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Abstract

While the importance of the choice of color space for
color descriptors has been studied extensively, a similar
study for image texture descriptors is missing. This pub-
lication investigates the effect of color-to-monochrome con-
versions, image normalization, and metrics on the discrim-
inative power of texture descriptors. The measure of the
discriminative power of a feature is formulated as super-
vised spectral feature analysis. This analysis allows to
measure the relative performance of a feature under vary-
ing conditions as long as the feature dimension is main-
tained. Feature discrimination evaluation is applied to Lo-
cal Binary Patterns texture descriptors and it is shown how
the proposed metric directly maps to classification perfor-
mance. Based on this metric, we demonstrate that the
choice of color-to-monochrome conversion and normaliza-
tion can have a significant effect on the performance of the
LBP descriptors.

1. Introduction
Given that visual features are central to image classifica-

tion, metrics to evaluate the discriminative power of these

features are essential for building accurate classifiers. This

publication investigates the effect of monochrome transfor-

mations, image normalizations, and metrics for feature dis-

crimination in the context of texture features. In particu-

lar, the focus is on variations of the popular Local Binary

Pattern (LBP) texture descriptors [2, 17], although the pre-

sented methodology is equally applicable to other features.

Texture descriptors are normally extracted from

monochrome images [2, 10, 17, 20]. Various authors have

proposed so-called color-texture descriptors by extracting

texture information within and between each color chan-

nel [5, 6, 19] or by combining texture descriptors with color

descriptors [15, 22, 23, 24]. However, color information—

and obviously the image luminosity—is illumination

dependent. Because of this, image processing in outdoor

environments is particularly difficult due to changing illu-

mination, strong sun, shadows, etc. As such, much research

has focused on stabilizing the color information by making

it more robust to changes in illumination [4, 8]. Image

normalization can also provide some gray-scale invariance

and remove some of the global gray-scale properties and is

frequently used in the literature [8, 13, 17, 18].

From the color/color-texture literature, it is obvious that

it is important to investigate the properties of the color

space. We are, however, unaware of a study on the impact

of color-to-monochrome conversion on descriptors. Many

descriptors, e.g. LBP, SIFT [14] and HOG [7], are after all

in their basic forms computed from the luminosity of the

images. As we will show in Section 3, each color space has

its own definition of luminosity, which are lossy and can

involve non-linear conversions of the RGB components.

To analyze the effect of color-to-monochrome conver-

sions and normalization, in this paper we perform super-

vised spectral feature analysis [26] on the extracted descrip-

tors. Our contributions are threefold. 1) We introduce a

novel metric based on spectral feature analysis for estimat-

ing the discriminatory power of (texture) descriptors. The

advantage of this metric is that it allows a classifier free
evaluation of a feature’s discriminative power. 2) We vali-

date the use of this metric as a measure of feature discrimi-

nation. The obtained values of the discrimination measures

are shown to map monotonically to actual classification re-

sults obtained with Support Vector Machines (SVMs). 3)

We employ this metric to compare the discriminative power

of features formed from six different monochrome conver-

sion, and in which various image normalization strategies

are used. For each conversion and normalization tested, this

analysis produces metrics quantifying the separation in fea-

ture space of various classes and the invariance of the tex-

ture descriptor with respect to illumination.
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The remainder of this paper is organized as follow.

Next section briefly describes the various LBP descriptors

employed in this paper. Section 3 introduces the tested

monochrome conversion and normalization methods. In

Section 4 we introduce our feature analysis methodology.

Spectral feature analysis and classification results are pre-

sented in Section 5. Finally, in Section 6 we present our

concluding remarks.

2. Texture descriptors

A large number of features have been developed to de-

scribe the texture in an image [2, 10, 16, 20]. In var-

ious studies [17, 20] these descriptors have been com-

pared and the Local Binary Patterns (LBP) descriptors have

been shown to often outperform many of the other de-

scriptors. Because of the calculation simplicity and ro-

bustness, these descriptor are often the texture descriptor

of choice [1, 9, 15] and thus we focus on the LBP descrip-

tors. However, the approach for quantifying the separation

of the texture classes in feature space introduced later can

be equally applied to other feature descriptors.

2.1. LBP overview

Ojala et al. [17] introduced the shift and rotation invari-

ant Local Binary Patterns (LBP) texture descriptor. The

LBP descriptor is calculated for every pixel by comparing

the value of a center pixel with the values of P circularly-

symmetric surrounding pixels at a radius R from this center

pixel, LBPP,R. By taking the sign of the difference between

the center and surrounding pixels a binary descriptor is gen-

erated, which is also scale invariant.

More recently, Ahonen et al. [2] introduced an LBP de-

scriptor (LBP-HF) that locally preserves the rotational vari-

ations of the surrounding pixels (by not performing the

aforementioned rotation) while being rotationally invariant

at the patch level. This is achieved by representing the LBP

descriptor histograms in the Fourier space.

An extension to the rotation-invariant descriptor,

LBPri
P,R, the rotation-invariant uniform descriptor, LBPriu2

P,R ,

has also been developed [17] after realizing that a certain

few patterns occur in more than 90% of the observed tex-

tures. These “fundamental” patterns are more uniform and

contain very few spatial transitions (0→ 1 and 1→ 0 tran-

sitions). Here, u2 corresponds to uniform patterns with less

than 2 transitions.

LBPs allow for detecting patterns in circular neighbor-

hoods of any quantization of the angular space and at any

spatial resolution by employing interpolation. Multiple

LBP operators can also be combined (e.g. concatenated)

to generate a multi-resolution descriptor.

