
Current- and Varifold-Based Registration of Lung Vessel and Airway Trees

Yue Pan, Gary E. Christensen, Oguz C. Durumeric, Sarah E. Gerard, Joseph M. Reinhardt

The University of Iowa, IA 52242

{yue-pan-1, gary-christensen, oguz-durumeric, sarah-gerard, joe-reinhardt}@uiowa.edu

Geoffrey D. Hugo

Virginia Commonwealth University, Richmond, VA 23298

geoffrey.hugo@vcuhealth.org

Abstract

Registering lung CT images is an important problem

for many applications including tracking lung motion over

the breathing cycle, tracking anatomical and function

changes over time, and detecting abnormal mechanical

properties of the lung. This paper compares and con-

trasts current- and varifold-based diffeomorphic image

registration approaches for registering tree-like structures

of the lung. In these approaches, curve-like structures

in the lung—for example, the skeletons of vessels and

airways segmentation—are represented by currents or

varifolds in the dual space of a Reproducing Kernel Hilbert

Space (RKHS). Current and varifold representations are

discretized and are parameterized via of a collection of

momenta. A momenta corresponds to a line segment via the

coordinates of the center of the line segment and the tangent

direction of the line segment at the center. A varifold-based

registration approach is similar to currents except that

two varifold representations are aligned independent of

the tangent vector orientation. An advantage of varifolds

over currents is that the orientation of the tangent vectors

can be difficult to determine especially when the vessel

and airway trees are not connected. In this paper, we

examine the image registration sensitivity and accuracy of

current- and varifold-based registration as a function of the

number and location of momentum used to represent tree

like-structures in the lung. The registrations presented in

this paper were generated using the Deformetrica software

package ([Durrleman et al. 2014]).

Keywords: Diffeomorphic image registration, currents,

varifolds, momenta, Reproducing Kernel Hilbert Space

(RKHS)

1. Introduction

Registration of lung CT images is important for many

radiation oncology applications including assessing and

adapting to anatomical changes, accumulating radiation

dose for planning or assessment, and managing respiratory

motion. For example, variation in the anatomy during radio-

therapy introduces uncertainty between the planned and de-

livered radiation dose and may impact the appropriateness

of the originally-designed treatment plan. Frequent imaging

during radiotherapy accompanied by accurate longitudinal

image registration facilitates measurement of such variation

and its effect on the treatment plan. The cumulative dose

to the target and normal tissue can be assessed by mapping

delivered dose to a common reference anatomy and com-

paring to the prescribed dose. The treatment plan can then

be adapted periodically during therapy to help mitigate the

impact of these changes by ensuring the cumulative deliv-

ered dose is concordant with the prescribed dose[13, 9, 15].

Furthermore, image registration can also help measure how

the tumor changes during or after treatment, which can

potentially assist in predicting early response to therapy.

These applications all rely on accurate tracking of lung mo-

tion over the breathing cycle and anatomical and functional

changes over time.

Accurate image registration is critical for clinical imple-

mentation of these strategies. However, the ability of an

algorithm to match anatomy throughout the lung may be

limited by the complex variations in the anatomy and lim-

ited image contrast. One approach to improving registration

accuracy is to highlight and extract known anatomy such

as pulmonary airways or blood vessels[2] to improve the

matching at these tissue locations.

Image registration correspondence can be defined ei-

ther through intensity-based or feature-based approaches.

Intensity-based approaches register images by minimizing

differences in intensities between the moving (deformed

template) and target images. In general, intensity-based
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registration approaches have the advantage of not needing

user intervention but often do a poor job of aligning fea-

tures such as points, lines and surfaces contained in the im-

ages. Feature-based approaches are attractive because they

directly match features, but they often require a priori point-

to-point correspondence, which can be challenging in radio-

therapy applications where this is often not known. Current-

and varifold-based image registration are feature-based reg-

istration approaches with the advantage that no point cor-

respondence is assumed between the objects being regis-

tered ([14],[5],[6]). The currents framework has been suc-

cessfully applied to perform registrations of MR images

([14],[4],[5]) and also lung CT images ([8]). A varifold-

based registration approach [3] is similar to current-based

registration approach except that two varifold representa-

tions can be aligned in an orientation invariant manner

which will be discussed in the next section.

