
The design of SUPERelastix– a unifying framework for a wide range of image

registration methodologies

Floris F. Berendsen1, Kasper Marstal2, Stefan Klein2, and Marius Staring1

1Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center,

P.O. Box 9600, 2300 RC Leiden, the Netherlands, {f.berendsen,m.staring}@lumc.nl
2Biomedical Imaging Group Rotterdam Erasmus MC, University Medical Center Rotterdam

Departments of Medical Informatics and Radiology, P.O. Box 2040, 3000 CA Rotterdam, the

Netherlands, {k.marstal,s.klein}@erasmusmc.nl

Abstract

A large diversity of image registration methodologies

has emerged from the research community. The scatter-

ing of methods over toolboxes impedes rigorous compar-

ison to select the appropriate method for a given appli-

cation. Toolboxes typically tailor their implementations

to a mathematical registration paradigm, which makes in-

ternal functionality nonexchangeable. Subsequently, this

forms a barrier for adoption of registration technology in

the clinic. We therefore propose a unifying, role-based

software design that can integrate a broad range of func-

tional registration components. These components can be

configured into an algorithmic network via a single high-

level user interface. A generic component handshake mech-

anism provides users feedback on incompatibilities. We

demonstrate the viability of our design by incorporating

two paradigms from different code bases. The implemen-

tation is done in C++ and is available as open source. The

progress of embedding more paradigms can be followed via

https://github.com/kaspermarstal/SuperElastix

1. Introduction

The objective of image registration is to find the spa-

tial relationship between two or more images. Typically,

intensity-based registration methods are formulated as an

optimization problem. A transform describes the geomet-

ric mapping from one image to the other, a metric deter-

mines the dissimilarity between the images, and an opti-

mizer searches for the transform giving the highest similar-

ity between images.

In the last decades numerous image registration meth-

ods and tools have emerged from the research community.

Implementation of these methods, however, are scattered

over a plethora of toolboxes each with their own interface,

limitations and modus operandi. It is therefore difficult for

(clinical) researchers and company developers alike, to rig-

orously compare registration methods and select the appro-

priate one for a given application.

The scattering is amongst others driven by the difference

in paradigms that tend to divide the field of image registra-

tion. Opposing approaches are, for example, small defor-

mation versus large diffeomorphic deformation, and non-

parametric versus parametric transforms. While most soft-

ware designs structure the algorithmic concepts of a reg-

istration method in a modular fashion, i.e. having a no-

tion of a metric, transform or optimizer, the definition of

these modules may not be functionally compatible across

paradigms. Current registration software is typically tai-

lored to the paradigm it adheres, mixed with the role of

mathematical definitions, data representation and computa-

tional tricks. This severely reduces software compatibility

across toolboxes, and therefore the ability to share compo-

nents or truly compare methods rather than implementation

choices.

There are several interesting registration toolboxes that

we mention here. Arguably the greatest collection of im-

age registration tools can be found in the Insight ToolKit

(ITK) [11]. This toolkit implements several registration

paradigms, most notably the parametric intensity-based

paradigm. A new framework (denoted by the extension v4)

partly supersedes the original framework and adds diffeo-

morphic and symmetric registration capabilities. In addition

there are the PDEDeformableRegistration and variational

framework, both implementing variations on Demons regis-

tration. These paradigms, however, exhibit different object

1 58

https://github.com/kaspermarstal/SuperElastix

oriented software designs, which has led to incompatibil-

ity of some of the registration components. It is therefore

difficult to develop new algorithms that cross the borders

of paradigms, as it requires a large effort to re-factor one

design into another. In addition, the ITK provides C++ im-

plementations rather than ready-to-use software.

Other works, using and extending ITK, are ANTs [24],

[3] [23], elastix [14], DRAMMS [18] and plastimatch

[20], [19]. Additionally, there are several non-ITK-based

implementations including NiftyReg [15].

These tools provide a high-level interface (no need for

programming) to configure a registration algorithm. Many

options are usually available for each of the registration

components. Rigorous evaluation to find the best appli-

cation specific configuration can, however, only be per-

formed within the specific paradigm or toolbox. This re-

quires the researcher to become acquainted with the various

tools, each with their own interface, parameters and pecu-

liarities. Examples of such evaluation studies include [12],

[16], [13], [17], [26].

