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Abstract

This paper introduces a novel approach to the task of

data association within the context of pedestrian tracking,

by introducing a two-stage learning scheme to match pairs

of detections. First, a Siamese convolutional neural net-

work (CNN) is trained to learn descriptors encoding lo-

cal spatio-temporal structures between the two input image

patches, aggregating pixel values and optical flow informa-

tion. Second, a set of contextual features derived from the

position and size of the compared input patches are com-

bined with the CNN output by means of a gradient boosting

classifier to generate the final matching probability. This

learning approach is validated by using a linear program-

ming based multi-person tracker showing that even a sim-

ple and efficient tracker may outperform much more com-

plex models when fed with our learned matching probabili-

ties. Results on publicly available sequences show that our

method meets state-of-the-art standards in multiple people

tracking.

1. Introduction

One of the big challenges of computer vision is scene un-

derstanding from video. Humans are often the center of at-

tention of a scene, which leads to the fundamental problem

of detecting and tracking them in a video. To track multiple

people, tracking-by-detection has emerged as the preferred

method. That approach simplifies the problem by dividing

it into two steps. First, find probable pedestrian locations

independently in each frame. Second, link corresponding

detections across time to form trajectories.

The linking step, called data association is a difficult

task on its own, due to missing and spurious detections, oc-

clusions, and targets interactions in crowded environments.

To address these issues, research in this area has produced

more and more complex models: global optimization meth-

ods based on network flow [4, 64], minimum cliques [61]

or discrete-continuous CRF inference [1]; models of pedes-

trian interaction with social motion models [35, 44]; inte-

gration of additional motion cues such as dense point tra-

jectories [9, 23]; and person re-identification techniques to
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improve appearance models [30, 32]. Even though the mod-

els became progressively more sophisticated, the underly-

ing descriptors, which are used to decide whether two detec-

tions belong to the same trajectory, remained quite simple

and struggle in challenging scenarios (e.g., crowds, frequent

occlusions, strong illumination effects).

Recently, larger amounts of annotated data have become

available and, with the help of these data, convolutional

neural networks (CNNs) that learn feature representations

as part of their training have outperformed heuristic, hand-

engineered features in several vision problems [31]. Here,

we adapt the CNN philosophy to multi-person tracking. In

order to circumvent manual feature design for data associ-

ation, we propose to learn the decision whether two detec-

tions belong to the same trajectory. Our learning frame-

work has two stages: first, a CNN in Siamese twin architec-

ture is trained to assess the similarity of two equally sized
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image regions; second, contextual features that capture the

relative geometry and position of the two patches of inter-

est are combined with the CNN output to produce a final

prediction, in our case using gradient boosting (GB). Given

the learned, pairwise data association score we construct a

graph that links all available detections across frames, and

solve the standard Linear Programming (LP) formulation

of multi-target tracking. We show that this simple and effi-

cient linear tracker – in some sense the “canonical baseline”

of modern multi-target tracking – outperforms much more

complex models when fed with our learned edge costs.

1.1. Contributions

This paper presents three major contributions to the

pedestrian tracking task:

• Within the context of tracking, we introduce a novel

learning perspective to the data association problem.

• We propose to use a CNN in a Siamese configuration

to estimate the likelihood that two pedestrian detec-

tions belong to the same tracked entity. In the pre-

sented CNN architecture, pixel values and optical flow

are combined as a multi-modal input.

• We show that formulating data association with a lin-

ear optimization model outperform complex models

when fed with accurate edge costs.

1.2. Related work

Multi-person tracking. Multi-person tracking is the in-

put for a number of computer vision applications, such as

surveillance, activity recognition or autonomous driving.

Despite the vast literature on the topic [39], it still remains

a challenging problem, especially in crowded environments

where occlusions and false detections are common. Most

modern methods use the tracking-by-detection paradigm,

which divides the task into two steps: detecting pedestri-

ans in the scene [17, 20, 25], and linking those detections

over time to create trajectories. A common formalism is

to represent the problem as a graph, where each detection

is a node, and edges indicate a possible link. The data as-

sociation can then be formulated as maximum flow [4] or,

equivalently, minimum cost problem [28, 35, 45, 64], both

efficiently solved to (near-)global optimality with LP, with a

superior performance compared to frame-by-frame [29] or

track-by-track [3] methods. Alternative formulations typi-

cally lead to more involved optimization problems, includ-

ing minimum cliques [61] or general-purpose solvers like

MCMC [59]. There are also models that represent trajec-

tories in continuous space and use gradient-based optimiza-

tion, sometimes alternating with discrete inference for data

association [1].