Current- and varifold-based image registration is built

using the Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) framework ([11],[12]). This framework

produces correspondence maps (transformations) between

images that are guaranteed to be diffeomorphisms.1 In this

work, the velocity field of the LDDMM framework is rep-

resented by currents ([4]) and the control points of the de-

formation field are not necessarily dense in order to get de-

sired registration results ([5],[7]). The results presented in

this paper were generated using the Defometrica software

([Durrleman et al. 2014]), which is publicly available at

www.deformetrica.org. The contribution of this paper is a

sensitivity analysis of the current- and varifold-based im-

age registration methods to the number and location of mo-

menta representing tree-like structures in the lung such as

the centerline of the pulmonary vessel and airway trees.

2. Methods

Currents and varifolds are mathematical objects that can

be used to model general geometrical objects. A current is a

linear functional on a smooth manifold which is continuous

in the sense of distributions. Any set of curves or surfaces

can be represented in terms of currents. The advantage of

using currents to register images is that the similarity mea-

sure is defined in the space of currents, which does not as-

sume any kind of point-correspondence between structures.

A varifold can be considered a generalization of the idea

of a current in the sense that the tangent vector of its repre-

sentative momenta are not oriented. Theoretically, varifolds

are weaker objects than currents due to the lack of orienta-

tion of the tangent vector of the momenta used to represent

a shape. However, this “weaker” side of varifolds is a desir-

able property when matching line segments with uncertain

tangent orientation.

1A diffeomorphism is a bijective, differentiable map between two man-

ifolds such that its inverse is also differentiable.

2.1. Current Representation

The current representation of a curve L is defined by the

path/line integral along the curve through a test vector field

ω via

L(ω) =

∫

L

ω(x)tτ(x)dλ(x) (1)

where, τ is the tangent of the curve at point x and dλ is the

Lebesgue measure on the curve. The test vector field ω is an

element of a space of possible vector fields W , where W is

a Reproducing Kernel Hilbert Space (RKHS). In this work,

W is a space of square integrable vector fields convolved

with a smoothing Gaussian kernel: ω(x) = KW (x, .)α,

where the pair (x, α) is called a momentum. The tangent

vector along the curve gives a natural action of the curve on

vector fields. The norm of the current is defined in the dual

space (currents space) W ∗ of W , as the maximum action

of the current among all possible test vector fields. W is a

closed span of the vector fields ω(x) = KW (x, .)α. The

dual space of W denoted as W ∗ is a closed span of Dirac

delta currents δαx , where a Dirac delta current is the dual

representation of the basis vector field KW (x, .)α. Based

on the Riesz representation theorem, there is a linear map-

ping between W and its dual space W ∗, LW : W → W ∗

such that

LW (ω)(ω′) =< ω, ω′ >W (2)

Therefore, δαx = LW (KW (x, .)α)
In a discrete setting, curves may be represented as polyg-

onal lines where the direction of the tangent is constant over

each line segment. In this case, the current representation of

a polygonal curve is given by

L(ω) =
∑

k

ω(xk)
tτ(xk) (3)

where xk is the center of each line segment and τ(xk) is

the tangent vector at xk. The magnitude of τ(xk) is propor-

tional to the length of the line segment centered at xk.

2.2. Varifold Representation

A varifold is a generalization of a current in the sense

that the tangent vector of its representative momenta are not

oriented. A varifold representation provides an advantage

over a current representation for representing structures in

which the orientation of the constitute line segments are un-

known or difficult to discern. This is true for the current

application in which the vessel trees may consist of discon-

nected line segments due to, for example, where a tumor or

other pathology interrupts the vessel trees.