Usability of these tools is greatly improved by environ-

ments like Nypipe [9] and Pydpiper [6], which wrap each

algorithm as a module in a single python environment. This

lowers the barrier for a user as it requires dealing with only

one environment instead of multiple different environments

(command line, bash scripts, Python, Matlab, etc). A re-

maining disadvantage however is that each paradigm is still

treated as a monolithic block and provides little uniformity

for the detailed settings of each algorithm. Analyzing the

registration methods for a deeper understanding of the per-

formance differences is limited by the ability to make their

settings uniform, since the underlying implementations are

still different even for similar components. In addition,

these tools provide an interface for Python only, whereas

different users require different interfaces.

In this paper we propose a general design for unify-

ing registration paradigms, a translation to a software de-

sign and a toolbox with an initial implementation. Spe-

cific aims for the toolbox are i) that the interface should

be user-friendly; ii) that a single interface can be used for

a broad range of registration paradigms; iii) that it should

support algorithm modularity; which should iv) lead to the

simplification of the tuning of registration configurations

optimal for a specific task; and v) enable rigorous com-

parison of registration methods rather than implementation

choices. In such an environment the user can evaluate math-

ematical (or implementation) choices of specific differences

between paradigms, while eliminating the differences of

other components. Furthermore, the toolbox should pro-

vide a (research) environment enabling exploration of cross-

fertilization between paradigms.

At the core of our design there are two observations.

First, even for conceptually very different frameworks,

many components are functionally identical, albeit that

those components are sometimes used differently. And sec-

ondly, almost all registration algorithms can be character-

ized by a network that organizes and connects the several

components. While some paradigms strictly split the reg-

istration into separate modules consisting for example of a

metric, a transform and an optimizer, other paradigms com-

bine components into a larger block that performs the task

of both the metric and a transform. Sometimes the compo-

nents are even so entangled that the registration should be

considered a single block. In other words, we need hetero-

geneous levels of functionality and granularity.

In order to implement a unifying registration toolbox

we propose to reformulate registration algorithms into a

software design similar to a collaboration-based or role-

based software design [25], [21]. In contrast to a typical

object-oriented design, a registration component is defined

by what it can do (the role) instead of what it is (the class

type), thereby allowing utilization of functionality across

paradigms. To this end a generic handshake mechanism is

implemented to verify whether connected components are

compatible on a mathematical as well as on a software level,

thus constructing a valid network topology. Via a single

user-interface a high level configuration is supplied, from

which at run-time the corresponding components are se-

lected, connected into a network and executed.

In the remainder of the paper we perform an analysis of

several existing registration paradigms (Section 2), based

on which we will propose a design for a unifying registra-

tion toolbox (Section 3). Section 4 then gives initial results

where we show that the toolbox is operational and allows

for specifying, running and comparing quite different reg-

istration frameworks from a single toolbox. We end with a

general discussion, outlook and conclusion in Section 5.

2. Analysis of registration methodologies

To inventorize the requirements of the design of a

unifying toolbox we analyzed a selection of registration

paradigms. The selection was made such that it covers some

interesting variations among paradigms. Currently, the se-

lection excludes approaches such as discrete optimization

[8] [10], groupwise registration [29], geodesic shooting [2]

and other Lagrangian or Hamiltonian [28] methods. How-

ever, we aim for a general design that can capture a wider

span of paradigms, thus keeping possibilities open for in-

tegration of those paradigms and additionally future devel-

opments. The notation used in this paper is summarized in

Table 1.

2.1. Existing methods

The majority of established registration algorithms ex-

hibits distinct conceptual components each performing a

sub-task in the registration procedure. Across toolboxes and

59

paradigms, however, these components can vary in func-

tionality and granularity. Some toolboxes are subdivided

into many small components, while others consist of a few

larger components. These components can be part of mul-

tiple or only a single paradigm. Even if components imple-

ment the same concept they may not be interchangeable due

to mathematical or software differences.

To expose the typical variation among toolboxes and

paradigms, we analyzed 5 registration methods in de-

tail, namely: B-spline registration [14], log-diffeomorphic

Demons [1], time varying velocity field registration [23],

symmetric log-diffeomorphic Demons [27] and greedy

Symmetric Normalization (gSyN) [3]. We created detailed

networks to facilitate analysis of these paradigms, see Fig-

ure 1.

