hk − c

(

wk+1 · ∂iP + div qk+1
i

)

;

i = 1, 2, 3 ; (23)

• Increment k and iterate until converged, i.e.

c

∫

∣

∣wk+1 · ∂iP + div qk+1
i

∣

∣ dx ≤ δ , (24)

where δ is a chosen small positive parameter (5 ×
10−4).

3. Experiments

3.1. Image Database

The image data consisted of an open multi-center T1w

MRI dataset with corresponding manual segmentations, the

Internet Brain Segmentation Repository (IBSR) database,

totalling 18 labelled image volumes at 1.5T available on

Mindboggle1 in a pre-processed form with labelling proto-

cols and transforms into MNI space.

The experiments were performed in a pair-wise manner.

For each image in the database, seventeen registrations were

performed using the chosen image as the reference image

and one of the remaining as the floating image. Thus, our

experiment consisted of 306 registration problems in total.

3.2. Compared Algorithms

We compare the four best performing DR methods ac-

cording to [12] (i.e. IRTK, ART, SPM D and ANTS) and

the Gauss-Newton (GN) optimization based method in [22]

using quadratic regularization (QR). For all evaluations, we

retrieved the numerical registration results reported in [12]

from Mindboggle1.

3.3. Initialization & Preprocessing

Prior to registration, all images were skull stripped by

constructing brain masks from manual labels using mor-

phological operations [12] and then affinely registered using

the FMRIB Software Library’s (FSL) FLIRT package [11]

into the space of the MNI152 T1 1mm brain. These affine

transformations were made available on Mindboggle1 and

used to initialize the DR algorithms. This guarantees that

the same initialization is used for the algorithms in [12] and

allows for quantitative comparisons. As a pre-processing

step, both affinely registered images were robustly normal-

ized to zero mean and standard deviation units to ensure a

constant regularization weight α could be used.

1 http://www.mindboggle.info

3.4. Implementation & Parameter Tuning

The proposed DR method was implemented in MAT-

LAB (Natick, MA) using the Compute Unified Device Ar-

chitecture (CUDA) (NVIDIA, Santa Clara, CA) for GPGPU

computing. Each level in the coarse-to-fine framework con-

sists of multiple warps invoking the proposed GPGPU ac-

celerated regularization algorithm. Parameter tuning of the

regularization weight α was done on two randomly picked

dataset pairs similar to the tuning of the comparative meth-

ods in [12], where a small number of images was provided

to the authors of each compared method. All other parame-

ters, such as the number of levels (L), the number of warps

(Nt) and the maximum number of iterations (kmax) were

determined heuristically on a single image volume not used

in this study. Table 1 contains all set parameter values.

Table 1. Registration algorithm parameters

Method α L Nt kmax

GN QR [22] 0.05 3 4 220

GN TVR 0.30 3 4 220

All parameters were kept constant across all experiments.

3.5. Evaluation Metric

To compare our registration method against other DR al-

gorithms, we used the target overlap (TO) as a regional met-

ric:

TO =

∑

L |FL ∪RL|
∑

L |RL|
(25)

where F is the floating image, R the reference image, and

L a labelled region, as indicated in [12]. This parallels our

motivation of using DR to port segmentation labels to in-

coming datasets, and takes advantage of the manual seg-

mentations providing in the IBSR database.

Results were considered significant if the probability of

making a type I error was less than 1% (p < 0.01). For

this purpose, we employed a series of two-tailed, pairwise

Student’s T-test.

4. Results

4.1. Accuracy

Figure 2 shows box plots of the TO accuracy for each of

the registration methods. The results were averaged across

all regions, according to [12]. The corresponding numerical

results are provided in Table 3. Example registrations for

GN TV and GN QR are depicted in Fig. 1.

4.2. Run times

The experiments were conducted on a Ubuntu 12.04

(64-bit) desktop machine with 144 GB memory and an

NVIDIA Tesla C2060 (6 GB memory) graphics card. The
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Figure 1. Example registration results using the proposed non-smooth GN TV and the smooth GN QR in [22].

Figure 2. Mean Target Overlap Results

Table 2. Mean target overlap (TO) accuracy averaged over all la-

belled regions. All results were statistically significant (p <0.01).

IBSR18

Method mean ± std.

FLIRT 39.7± 13.0
SPM D 54.0± 14.7
IRTK 52.1± 15.0
ART 51.5± 14.1
Syn 52.8± 14.9
GN QR 60.8± 11.8
GN TVR 64.9± 12.5

maximum run times for the MATLAB code including pre-

processing, optimization, and GPGPU enhanced regulariza-

tion are given in Table 3.

5. Discussion

We propose a novel GPGPU-accelerated DR method,

based on GN optimization and non-smooth total variation

Table 3. Maximum GPGPU regularization run times at each level

l (reg.), maximum required and total registration time in seconds.

reg. [s] GN opt. [s] Total [s]

l 1 2 3

GN QR 0.26 1.82 13.59 9.08 71.40

GN TVR 0.37 2.70 20.66 10.62 104.70

regularization. The method is implemented within a coarse-

to-fine optimization framework and compared on an open

and publicly available database, IBSR. We employed the

same initialization, tuning conditions, and evaluation scripts

to quantitatively compare the proposed methods against

four well-known DR methods in [12]. Additionally, we

extended our evaluation to include the algorithm under

quadratic regularization as used in Sun et al. [22] and ob-

tain favourable registration results. We numerically report

the TO accuracy on the IBSR database allowing for direct

comparison.

The proposed method significantly outperforms the com-

parative methods in terms of TO (p < 0.01). We note, that

both the proposed methods employed the simplest and most

non-robust similarity metric, SAD, while SPM D, IRTK,

ART and SyN use advanced metrics (c.f. [12]). The choice

of similarity metric was intentionally chosen for these ex-

periments to demonstrate the potential of the proposed

method without an advanced similarity metrics or optimizer

(e.g. a Levenberg-Marquardt optimizer as used in SPM D

[2]).

The current RANCOR framework can be seen as a ba-

sic method to be extended over time, under the same open

science credo, that allowed us to readily and quantitatively

compare well-known open methods using public databases.

As the current framework cannot currently guarantee diffeo-

morphic deformations, the next step is to enforce such con-

straints on the resulting deformation fields. Furthermore,

to enable inter-modality DR, we aim to implement and test

commonly used advanced similarity metrics, such as nor-
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malized mutual-information, normalized cross-correlation,

or more recently developed methods, such as the L2 norm

of the MIND descriptor [9]. Since command-line tools,

such as the compared open DR methods are needed for data

analysis, RANCOR will be definitely included into such a

package and, as a matter of course, be made available to the

community.

6. Conclusions

We proposed a novel GPGPU-accelerated registration al-

gorithm that optimizes any pointwise similarity metric and

non-smooth total variation regularization within a Gauss-

Newton optimization framework. This algorithm was then

evaluated against the four highest ranking non-linear reg-

istration algorithms according to [12] and against a similar

method employing smooth regularization [22] on an open

image database. We report favourable accuracy results com-

pared to all tested methods, suggesting further investigation

of this promising DR approach.
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