A recent trend is to design ever more complex mod-

els, which include further vision routines in the hope that

they benefit the tracker, including reconstruction for multi-

camera sequences [36, 54], activity recognition [11] and

segmentation [40]. In general, the added complexity seems

to exhibit diminishing returns, at significantly higher com-

putational cost.

Other works have focused on designing more robust fea-

tures to discriminate pedestrians. Color-based appearance

models are common [30], but not always reliable, since peo-

ple can wear very similar clothes, and color statistics are

often contaminated by the background pixels and illumi-

nation changes. Kuo et al. [32], borrow ideas from per-

son re-identification and adapt them to “re-identify” targets

during tracking. In [57], a CRF model is learned to better

distinguish pedestrians with similar appearance. A different

line of attack is to develop sophisticated motion models in

order to better predict a tracked person’s location, most no-

tably models that include interactions between nearby peo-

ple [1, 10, 35, 44, 47, 56]. A problem of such models is

that they hand-craft a term for each external influence (like

collision avoidance, or walking in groups). This limits their

applicability, because it is difficult to anticipate all possible

interaction scenarios. The problem can be to some degree

alleviated by learning the motion model from data [33], al-

though this, too, only works if all relevant motion and inter-

action patterns are present in the training data. Moreover,

the motion model does not seem to be an important bottle-

neck in present tracking frameworks. By and large, more

powerful dynamic models seem to help only in a compara-

tively small number of situations, while again adding com-

plexity.

Measuring similarity with CNNs. Convolutional archi-

tectures have become the method of choice for end-to-end

learning of image representations. In relation to our prob-

lem, they have also been remarkably successful in assess-

ing the similarity of image patches for different tasks such

as optical flow estimation [21], face verification [49], and

depth estimation from multiple viewpoints [22, 60, 62].

In the context of tracking, CNNs have been used to

model appearance and scale variations of the target [18].

Recently, several authors employ them to track via online

learning, by continuously fine-tuning a pre-trained CNN

model [8, 37, 51].

2. Learning to associate detections

Our tracking framework is based on the paradigm of

tracking-by-detection, i.e. firstly, we run a detector through

the sequences, and secondly, we link the detections to form

trajectories. We propose to address the data association

problem by learning a model to predict whether two de-

tections belong to the same trajectory or not. We use two

sets of features derived from the pedestrian detections to be

compared. First, local spatio-temporal features learnt using
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Figure 2: Proposed two-stage learning architecture for pedestrian detection matching.

a CNN and, second, contextual features encoding the rela-

tive geometry and position variations of the two detections.

Finally, both sets of features are combined using a GB clas-

sifier [24] to produce the final prediction (see Fig.2). De-

coupling local and global features processing and ensem-

bling them in a later stage allows understanding the contri-

bution of each factor plus adding robustness to the predic-

tion [15, 50].

2.1. CNN for patch similarity

A common denominator when comparing two image

patches using CNNs are Siamese architectures where two

inputs are processed simultaneously by several layers with

shared weights (convolutional and/or fully connected) that

eventually merge at some point in the network. Siamese

CNN topologies can be grouped under three main cate-

gories, depending on the point where the information from

each input patch is combined (see Fig.3):

• Cost function. Input patches are processed by two

parallel branches featuring the same network structure

and weights. Finally, the top layers of each branch are

fed to a cost function [12, 49] that aims at learning a

manifold where different classes are easily separable.

• In-network. In this case, the top layers of the parallel

branches processing the two different inputs are con-

catenated and some more layers are added on top of

that [21, 62]. Finally, the standard softmax log-loss

function is employed.

• Joint data input. The two input patches are stacked

together forming a unified input to the CNN [21].

Again, the softmax log-loss function is used here.