The first example, as illustrated in Figure 1a, is a regis-

tration with a parametric transform, e.g. a B-spline trans-

form which is parameterized by coefficients µ. The pa-

rameters µ span a Euclidean space of possible solutions in

which the optimizer searches for the optimal image align-

ment. The assumption of a Euclidean optimization space

versus a manifold (subspace) is fundamental for many opti-

mization strategies. For example, a large group of optimiza-

tion strategies performs incremental updates of the form

µ
k+1 = µ

k + µ
k
δ , amongst others (unconstrained) gradi-

ent descent routines, such as conjugate gradient, adaptive

stochastic gradient descent, or quasi-Newton methods.

Variations on Demons registration, such as diffeo-

morphic Demons (not illustrated) and log-diffeomorphic

Demons [5] (Figure 1b) introduce, amongst others, differ-

ent update rules. Instead of the incremental update φk+1 =
φk + φk

δ in classical Demons, a functional composition

φk+1 = φk ◦ φk
δ is used in diffeomorphic Demons. An-

other difference is that where diffeomorphic Demons mod-

els the transformation by a vector field pointing from one

Table 1: Notation used in this paper.

symbol description

F Fixed image

M Moving image

T (x;µ) Parameterized transformation

µ Transformation parameters

δµ parameter updates

φ deformation field to moving

φ−1 deformation field to fixed

δv forces update field

Sφ(), Sv() diffusion-like regularization

Sδ() fluid-like regularization

vt time varying velocity field

vstat stationary velocity field

BCH Baker-Campbell-Hausdorff update rule

image to the other, the log-diffeomorphic Demons models

such transformations by a stationary velocity field. Instead

of an additive or compositional update log-diffeomorphic

Demons uses the function vk+1
stat = BCH

(

vkstat, φ
k
δ

)

.

While the velocity field of the log-diffeomorphic

Demons transform is a stationary vector field, LDDMM-

based approaches [4], see Figure 1c, use a time varying

velocity field. The modeling of a (virtual) time results in

an extra dimension on the velocity field, which can be ex-

pressed by parallel paths in the network layout.

Various registration methods focus on symmetry of the

mapping process, so that interchanging the role of the fixed

and moving image does not produce different results. Ex-

amples of these methods are the symmetric version of log-

Demons, see Figure 1d and greedy SyN (gSyN) [3], see

Figure 1e. The symmetry imposed by registration methods

is typically reflected in the network layout. Whereas gSyN

consists of two fully (anti) symmetric paths, the network of

symmetric log-Demons exposes only a partial symmetry.

2.2. Analysis

Generalizing from the discussion above, in order to come

to a unifying design, we observe the following. Registra-

tion algorithms can generally be described as networks of

functional components. The network layout of the vari-

ous registration paradigms, however, are considerably dif-

ferent. Some networks may be summarized as a pipeline of

components, whereas others may consist of parallel paths

(e.g. symmetric Demons and gSyN) with more or less inter-

connectivity between the components. Among paradigms,

components of a network can be present in other networks

as well, although possibly at different locations.

Components also vary in how exchangeable they are

between paradigms. Some components are completely

paradigm specific, such as the inversion component from

gSyN in Figure 1e. Other components can be freely ex-

changed between paradigms, for example image blurring

components for multi-resolution approaches (not shown).

In between there is a gray area of components that seem

similar task-wise, but due to mathematical differences be-

tween paradigms the components are not straightforwardly

interchangeable. Examples are in the group of metric com-

ponents: Demons metrics generally include dedicated terms

for the ESM optimization routine which are not present in

B-spline registration, and B-spline methods integrally per-

form a mapping of the metric gradient to the B-spline trans-

form parameters. instead of providing a vector field like in

Demons and other diffeomorphic methods. This difference

can have a software-related origin as well, for instance when

the type of data communicated between components differs,

or when toolboxes have a slightly different definition of the

boundaries of a component.