The varifold representation of a curve L is defined by the

path/line integral along the curve through a test vector field

ω via

L(ω) =

∫

L

ω(x)t
τ(x)2

||τ(x)||
dλ(x) (4)
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where, τ is the tangent of the curve at point x and dλ is the

Lebesgue measure on the curve. The test vector field ω is

an element of a space of possible vector fields W , where

W is a RKHS. Notice that Equations 1 and 4 are nearly

identical except for the term
τ(xk)

||τ(xk)||
which always makes

the orientation of the tangent vector positive in the varifold

representation. The discrete version of Eq. 4 is given by

L(ω) =
∑

k

ω(xk)
t τ(xk)

2

||τ(xk)||
(5)

2.3. Diffeomorphic Deformation Framework

We first describe the image registration cost function for

two curves represented by currents. Let L1 and L2 be two

curves that we want to register. Each curve is mapped to

its dual space currents representation denoted as T1 and T2,

respectively. Each current is represented as the finite sum

of Dirac delta currents using Eq. 3 as T1 =
∑

n δ
α
x and

T2 =
∑

m δβy . The distance between two currents is defined

as the norm squared difference of the currents computed in

the RKHS dual space given by

||T1 − T2||
2
W∗ =

∣

∣

∣

∣

∣

∣

∑

n

δαx −
∑

m

δβy

∣

∣

∣

∣

∣

∣

2

W∗

=
∑

n,n′

KW (xn, xn′)αt
nαn − 2

∑

n,m

KW (xn, ym)αt
nβm

+
∑

m,m′

KW (ym, ym′)βt
mβm (6)

The image registration cost function for currents is defined

as

C = ||φ∗T1 − T2||
2
W∗ + γ

∣

∣

∣

∣

∣

∣

∑

i

vti(x)∆
∣

∣

∣

∣

∣

∣

2

V
(7)

where φ is the transformation from the coordinate system

of current T1 to that of T2 and φ∗ is the differential of φ.

φ∗ is also called the pushforward or total derivative of φ.

The pushforward φ∗ transforms the current T1 into the co-

ordinate system of the current T2. The second term in Eq. 7

is the discretized regularization term on the velocity of the

transformation φ and is represented as
∫ 1

0
||vt||

2
V dt in con-

tinuous setting. ∆ is time interval. vt is the velocity field at

time t and can also be thought of as an element of a RKHS

space. Therefore, it can be represented in terms of momenta

vti =
∑

i

KV (., xi(t))αi(t) (8)

where (xi(t), αi(t)) is the time varying momenta that

parameterizes diffeomorphic transformation model.

The image registration cost function for two curves rep-

resented by varifolds is similar to that for currents. Again,

let L1 and L2 be two curves that we want to register. With

an abuse of notation, let T1 =
∑

n δ
α
x and T2 =

∑

m δβy be

the Dirac delta varifold representation of L1 and L2, respec-

tively, using Eq. 5. With an additional abuse of notation for

W ∗, let the distance between two varifolds be defined as

||T1 − T2||
2
W∗ =

∑

n,n′

KW (xn, xn′)αt
nαn

−2
∑

n,m

KW (xn, ym)
(αt

nβm)2

|αn||βn|

+
∑

m,m′

KW (ym, ym′)βt
mβm (9)

The image registration cost function for varifolds is defined

as

C = ||φ∗T1 − T2||
2
W∗ + γ

∣

∣

∣

∣

∣

∣

∑

i

vti(x)∆
∣

∣

∣

∣

∣

∣

2

V
(10)

which appears similar to Eq. 7 except that T1 and T2 are

the varifold representations of L1 and L2, respectively, and

W ∗ is the dual space of the varifold RKHS with our abuse

of notation.