While the two first approaches have yield good results

in classification applications, the best performance for tasks

involving comparison of detailed structures is obtained with

the joint data input strategy. As pointed out by [60] and fur-

ther corroborated by [21], jointly using information from

both patches from the first layer tends to deliver a better

performance. In order to verify this hypothesis within the

scope of the tracking problem, we trained a Siamese net-

work using the contrastive loss function [13]:

E =
1

2N

N
∑

n=1

(y) d+ (1− y)max (τ − d, 0) ,

where d = ||an − bn||
2

2
, being an and bn the L2 normal-

ized responses of the top fully connected layer of the par-

allel branches processing each input image, and τ = 0.2
is the separation margin and y the label value encoded as 0
or 1. The topology of the CNN network has been the same

all through the paper and shown in Fig.2. Our early experi-

ments, showed a relative 8% AUC increase of the joint data

input case over the best performing model from the other

two topologies, given a fixed number of parameters.
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Figure 3: Siamese CNN topologies

Architecture. The proposed CNN architecture takes as

input four sources of information: the pixel values in the

normalized LUV color format for each patch to be com-

pared, I1 and I2, and the corresponding x and y components

of their associated optical flow [19], O1 and O2. These four

images are resized to a fixed size of 121x53 and stacked

depth-wise to form a multi-modal 10-channel data blob D

to be fed to the CNN. In order to improve robustness against

varying light conditions, for each luma channel L of both I1
and I2 we perform a histogram equalization and a plane fit-

ting, as introduced in [63].

The input data is processed first by three convolutional

layers, C1,2,3, each of them followed by a PreReLU non-

linearity [27] and a max-pooling layer that renders the net

more robust to miss alignments within the components of

D. Afterwards, four fully connected layers, F4,5,6,7, aim

at capturing correlations between features in distant parts of

the image as well as cross-modal dependencies, i.e. pixel-

to-motion interactions between I1,2 and O1,2. The output

of the last fully-connected layer is fed to a binary soft-

max which produces a distribution over the class labels

(match/no match). The output of layer F6 in the network

will be used as our raw patch matching representation fea-

ture vector to be fed to the second learning stage.

Training data generation. Pedestrian detections pro-

posed using [17] are generated for each frame and associa-

tions between detections are provided across frames during

the training phase. On one hand, positive examples, i.e.

pairs of detections corresponding to target m, (Imt , Imt−k),
1 ≤ k < N , are directly generated from the ground truth

data, with a maximum rewind time of N = 15. On the

other hand, negative examples are generated by either pair-

ing two true detections with belonging to different people,

a true detection with a false positive or two false positive

detections; in order to increase the variety of data presented

to the CNN, we enlarged the set of false positives by ran-

domly selecting patches from the image of a given aspect

ratio that do not overlap with true positive detections. By

generating these random false positives, the CNN does not

overfit to the specific type of false positives generated by the

employed pedestrian detector thus increasing its capacity of

generalization.

Learning. We trained the proposed CNN as a bi-

nary classification task, employing the standard back-

propagation on feed-forward nets by stochastic gradient de-

scent with momentum. The mini-batch size was set to 128,

with an equal learning rate for all layers set to 0.01, se-

quentially decreased every 1.5 epochs by a factor 10, fi-

nally reaching 10−4. Layer weight were initialized follow-

ing [27] and we trained our CNN on a Titan GPU X for 50

epochs. The Lasagne/Theano framework was employed to

run our experiments.

Data augmentation. Even if the available training data

is fairly large, pairs of pedestrian detections tend not to have

a large range of appearances stemming from the fact that the

number of distinct people in the training corpus is limited.

Adding variety to the input data during the training phase

is a widely employed strategy to reduce overfitting and im-

prove generalization of CNNs [15, 16, 31]. In our particular

case, we have randomly added geometric distortions (rota-

tion, translation, skewing, scaling and vertical flipping) as

well as image distortions (Gaussian blur, noise and gamma).

These transformations are applied independently for each of

the two input patches but only allowing small relative geo-

metric transformations between them (with the exception of

vertical flipping that is applied to both images, when cho-

sen). Since all these transformation are performed directly

on GPU memory, the augmentation complexity cost is neg-

ligible.

2.2. Evidence aggregation with gradient boosting

The softmax output of the presented Siamese CNN

might be used directly for pedestrian detection association

but the accuracy would be low since we are not taking into

account where and when these detections originated in the

image. Therefore, the need for a set of contextual features

and a higher order classifier to aggregate all this informa-

tion.