The degree of granularity of paradigms can be different

60

µ Metric

(F (x),M ◦ T (x,µ))
Additive

δµ φ

Optimization loop: various methods

T (x,µ)

Update

(a) B-spline registration

vstat
exp(vstat)

Demons Metric

(F (x),M ◦ φ(x))

φ

BCH
Sv()

δv
Sδ()

φ

φ−1

Efficient Second-order Minimization (ESM): loop until convergence
exp(vstat)

exp(−vstat)

(b) Log-diffeomorphic Demons

v(t)

Runge-Kutta

Metric Gradient

∫ τ

0
v(φ(x), t)dt

Runge-Kutta

∫ τ

1
v(φ(x), t)dt

φ1,τ

φ2,τ

F ◦ φ1,τ ,M ◦ φ2,τ

Scaling
Update

Parameters

τ = 0 . . . 1

Runge-Kutta

∫ 1

0
v(φ(x), t)dt

Runge-Kutta

∫ 0

1
v(φ(x), t)dt

φ

φ−1

δv(τ)

Gradient Descent: loop until convergence

(c) ANTs time varying velocity field registration. ANTs’ interpretation of LDDMM.

vstat Demons Metric

(F (x),M ◦ φ(x))

φ

BCH

Sv()

δv
Sδ()

φ

φ−1

exp(vstat)

exp(−vstat)φ−1

exp(vstat)

exp(−vstat)
Demons Metric
(

M(x), F ◦ φ−1(x)
)

+
-

δvforw

δvback

Efficient Second-order Minimization (ESM): loop until convergence

(d) Symmetric log-diffeomorphic Demons

φ1

Metric

(F ◦ φ1,M ◦ φ2)

φ−1
1

δv2 Sδ()

Gradient Descent: loop until convergence

Metric

(M ◦ φ2, F ◦ φ1)
Sδ()

δv1
φ2

Compose

δv2 ◦ φ
−1
1

Sφ()

Sφ()

Compose

δv1 ◦ φ
−1
2

Inversion

Method

Inversion

Method

φ−1
2

Compose

Compose

φ1 ◦ φ
−1
2

φ2 ◦ φ
−1
1

φ

φ−1

Inversion

Method

Inversion

Method

init

init

init

init

(e) Greedy Symmetric Normalization (gSyN)

Figure 1: Networks of five exemplary registration frameworks.

as well. For example in parametric (e.g. B-spline) reg-

istration the optimization strategy is typically regarded as

a plug-in component, which can be chosen independently

from the transformation model, whereas in gSyN the opti-

mization strategy is inherent to the registration paradigm.

To regard components as potentially being composed of

multiple tasks has a practical advantage as well, as it would

enable integration of complete toolboxes coarse-grained or

even monolithically.

To conclude, a design that can capture a broad variety of

paradigms 1) needs to be very flexible with respect to the

algorithmic network layout and 2) needs to be able to cap-

ture a wide variation of components with various levels of

granularity. We therefore propose to follow a collaboration-

61

based or role-based software design pattern [21], in which

the definition of a component is defined by the role(s) it can

take, rather than by its inheritance, as is used in all current

major registration toolboxes.

3. Method

The design we propose consists of three key elements:

a) an algorithmic network topology that is completely user-

configurable, b) a generic component design that is able to

capture a broad diversity of functionalities, and c) a user

configuration that dynamically (without programming) sets

up the network, performs validation via a handshake mech-

anism, and establishes a connection between components.

In the following sections, we describe the network, how we

define components and how they connect, and how the al-

gorithm is executed.

3.1. User configurable component networks

From the analysis of registration algorithms in Section

2 we concluded that although components may be equal

among paradigms, the algorithmic networks can be very

different. Instead of adhering to one algorithmic network

(e.g. elastix) or programmatically hard-code a variety

of paradigms (e.g. ANTs, plastimatch), we make the net-

work topology part of the user configuration as well. That

is, on a high-level the user describes the network layout in

terms of nodes and connections. Due to the large variety

of possible networks we use a light-weighted notion of a

network, which is not intrinsically tied to specific function-

ality of the components at its nodes. Instead, we choose

to define all components to be handled generically and to

dispatch the conceptual validation of the user configuration

to a handshake mechanism, which is explained next. On a

software level the network is modeled as a (boost) graph,

where the nodes denote components and the vertices denote

connections. Examples of such networks are given in Fig-

ure 4.

3.2. Component handshakes

Currently the majority of registration toolboxes adhere a

classical object-oriented design that decomposes the regis-

tration problem into classes like metrics, transforms, opti-

mizers, etc. Extended types of behavior (mutual informa-

tion, affine transform, etc) are implemented via subtyping.