Momenta are used to parametrize the velocity field vt of

the transformation φ in a similar way that momenta are used

to parameterize the shapes of the objects, T1 and T2, to be

registered. The relationship between the transformation φ
and the time varying velocity field vt is given by the O.D.E.

d

dt
φv
t (x) = vt(φ

v
t (x, t)) (11)

where t ∈ [0, 1] and φ = φv
1 . The time varying transfor-

mation φv
t is a homotopy between the identity transforma-

tion at time t = 0 (i.e., φv
0 = Id) and the transformation

φ that maps T1 into the shape of T2 at time t = 1 (i.e.,

φv
1 = φ). The superscript v on the transformation φv

t de-

notes the dependence of the transformation on the veloc-

ity field vt. Note that varifolds cannot be used to represent

the velocity field since the velocity field is a vector field in

which the direction of the vectors are important. In the case

of of parameterizing the velocity field with momenta, the

magnitude of the vector no longer represents the length of a

segment, but rather, it represents the velocity of the transfor-

mation at certain point in time. The momenta representing

the velocity field can be considered as vector weighted con-

trol points of the velocity field. Note that the location of

the momenta are not fixed during the registration process

and are free to move around during the registration process.

The Deformetrica software was used to find the optimal lo-

cation and direction for the control points of the velocity

field for registration for the results generated for this paper

[7].
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2.4. Extracting Vessel Tree Momenta from CT Im
ages

For most radiation therapy interventions, the lung is im-

aged via CT. In a CT image, the vessels in a lung appear

bright on a dark background. We used the Jerman et al.

vesselness filter [10] to extract the vessel tree segmentation

from a 3D CT image volume. In this method, the Hessian

matrix is computed from the intensity values of the CT at

each voxel location. Next, the eigenvalues are computed

from the Hessian matrix. Tubular structures are then iden-

tified at voxel locations with one negligible eigenvalue and

two similar non-zero negative eigenvalues. The vessel tree

segmentations were then skeletonized using a morphologi-

cal thinning algorithm in ITK (www.itk.org) to find the cen-

ter line.

The vessel centerline detected as above resulted in a 26-

neighbor connected set of discrete voxels. Connecting the

centers of the skeletal voxel centers with line segments pro-

duces a piece-wise constant polygonal line with stair-step

artifacts. A contour with stair-step artifacts gives a poor

current and varifold representation since the tangent vectors

from one line segment to the next do not vary smoothly.

To over come this problem, we fit a second order polyno-

mial to each vessel branch using regression. We used the

polyfit function in MATLAB (MathWorks, Natick, MA) to

perform the regression. The fitted second order polynomial

produced a smooth approximation to each branch that could

be sampled at any resolution.

In this work, the momenta were sampled from the poly-

nomial curves using units of pixels in 2D (voxels in 3D)

in which the pixel (voxel) dimensions were isotropic. If

branch length was not an multiple of the sampling period,

we reduced the sample period enough to uniformly sampled

the branch.

2.5. Evaluation Methods

The registration results were evaluated using symmet-

ric average closest distance between two shapes. The av-

erage closest distance from one shape consisting of mul-

tiple curves to another is computed by taking each point in

one shape and finding the closest point on the second shape.

These distances are then averaged to get the average clos-

est point distance. The average closest distance measured

from one shape to another is often different than the aver-

age closest point distance computed when the roles of the

two shapes are reversed. To mitigate this problem, we com-

pute the symmetric average closest point distance which is

the average of the distance compute from shape I1 to shape

I2 and the distance computed from shape I2 to shape I1.

The symmetric average closest point distance between two

shapes I1 and I2 is given by

d(I1, I2) =
1

2

(

1

N1

∑

y∈I1

min
x∈I2

d(x, y)+
1

N2

∑

x∈I2

min
y∈I1

d(y, x)

)

.

(12)

2.6. Preprocessing

The Iterative Closest Point (ICP) [1] algorithm was used

to rigidly align the shapes before registration. The main

reason to use ICP is to remove the translational and rota-

tional differences between the set of momenta locations of

the moving and target shapes before nonrigid alignment.