Given two pedestrian detections at different time in-

stants, It1 and It2 , encoded by its position x = (x, y) and

dimensions s = (w, h), we define our contextual features

as: the relative size change, (s1 − s2)/(s1 + s2), the posi-

tion change, (x1 − x2), and the relative velocity between

them, (x1 − x2)/(t2 − t1).
Combining the local and contextual sets of features is

carried out using gradient boosting (GB) [24]. To avoid

overfitting on the GB, CNN predictions for each of the train

sequences are generated in a leave-one-out fashion follow-

ing the stacked generalization concept introduced in [53].

Finally, the GB classifier is trained by concatenating the

CNN and contextual features. In our case, we trained the

GB classifier using 400 trees using the distributed imple-

mentation presented in [7].
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3. Tracking with Linear Programming

In this section, we present the tracking framework where

we incorporate the score defined in the previous section in

order to solve the data association problem.

Let D = {dt
i} be a set of object detections with

dt
i = (x, y, t), where (x, y) is the 2D image position and

t defines the time stamp. A trajectory is defined as a list of

ordered object detections Tk = {dt1
k1
,dt2

k2
, · · · ,dtN

kN
}, and

the goal of multiple object tracking is to find the set of tra-

jectories T ∗ = {Tk} that best explains the detections D.

This can be expressed as a Maximum A-Posteriori (MAP)

problem and directly mapped to a Linear Programming for-

mulation, as detailed in [35, 64].

The data association problem is therefore defined by a

linear program with objective function:

T ∗ = argmin
T

∑

i

Cin(i)fin(i) +
∑

i

Cout(i)fout(i)

+
∑

i

Cdet(i)f(i) +
∑

i,j

Ct(i, j)f(i, j) (1)

subject to edge capacity constraints, flow conservation at

the nodes and exclusion constraints.

The costs Cin and Cout define how probable it is for a tra-

jectory to start or end. The detection cost Cdet(i) is linked

to the score that detection i was given by the detector. In-

tuitively, if the score si is very high, the cost of the edge

should be very negative, so that flow will likely pass through

this edge, including the detection i in a trajectory. We nor-

malize the costs si = [0, 1] for a sequence, and define the

detection cost as:

Cdet(i) =

{

−si
Vdet

+ 1 if si < Vdet

−si+1

1−Vlink
− 1 if si ≥ Vdet

(2)

If we set, for example, Vdet = 0.5, the top half confident

detections will correspond to edges with negative cost, and

will most likely be used in some trajectory. By varying this

threshold, we can adapt to different types of detectors that

have different rates of false positives.

The cost of a link edge depends only on the probability

that the two detections i and j belong to the same trajectory,

as estimated by our classifier:

Ct(i, j) =







−sRF
i,j

Vlink
+ 1 if sRF

i,j < Vlink

−sRF
i,j+1

1−Vlink
− 1 if sRF

i,j ≥ Vlink

(3)

Note in Eq. (1), that if all costs are positive, the trivial

solution will be zero flow. A trajectory is only created if

its total cost is negative. We define detection costs to be

negative if we are confident that the detection is a pedes-

trian, while transition costs are negative if our classifier is

very confident that two detections belong to the same tra-

jectory. We control with Vdet and Vlink the percentage of

negative edges that we want in the graph. The in/out costs,

on the other hand, are positive and they are used so that the

tracker does not indiscriminately create many trajectories.

Therefore, a trajectory will only be created if there is a set

of confident detections and confident links whose negative

costs outweigh the in/out costs. Cin = Cout, Vdet and Vlink

are learned from training data as discussed in the next sec-

tion.

The Linear Program in Eq. (1) can be efficiently solved

using Simplex [35] or k-shortest paths [4]. Note, that we

could use any other optimization framework, such as maxi-

mum cliques [61], or Kalman filter [44] for real-time appli-

cations.

4. Experimental results

This section presents the results validating the efficiency

of the proposed learning approach to match pairs of pedes-

trian detections as well as its performance when creating

trajectories by means of the aforementioned linear pro-

gramming tracker. In order to provide comparable results

with the rest of the state-of-the-art methods, we employed

the large MOTChallenge [34] dataset, a common reference

when addressing multi-object tracking problems. It consists

of 11 sequences for training, almost 40,000 bounding boxes,

and 11 sequences for testing, over 60,000 boxes, comprising

sequences with moving and static cameras, dense scenes,

different viewpoints, etc.