However, as we concluded in Section 2, this decomposi-

tion is generally different among paradigms and toolboxes,

and hampers unification. To address the so-called “tyranny

of the dominant decomposition” [22], we introduce a role-

based software paradigm, similar to the Data Context Inter-

action (DCI) pattern, for specifying collaboration between

components. Building our toolbox around this design pat-

tern, we are able to reuse code bases without suffering from

the effects of invasive modification and re-architecture. This

design allows to cherry-pick behavioral aspects that compo-

nents have in common, without a strict classification what

that component is.

Fundamental to our design is a generic handshake mech-

anism that validates whether components can be connected

or not. This mechanism performs the necessary checks on

what a component can do, which is required to establish

a connection. The advantage of explicitly handling this

generically and on a higher level, is that components them-

selves do not need to perform these checks on neighboring

components, which would require a component to embed

specific knowledge about other components. The proposed

design counters the entanglement between the sets of com-

ponents of the same code base and opens up the potential

for cross-paradigm connections.

To manage all possible types of collaboration, we main-

tain an extensible collection of so-called interfaces between

components. Any component in our toolbox must be de-

fined in terms of one or more interfaces, which are either ac-

cepting or providing. Figure 2 illustrates a component based

on various interfaces. The user configures a generic con-

nection between the components, while a handshake mech-

anism determines the types of interfaces and their compat-

ibility. If a connection is possible, the component with the

accepting interface gains control over the communication

and is responsible for setting up its internals for the exe-

cution of the registration algorithm. At the start of the ex-

ecution of an algorithm all components check if sufficient

accepting interfaces have been connected.

From an implementation point of view, all interfaces are

defined as abstract base classes, in the DCI pattern, also

known as methodless Roles. Via helper classes that are

variadicly templated, a component class inherits from any

number of interface classes either being accepting or pro-

viding. The developer of a component is responsible for

implementing all chosen interfaces, i.e. methodful Roles

in DCI. In the handshake mechanism compatibility is ver-

ified based on the C++ types of the interfaces. While the

number of types of interfaces may increase with future de-

velopments, the handshake mechanism itself is very general

and not that sensitive to changes, due to its loose coupling

to component functionality. As an example, a handshake

mechanism may be in place where image samplers provide

a list of samples, while metrics or more aggregated compo-

nents accept a list of samples. When a new sampling com-

ponent becomes available it does not need to inherit from a

base sampling class, which often will require code refactor-

ing, but only needs to define a providing interface.

Within this design the notion of hybrid components

(components that fulfill multiple tasks) is captured natu-

rally, by simply proving different accepting or providing

interfaces. In this way monolithic blocks that implement

a full registration pipeline can also be easily integrated in

62

AcceptingProviding

SUPERelastix

Component A

InterfacesInterfaces

Handshake

SUPERelastix

Component B

Figure 2: Component handshakes are performed at run-time

based on interface types. The toolbox maintains an exten-

sible list of possible interfaces, e.g. , by which

components can connect and collaborate.

the toolbox.

3.3. Algorithm embedding

Whereas previously we described the core functionality

of the toolbox, i.e. the setup of components, the network

layout and the handshake between components, this subsec-

tion describes how this network is embedded in the toolbox,

how the algorithm is executed and how data is passed to and

from the toolbox.

For a good deployment of our toolbox it will be pro-

vided as a library. This can then be naturally integrated in

many different software interfaces, such as a command-line

application, GUI applications or scripting languages. Fig-

ure 3 schematically illustrates how the SUPERelastix li-

brary is embedded, which incorporates an Overlord and the

registration network. The Configuration Object acts as an

intermediate representation of the user-specified configura-

tion of the registration algorithm. This contains the net-

work description, the component names and their settings.

In a command-line tool this configuration is read from disk,

whereas in library usage it serves as a lightweight container

that can be manipulated, passed and stored without requir-

ing disk access.

When a Configuration Object is passed to

SUPERelastix the Overlord performs three steps:

a) it parses the configuration and instantiates the network

with the required components, providing the user with

feedback on any incompatibilities between components, as

detected by the handshake mechanism, b) it connects the

network’s Sink and Source components to external data

(pipelines), and c) it executes the registration algorithm by

connecting itself, via a handshake, to the component that

includes the execution trigger.