3. Results

3.1. Sensitivity to the Number/Position of Momenta
and the Kernel Size of the RKHS

There of the most important considerations for current

and varifold registration of tree-like structures is (1) how to

choose the number of the momenta, (2) how to choose the

standard deviation λs of the Gaussian kernel KW in Eq. 7

for the shape and (3) how to choose the standard deviation

λφ of the Gaussian kernel KV in Eq. 8 for the deformation

field.

To start to answer these questions, we designed an exper-

iment that registered eight pairs of simple 2D branch struc-

tures (see Fig. 1) multiple times using different numbers

momenta (see Fig. 2) and varying the shape kernel standard

deviation λs. We kept the the deformation kernel standard

deviation λφ fixed at 250 for this experiment. The registra-

tion error was computed for each registration and was used

to evaluate the performance of each registration.

Figure 1 shows four of eight pairs of structures that were

registered in this experiment. In this figure, the blue shape

was registered to the red shape. Note that the bottom point

of the vertical line segment for all of the red and blue struc-

tures start at the same location. Registration pairs 5, 6, 7 and

8 are not shown in this figure since they reverse the roles of

the fixed and moving structures shown in panels a, b, c and

d, respectively. The shapes in this figure were chosen to

mimic a single simple branching structure from a real 3D

pulmonary airway or vessel tree.

Figure 2 shows how the momenta were positioned on

one of the registration pairs. This figure shows that the mo-

menta were uniformly spaced along each of the branches

for a total of 3, 6, 9 and 12 momenta for each shape. The

case of three total momenta corresponds to the limiting case

of one momentum per branch. We limited this experiment

to 4 momenta per branch since we wanted to determine the

fewest number of momenta required to accurately represent

a branch. The reason for this is that the computation time

increases as the number of momenta increases.
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(a) Registration pair 1 (b) Registration pair 2

(c) Registration pair 3 (d) Registration pair 4

Figure 1: Simple 2D test structures used to characterize

current- and varifold-based registration parameter selection.

Red represents target structures and blue represents tem-

plate structures. Registration pairs 5, 6, 7 and 8 are not

shown in the figure; these registration pairs reverse the tar-

get and template structures shown in panels a, b, c and d,

respectively. Note that the bottom point of the vertical line

segment for all of the red and blue structures start at the

same location.

(a) Template and target shapes

with 3 momenta

(b) Template and target shapes

with 6 momenta

(c) Template and target shapes

with 9 momenta

(d) Template and target shapes

with 12 momenta

Figure 2: Examples showing the number and placement of

momenta.

The graph in Fig. 3 shows the results of registering the

eight pairs of branching shapes as a function of shape ker-

nel standard deviation λs and the number of momenta used

to parameterize the shape. Each curve on the graph cor-

responds to a different shape kernel standard deviation λs.

Each point on a curve is the average value of all eight regis-

tration results.

The graph in Fig. 3 shows that for this experiment, the

lowest registration error is achieved for the shape kernel size

of λs = 150/460 = 0.33 and for nine momentum. The

registration error is similar for 9 and 12 momenta, but we
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Figure 3: The effect of number of momenta on registration.

For each kernel size, we use different number of momenta

to represent the skeletons in the currents space and compute

averaged registration error.

prefer the smaller of these two numbers.

This experiment suggests that one should use three mo-

menta per branch and a shape kernel size of 0.33 times the

average branch length.

3.2. Vessel Tree Registration

In the next series of experiments, we use two simple 2D

vessel trees (see Fig. 4a) that were were drawn to scale

based on real 3D vessel trees extracted from CT images.

The pixel dimensions for these vessel trees are 1 mm x 1

mm. In these experiments we varied the the deformation

kernel standard deviation λφ, the shape kernel standard de-

viation λs and and the momenta sample period. The units

for these variables are listed as pixels which are equal to 1

mm for these shapes.