4.1. Detection matching

We first evaluate the performance of the proposed learn-

ing approach when predicting the probability of two de-

tections belonging to the same trajectory by means of the

ROC curve computed on the training data of MOT15 [34],

as shown in Fig.4. Two result groups are depicted: first,

when only using the CNN classifier (best AUC: 0.718)

and, second, when using the two stage CNN+GB classifier

(best AUC: 0.954); the later yielding to a relative 41% in-

crease in classification performance. Oversampling the im-

age (1,2,4 and 8 fixed locations) and averaging their predic-

tions proved to deliver a significant improvement, specially

for the CNN part of the end-to-end system. However, the

impact of oversampling in the CNN+GB classifier is less

relevant hence it may be avoided to reduce the overall com-

putation load.

An analysis of the ROC curve on the MOT15 training

data allowed us to find the operation point, i.e. proba-

bility threshold Vlink within the linear programming track-

ing, that would maximize its accuracy. In our case, we set

Vlink = 0.35, after cross-validation.
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Figure 4: Performance accuracy for the Siamese CNN and

the full two-stage learning approach (CNN+GB), when us-

ing an oversampling of 8,4,2 and 1 per pair at the input.

4.2. Multiple people tracking

Evaluation metrics. To evaluate multiple-object tracking

performance, we used CLEAR MOT metrics [5], track-

ing accuracy (TA) and precision (TP). TA incorporates

the three major error types (missing recall, false alarms

and identity switches (IDsw)) while TP is a measure

for the localization error, where 100% again reflects a

perfect alignment of the output tracks and the ground

truth. There are also two measures taken from [38] which

reflect the temporal coverage of true trajectories by the

tracker: mostly tracked (MT, > 80% overlap) and mostly

lost (ML, < 20%). We use only publicly available detec-

tions and evaluation scripts provided in the benchmark [34].

Determining optimal parameters. As discussed before,

the LP parameter Vlink = 0.35 is given by the opera-

tion point of the ROC curve. The other LP parameters,

Cin = Cout, Vdet are determined by parameter sweep with

cross-validation on the training MOT15 data in order to

obtain the maximum tracking accuracy.