The Sink and Source component are illustrated by

dashed lines in Figure 3 and are special types of compo-

nents in the sense that the Overlord performs handshakes to

these components to let the data pass. By configuring Sink

and Source components the user controls whether compo-

nents should create and pass data such as images, deforma-

tion fields or point sets.

Command-line tool /

Configuration

Overlord

SUPERelastix

F M

φScripting-language embedding

Figure 3: The grand design of the SUPERelastix tool-

box. The toolbox can be used as a command-line appli-

cation or be embedded in other applications and scripting

languages as a library. In this illustration F , M and φ are

examples of typical sources and sinks, but the framework

supports any type of source and sink.

4. Results

In this section we demonstrate the initial results of the

embedding of two non-rigid registration paradigms each

from a different code base, namely the stationary velocity

field transform from the ITKv4 registration framework and

the B-spline based registration of the elastix toolbox.

To demonstrate that the toolbox provides a single inter-

face to multiple paradigms we perform a small comparison

study on synthetic images. The study consists of four exper-

iments, that is, two variations of each paradigm: 1) ITKv4

with a stationary velocity field transform and 1a) a mean

squared difference metric (MSD) or 1b) an ANTs neighbor-

hood correlation metric (ANTsC), 2) elastix with a B-

spline transform and 2a) a MSD metric, or 2b) a normalized

correlation metric (NC).

Currently, the ITKv4 framework is embedded by three

components: a main component containing the registration

framework plus the transformation model, the MSD metric

and the ANTsC metric. With these components two simi-

lar algorithm networks can be constructed using each of the

two metric components. Currently, elastix is embedded

as a monolithic component in which the choice of metric

is considered a setting. This illustrates that the framework

can deal with different levels of granularity. The network

layouts of the experiments, which are automatically gener-

ated by SUPERelastix using Graphviz [7], are shown in

Figure 4.

For the experiments, synthetic images were chosen such

that evident differences between the experiments are ex-

pected to show up. As shown in the left column of Fig-

ure 6 both the fixed and the moving image have triangular

63

itkRegistrationMethodv4

SinkImage SinkDeformationField

SourceFixed SourceMoving

ANTsC or
MSD

elastix

SinkImage

SourceFixed SourceMoving

Figure 4: Network configurations for ITKv4 (left) and

elastix (right). Each symbol () denotes an inter-

face. The handshake determines that a fixed image interface

() is provided by the SourceFixed component and accepted

by the itkRegistrationMethodv4 component. Currently, the

ITKv4 network can be realized with a ANTsC component

or an MSD component that both provide a metric interface

() that is accepted by the itkRegistrationMethodv4 com-

ponent. An incorrect configuration, e.g. an ANTsC com-

ponent connected with a SinkImage component, is detected

by the handshake and reported to the user.

I

x
Difference-based Correlation-based

I

x

Figure 5: Expected alignment per metric type, with an in-

tensity profile of the fixed image (thin line) and the trans-

formed moving image (thick line).

shaped intensity profiles with the same maximum intensity

and a constant but different background. To test the dif-

ferences due to the non-rigid transformation model of the

two paradigms, the fixed image was constructed to have iso-

intensity lines that are elliptical whereas they are diamond-

shaped in the moving image. Simultaneously, the influ-

ence of the image similarity metric was tested by setting

the background intensity value to zero for the fixed image

compared to a value of one fourth of the maximum for the

moving image. For the correlation-based metrics an optimal

alignment will be where the bases of the intensity shapes

align, irrespective of the absolute value of the background.

In contrast, for the squared difference-based metrics, the

alignment will be optimal if the triangle profile of the mov-

ing image aligns with the top part of the profile of the fixed

image, since this minimizes the total absolute difference.

This is schematically illustrated in Figure 5. All registration

experiments use a multi-resolution approach with 3 levels,

using the default settings of the toolboxes.

The results of the four experiments are shown in Figure

6, where both the deformed moving image and the result-

ing deformation field are given. As expected from our ex-

perimental setup the results of each experiment are slightly

different. Both experiments with correlation-based met-

rics show a larger cone shape compared to both squared

Fixed& elastix ITKv4

Moving B-spline Stationary Velocity Field

NC MSD ANTsC MSDtransversal transversal transversal transversal transversal

transversal

Figure 6: The fixed and moving image and the results

of four experiments. The resampled moving image and a

transformed grid are shown for each experiment.

difference-based metrics. Between paradigms the differ-

ences in deformation fields can be appreciated. For in-

stance, it is clear that the ITKv4 stationary velocity field

and the elastix B-spline transformation employ differ-

ent boundary conditions.