Figure 4a shows two typical lung vessel branching struc-

tures with 31 branches and 15 branch points to be reg-

istered. The template (moving) vessel tree shape has 31

branches and 15 branch points. The minimum, maximum,

mode and average (std dev) branch lengths were 7, 33, 9 and

13.1(6.18) pixels, respectively. The target vessel tree shape

has 31 branches and 15 branch points. The minimum, max-

imum, mode and average (std dev) branch lengths were 6,

32, 8 and 13.8(6.48) pixels, respectively.

The vessel trees shown in 4a were registered 9*3*5 =

135 times with 9 different momenta sampling periods, 4

different shape kernel standard deviations λs and 5 differ-

ent deformation kernel standard deviations λφ. Panels 4b-

4d show the registration results when the sampling period

equaled 1, 5 and 9 pixels, respectively, while keeping the

shape kernel standard deviation λs fixed at 3 pixels and the

deformation kernel standard deviation λφ fixed at 10 pixels.

Result shown in Panel 4b was the best registration result out

of the 135 registrations. Figure 4 demonstrates that the reg-
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Target
Template

(a) Template (moving) and tar-

get vessel trees before registra-

tion. Each vessel tree has 31

branches and 15 branch points.

Target
Deformed Template

(b) Template and target shapes

after registration: sample pe-

riod = 1 pixel, deformation ker-

nel size = 10 pixels, shape ker-

nel size = 3 pixels.

Target
Deformed Template

(c) Template and target shapes

after registration: sample pe-

riod = 5 pixel, deformation ker-

nel size = 10 pixels, shape ker-

nel size = 3 pixels.

Target
Deformed Template

(d) Template and target shapes

after registration: sample pe-

riod = 9 pixel, deformation ker-

nel size = 10 pixels, shape ker-

nel size = 3 pixels.

Figure 4: Examples showing the number and placement of

momenta.

istration results got gradually worse as the sampling period

increased.

Figure 5 shows the registration error as a function of the

momenta sampling period and the shape kernel standard de-

viation λs. For these results the deformation kernel standard

deviation λφ was fixed at 10 pixels. This figure shows that

the best registration results were produced for the smallest

sampling period.

Figures 6 and 7 shows the registration error as a func-

tion of the momenta sampling period and the deformation

kernel standard deviation λφ. For these results the shape

kernel standard deviation λs was fixed at 3 and 9 pixels,

respectively. These figures show that the best registration

results were produced for λφ = 10 pixels which is roughly

the same size as the mode of the template and target branch

lengths.

Table. 1 shows that computation times increase as we

decrease the deformation kernel size and decrease the mo-

menta sampling period. The best registration results for
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Figure 5: Registration error as a function of the momenta

sampling period and the shape kernel standard deviation λs

while keeping the deformation kernel standard deviation λφ

was fixed at 10 pixels. The notation d10s3 corresponds to

λφ = 10 pixels and λs = 3 pixels.
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Figure 6: Registration error as a function of the momenta

sampling period and the deformation kernel standard devi-

ation λφ while keeping the shape kernel standard deviation

λs was fixed at 3 pixels. The notation d10s3 corresponds to

λφ = 10 pixels and λs = 3 pixels.

the shapes shown in Fig. 4a were for sampling period 1

pixel, deformation kernel standard deviation 10 pixels and

shape kernel standard deviation 3 pixels which took approx-

imately 6 minutes to compute.

3.3. Varifold Orientation Robustness

Based on the definitions of currents (See Eq. 1) and

varifolds (See Eq. 4), theoretically varifold representations

should give better registration with unknown tangent orien-

tations than currents. In order to learn more about the orien-

tation robustness of the varifold representations, we did the

following experiment. We use the same template and target
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Figure 7: Registration error as a function of the momenta

sampling period and the deformation kernel standard devi-

ation λφ while keeping the shape kernel standard deviation

λs was fixed at 9 pixels. The notation d10s3 corresponds to

λφ = 10 pixels and λs = 3 pixels.