Baselines. We compare to two tracking methods based on

Linear Programming. The first is using only 2D distance

information as feature (LP2D), the second [33] is learning

to predict the motion of a pedestrian using image features

(MotiCon). This comparison is specially interesting, since

the optimization structure for all methods is based on Linear

Dataset Method TA TP MT ML IDsw

MotiCon 58.2 70.8 23.1 15.4 403

TUD- LP2D 49.5 74.1 15.4 15.4 48

Crossing Proposed 73.7 73.0 69.2 15.4 197

MotiCon 46.6 67.6 9.5 14.3 238

PETS09- LP2D 40.7 70.2 9.5 16.7 319

S2L2 Proposed 34.5 69.7 7.1 19.0 282

MotiCon 43.5 72.9 20.0 28.9 37

ETH- LP2D 40.7 73.5 15.6 26.7 41

Jelmoli Proposed 42.3 72.8 24.4 31.1 30

MotiCon 18.3 77.7 1.5 74.1 72

ETH- LP2D 16.9 76.4 2.0 73.6 77

Linthescher Proposed 16.7 74.2 4.6 78.7 9

MotiCon 22.8 72.9 3.8 65.4 8

ETH- LP2D 21.4 76.3 3.8 65.4 10

Crossing Proposed 27.5 74.1 3.8 65.4 4

MotiCon 11.9 70.3 0.9 69.9 74

AVG- LP2D 15.5 68.5 8.4 33.2 260

TownCentre Proposed 19.3 69.0 4.4 44.7 142

MotiCon 1.0 70.3 18.8 12.5 136

ADL- LP2D 2.9 72.2 15.6 21.9 252

Rundle-1 Proposed 26.5 71.6 28.1 28.1 33

MotiCon 18.1 71.8 4.5 20.5 217

ADL- LP2D 13.7 72.8 2.3 25.0 400

Rundle-3 Proposed 39.7 72.9 11.4 34.1 33

MotiCon 38.8 70.1 0.0 11.8 36

KITTI-16 LP2D 35.5 72.0 0.0 11.8 47

Proposed 36.9 72.6 0.0 17.6 24

MotiCon 33.8 69.9 6.5 21.0 100

KITTI-19 LP2D 20.1 65.2 8.1 21.0 97

Proposed 26.7 66.2 6.5 29.0 70

MotiCon 18.2 72.9 0.0 29.4 74

Venice-1 LP2D 11.0 72.4 0.0 35.3 98

Proposed 22.3 73.0 0.0 41.2 4

Table 1: Detailed result on the 11 sequences of MOTChal-

lenge test, compared to two other methods that use also Lin-

ear Programming.

Programming, and the only factor that changes is the way

the edge costs are computed. In this way, we can see the

real contribution of our proposed learn-based costs. As it

can be seen in Table 1, the results indicate that our learned

data association costs are more accurate, and that this better

low-level evidence is the key factor driving the performance

improvement.

Finally we show the results on the test set of MOTChal-

lenge in Table 2, where we compare to numerous state-

of-the-art trackers. Our method is among the top per-

forming trackers, and contains less false positives than any

other method. Note, that we do not use any type of post-

processing. Again, it clearly outperforms methods based on

Linear Programming (LP2D and MotiCon), thanks to the

proposed edge costs.
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Method TA TP MT ML IDsw FP

NOMT [9] 33.7 71.9 12.2 44.0 442 7762

MHT-DAM [30] 32.4 71.8 16.0 43.8 435 9064

MDP [55] 30.3 71.3 13.0 38.4 680 9717

SiameseCNN (proposed) 29.0 71.2 8.5 48.4 639 5160

LP-SSVM [52] 25.2 71.7 5.8 53.0 849 8369

ELP [43] 25.0 71.2 7.5 43.8 1396 7345

JPDA-m [46] 23.8 68.2 5.0 58.1 365 6373

MotiCon [33] 23.1 70.9 4.7 52.0 1018 10404

SegTrack [40] 22.5 71.7 5.8 63.9 697 7890

LP2D (baseline) 19.8 71.2 6.7 41.2 1649 11580

DCO-X [41] 19.6 71.4 5.1 54.9 521 10652

CEM [42] 19.3 70.7 8.5 46.5 813 14180

RMOT [58] 18.6 69.6 5.3 53.3 684 12473

SMOT [14] 18.2 71.2 2.8 54.8 1148 8780

ALExTRAC [6] 17.0 71.2 3.9 52.4 1859 9233

TBD [26] 15.9 70.9 6.4 47.9 1939 14943

TC-ODAL [2] 15.1 70.5 3.2 55.8 637 12970

DP-NMS [45] 14.5 70.8 6.0 40.8 4537 13171

LDCT [48] 4.7 71.7 11.4 32.5 12348 14066

Table 2: Results on the MOTChallenge test set.

5. Conclusions

In this paper we have presented a two-stage learning

based approach to associate detections within the context

of pedestrian tracking. In a first pass, we create a multi-

dimensional input blob stacking image and optical flow in-

formation from to the two patches to be compared; these

data representation allows the following Siamese convolu-

tional neural network to learn the relevant spatio-temporal

features that allow distinguishing whether these two pedes-

trian detections belong to the same tracked entity. These

local features are merged with some contextual features by

means of a gradient boosting classifier yielding to a unified

prediction.

In order to highlight the efficiency of the proposed de-

tection association technique, we use a modified linear pro-

gramming based tracker [64] to link the proposed corre-

spondences and form trajectories. The complete system

is evaluated over the standard MOTChallenge dataset [34],

featuring enough data to ensure a satisfactory training of

the CNN and a thorough and fair evaluation. When com-

paring the proposed results with the state-of-the-art, we ob-

serve that a simple linear programming tracker fed with

accurate information reaches comparable performance than

other more complex approaches.

Future research within this field involve applying the

proposed approach to more generic target tracking, leverag-

ing already trained models and extending the second stage

classifier to deal with more complex contextual features,

e.g. social forces [35]. Evaluation of the proposed archi-

tecture over on datasets is currently under investigation.
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