By these experiments we showed that registration algo-

rithms from two paradigms can be executed and compared

using the same interface for passing the images and algo-

rithm configuration.

5. Discussion and Conclusions

In this paper we propose a design for a unifying toolbox

based on the analysis of multiple registration paradigms.

Our design uses a role- and collaboration-based software

design pattern as a framework to unify the very diverse algo-

rithms found in literature. This framework captures compo-

nents with various degrees of granularity and functionality,

as they are found in most toolboxes, and lets the user config-

ure the network layout of the registration components. To

validate the user configuration we set up a handshake mech-

anism that checks whether connected components are com-

patible, i.e. have the correct interfaces for collaboration.

After a successful configuration the registration algorithm

is executed using data from user-defined sources and sinks.

Whereas this paper primarily presents the generic de-

sign that we propose, together with an initial implemen-

tation and results, the functionality of the toolbox can be

greatly extended. An immediate point of action is to ex-

tend the functionality of the toolbox by including com-

ponents from more registration paradigms, and to include

more fine-grained components, such as optimizers, trans-

forms and multi-resolution handling. This modularization

will obviously lead to more complex network graphs than

currently shown in the paper. Furthermore, we aim to in-

clude paradigms from non-ITK-based code bases, while

keeping in mind component compatibility for cross fertil-

64

ization of paradigms.

The toolbox is available as open source at https://

github.com/kaspermarstal/SuperElastix where the lat-

est version can be found and where all developments can be

followed.

The design we presented is both capable of generalizing

across paradigms, fully supporting modularity, as well as

provides an on-ramp for method integration. This makes

it a suitable foundation for a unifying registration toolbox,

which, as we hope, should drastically improve the accessi-

bility of a wide range of modern registration capabilities to

a diverse audience.

Acknowledgment

The authors acknowledge support from the Dutch Tech-

nology Foundation STW (Stichting Technische Weten-

schappen), grant number 13351, and the Netherlands Or-

ganisation for Scientific Research NWO (Nederlandse Or-

ganisatie voor Wetenschappelijk Onderzoek), grant number

184033111.

References

[1] J. Ashburner. A fast diffeomorphic image registration algo-

rithm. Neuroimage, 38(1):95–113, 2007. 3

[2] J. Ashburner and K. J. Friston. Diffeomorphic registration

using geodesic shooting and Gauss-Newton optimisation.

Neuroimage, 55(3):954–967, 2011. 2

[3] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee.

Symmetric diffeomorphic image registration with cross-

correlation: evaluating automated labeling of elderly and

neurodegenerative brain. Med Image Anal, 12(1):26–41,

2008. 2, 3

[4] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Comput-

ing large deformation metric mappings via geodesic flows of

diffeomorphisms. International Journal of Computer Vision,

61(2):139–157, 2005. 3

[5] F. Dru and T. Vercauteren. An ITK implementation of the

symmetric log-domain diffeomorphic demons algorithm. In-

sight Journal, 2009. 3

[6] M. Friedel, M. C. van Eede, J. Pipitone, M. M. Chakravarty,

and J. P. Lerch. Pydpiper: a flexible toolkit for constructing

novel registration pipelines. Front Neuroinform, 8:67, 2014.

2

[7] E. R. Gansner and S. C. North. An open graph visualization

system and its applications to software engineering. Software

- Practice and Experience, 30(11):1203–1233, 2000. 6

[8] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios. De-

formable medical image registration: setting the state of the

art with discrete methods. Annu Rev Biomed Eng, 13:219–

244, 2011. 2

[9] K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O.

Halchenko, M. L. Waskom, and S. S. Ghosh. Nipype: a

flexible, lightweight and extensible neuroimaging data pro-

cessing framework in python. Front Neuroinform, 5, 2011.

2

[10] M. Heinrich, M. Jenkinson, S. M. Brady, and J. Schn-

abel. Globally optimal deformable registration on a mini-

mum spanning tree using dense displacement sampling. Im-

age Comput Comput Assist Interv, 15, Pt 3:115–22, 2012.