Kernel Size d5s3 d10s3 d15s3 d20s3 d25s3

SP = 1 30m 47s 6m 12s 2m 31s 1m 33s 1m 9s

SP = 5 43m 47s 3m 34s 1m 9s 27s 20s

SP = 9 38m 25s 3m 17s 40s 22s 17s

Table 1: Computation time with respect to different defor-

mation kernel standard deviations λφ and momenta sample

periods for the experiments shown in Fig. 4. SP represent

the momenta sampling period in units of pixels. The nota-

tion d5s3 corresponds to λφ = 5 pixels and λs = 3 pixels.

For this registration experiment, the shape kernel standard

deviation λs did not have a noticeable affect on the com-

putation time. Note that the smaller the momenta sampling

period, the more momenta were used to parameterize the

template and target shapes. Note that the smaller λφ, the

more momenta were needed to parameterize the registration

transformation.

shapes as in Section 3.2. We manually flipped the orien-

tation of some branches in our template shape (see Fig. 8)

to see how the registration results of currents- and varifold-

representations differed. We sampled the template shape

with sample period 1 and uses deformation kernel standard

deviation λφ = 10 pixels and a shape kernel standard devi-

ation λs = 3 pixels.

First, we reversed the orientations of three branches on

the template shapes and used currents and varifolds to rep-

resent our shape respectively.

The registration result of varifold representations is

shown in Figure. 4b (a) and the registration result of cur-

rent presentations is shown in Figure 8 (b). The region in

the black circles in Figure. 4b (a) and (b) shows the three

branches where we flipped the orientations of tangent vec-

tors. We can see inside the black circle, two shapes don’t

align well with current representations while the varifolds-

based registration give as a better result.

Similarly, we flipped seven branches of the template

shape as shown inside the black circle in 8 (c) and (d). We

can see the registration result of current representations in 8

(c) is bad inside the black circle, while the registration result

of varifold representation 8 (d) keeps the same.

Therefore, we can see varifolds representation is more

robust to orientations of tangent vectors as we expected.

As we showed in this experiment, when we flipped some

branch’s orientations, the registration result for varifold rep-

resentations are the same no matter how many branches’s

orientations are flipped while the registration result of cur-

rent presentations are not.

Target
Deformed Template

(a) Current registration result;

3 branches flipped orientation.

Target
Deformed Template

(b) Varifold registration result;

3 branches flipped orientation.

Target
Deformed Template

(c) Current registration result;

7 branches flipped orientation.

Target
Deformed Template

(d) Varfold registration result;

7 branches flipped orientation.

Figure 8: Registration results using current and varifold rep-

resentations. The circles show the branches that had oppo-

site tangent orientations between the template and the tar-

get. Notice that the current-based registration fails while

the varifold-based registration does a good job of register-

ing the shapes.

4. Discussion and Conclusions

This paper presented the mathematical framework for

registering 3D pulmonary vessel and airway trees using cur-
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rents and varifolds. We constructed 2D experiments using

simple tree shapes to measure the sensitivity of current and

varifold registration to (1) the momenta sample period ∆,

(2) the standard deviation λs of the Reproducing Kernel

Hilbert Space (RKHS) Gaussian kernel used to represent

shapes and (3) the standard deviation λφ of the RKHS Gaus-

sian kernel used to parameterize the diffeomorphic registra-

tion transformation. For the experiments presented, we con-

clude that the best registration results were produced when

(1) ∆ was as small as possible, (2) λφ was close to the mode

of the template and target branch lengths and (3) λs was

close to 1/3 of the mode of the template and target branch

lengths. Note that the mode of the vessel tree branch lengths

tends to be a measure of the average length of the branches

near the leaf nodes of the tree. We showed that current- and

varifold-based registration give equivalent results if the tan-

gent orientations of the momenta are consistent between the

moving shape and the target shape. We further showed that

varifold-fold registration gives the same result for randomly

oriented tangents.
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