2

[11] Johnson, McCormick, and Ibanez. The ITK Software Guide:

Design and Functionality. Kitware Inc., fourth edition, 2015.

1

[12] T. Kanai, N. Kadoya, K. Ito, Y. Onozato, S. Y. Cho, K. Kishi,

S. Dobashi, R. Umezawa, H. Matsushita, K. Takeda, and

K. Jingu. Evaluation of accuracy of B-spline transformation-

based deformable image registration with different parame-

ter settings for thoracic images. J. Radiat. Res., 55(6):1163–

1170, 2014. 2

[13] A. Klein, J. Andersson, B. A. Ardekani, et al. Evaluation of

14 nonlinear deformation algorithms applied to human brain

MRI registration. Neuroimage, 46(3):786–802, 2009. 2

[14] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P.

Pluim. elastix: a toolbox for intensity-based medical im-

age registration. IEEE Trans Med Imaging, 29(1):196–205,

2010. 2, 3

[15] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann,

J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin.

Fast free-form deformation using graphics processing units.

Comput Methods Programs Biomed, 98(3):278–284, 2010. 2

[16] K. Murphy, B. van Ginneken, J. M. Reinhardt, et al. Evalua-

tion of registration methods on thoracic CT: the EMPIRE10

challenge. IEEE Trans Med Imaging, 30(11):1901–1920,

2011. 2

[17] Y. Ou, H. Akbari, M. Bilello, X. Da, and C. Davatzikos.

Comparative evaluation of registration algorithms in differ-

ent brain databases with varying difficulty: results and in-

sights. IEEE Trans Med Imaging, 33(10):2039–2065, 2014.

2

[18] Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos.

DRAMMS: Deformable registration via attribute matching

and mutual-saliency weighting. Med Image Anal, 15(4):622–

639, 2011. 2

[19] J. A. Shackleford, N. Kandasamy, and G. C. Sharp. On de-

veloping B-spline registration algorithms for multi-core pro-

cessors. Phys Med Biol, 55(21):6329–6351, 2010. 2

[20] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert. GPU-

based streaming architectures for fast cone-beam CT image

reconstruction and demons deformable registration. Phys

Med Biol, 52(19):5771–5783, 2007. 2

[21] Y. Smaragdakis and D. Batory. Mixin layers: An

object-oriented implementation technique for refinements

and collaboration-based designs. ACM Trans. Softw. Eng.

Methodol., 11(2):215–255, 2002. 2, 5

[22] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees

of separation: multi-dimensional separation of concerns. In

Software Engineering, 1999. Proceedings of the 1999 Inter-

national Conference on, pages 107–119, 1999. 5

[23] N. J. Tustison and B. B. Avants. Explicit B-spline regulariza-

tion in diffeomorphic image registration. Front Neuroinform,

7:39, 2013. 2, 3

[24] N. J. Tustison and S. G. Avants, B. B. Advanced normaliza-

tion tools: V1.0. Insight Journal, 2009. 2

65

https://github.com/kaspermarstal/SuperElastix
https://github.com/kaspermarstal/SuperElastix

[25] M. VanHilst and D. Notkin. Using role components to imple-

ment collaboration-based designs. ACM SIGPLAN Notices,

31(10):359–369, 1996. 2

[26] R. Varadhan, G. Karangelis, K. Krishnan, and S. Hui. A

framework for deformable image registration validation in

radiotherapy clinical applications. J Appl Clin Med Phys,

14(1):4066, 2013. 2

[27] T. Vercauteren, X. Pennec, A. Perchant, and N. Ay-

ache. Symmetric log-domain diffeomorphic registration: a

demons-based approach. Med Image Comput Comput Assist

Interv, 11(Pt 1):754–761, 2008. 3

[28] F.-X. Vialard, L. Risser, D. Rueckert, and C. J. Cotter. Dif-

feomorphic 3D image registration via geodesic shooting us-

ing an efficient adjoint calculation. International Journal of

Computer Vision, 97(2):229–241, 2011. 2

[29] C. Wachinger and N. Navab. Simultaneous registration of

multiple images: similarity metrics and efficient optimiza-

tion. IEEE Trans Pattern Anal Mach Intell, 35(5):1221–

1233, 2013. 2

66