(a)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

LBP Descriptor Dimension [n]

N
or

m
al

iz
ed

 o
cc

ur
an

ce

 

 

N=  7
N= 15
N= 31
N= 63
N=125

(b)

Figure 1: The effect of calculating the LBPriu2
8,1 histogram using

different patch sizes N of a uniformly textured image. a) The

textured image. b) The variance in the LBP histograms.

2.2. Selected LBPs

In this paper we analyze the performance of the most

popular Local Binary Pattern descriptors, the rotation-

invariant uniform feature (LBPriu2
P,R ) [17] and the newer

Local Binary Pattern Histogram Fourier feature (LBP-

HF) [2]1. In our feature analysis we compare the per-

formance of both LBP8,1 and LBP24,3. As such, we are

comparing the effect of color-to-monochrome conversion

and image normalization on four descriptors: LBPriu2
8,1 ,

LBPriu2
24,3 , LBP-HF8,1, and LBP-HF24,3.

Figure 1 shows the effect of varying the patch size when

calculating the histogram for LBPriu2
8,1 . Here the descriptor

is calculated on a single image with a repeating pattern and

the histograms are extracted from non-overlapping square

patches at sizes N = [7, 15, 31, 63, 125]2. The boxplots

show the variation of each dimension of the descriptor for

each patch size. It is observed that the median of the values

across the different patch sizes are similar while the varia-

tion decreases with the patch size. In the remainder of this

document a patch size of N = 31 is used, which exhibits an

acceptable tradeoff between precision, number of samples

and computation time.

3. Color models
In this study, we are analyse the effect of various color-

to-monochrome transformation on the LBP features ex-

tracted from the converted monochrome image. Further-

more, we investigate how the change in the source illumi-

nation affects the descriptor. This is of particular interest

in outdoor scenes, where both the intensity and chromatic-

ity change continuously due to the change in illumination

(e.g. motion of the sun in the sky or wavelength dependent

attenuation of light in water).

The next section reviews some of the commonly em-

ployed color-to-monochrome conversions from various

1We employ the C++ implementation freely available from https:
//github.com/nourani/LBP.

2The effect is similar for the other descriptors. LBPriu2
8,1 was chosen as

it has the smallest feature dimension n = 10 making the illustration more

clear.
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color spaces while section 3.2 looks at the image normal-

ization methods.

3.1. Monochrome conversions

The conversion to monochrome is lossy and the choice

of how this compression is done can have significant ef-

fect on the discriminative power of a texture descriptor. In

this study we will demonstrate the effect of extracting Lo-

cal Binary Pattern descriptors from the luminosity channels

of these six color spaces: XYZ, Lab, HSV, HSL, HSI, and

YUV601.

Poynton [21] recommended to computed the brightness

component as a properly-weighted sum of red, green, and

blue, e.g.:

Y601 = 0.299 ·R+ 0.587 ·G+ 0.114 ·B. (1)

Similarly the luminance in the XYZ color space can be cal-

culated from RGB, using D50 white-point, by:

YXY Z = 0.228 ·R+ 0.737 ·G+ 0.03 ·B. (2)

The perceptually uniform lightness value of the Lab color

space can be calculated from (2):

LLAB =

{
116( 13

29
6

2
Y + 4

29 )− 16, Y ≤ 6
29

3

116Y 1/3 − 16, otherwise.
(3)

In the formulation for HSV/HSL/HSI color spaces, the

brightness is defined as the largest component or an aver-

age of the color components:

V = max(R,G,B), (4)

L = mean (min(R,G,B),max(R,G,B)) , (5)

I = mean(R,G,B). (6)

These representations are highly nonlinear, which also in-

troduces spokes (i.e. discontinuities) into the hue cir-

cle [21].

3.2. Image normalization

Image normalization can provide some gray-scale invari-

ance and remove some of the global gray-scale properties.

We investigate the effect of image normalization, before de-

scriptor calculation, through histogram stretching and his-
togram averaging applied globally on the whole image or

locally on the image patches:

Global averaging: Ensure the image has an average of 128

and a standard deviation of 20.

Global stretch: Stretch the image histogram to span the

range [0, 255]. This was employed by Kim et al. [13].

Local averaging: Perform averaging but on the 31 × 31
image patches. This was employed by Ojala et al. [17]

but with patch size of 128× 128.

Local stretch: Perform histogram stretching on the 31 ×
31 image patches. This was employed by Osuna et

al. [18].

None: No normalization is performed. This is our baseline

for the performance of the normalization.

The next section introduces our feature analysis method-

ology.

4. Feature Analysis
We introduce a metric for evaluating the discriminative

power of a descriptor, which is here applied to texture de-

scriptors. This metric is used to evaluate the sensitivity

of the descriptor to illumination changes and color space.

Rather than evaluating the features on various classifiers,

we seek to capture a measure of the expected performance

of the feature space without evaluating classifiers and thus

performing a feature evaluation which does not factor in the

specifics of the classifier.

For classification purposes the features of the same class

are desired to be close (even under illumination change),

and features of other classes to be well separated. This de-

sired feature space structure can be encoded in an affinity

matrix Sij , where the entry (i, j) encodes the connectivity

of data points i and j. The discriminative power of a feature

can be evaluated by comparing the separation it provides in

feature space against the desired separation encoded by Sij .

This evaluation can be performed with supervised spectral

feature analysis [26].

In our case, we would like to know what choice of color

space and normalization results in the best separation of the

descriptor features for different textures, while remaining

invariant to changes in illumination for the same texture.

4.1. Supervised Spectral Feature Analysis

Mappings to the feature space should in principle keep

feature responses of the same class close under different il-

luminations. This desired intra class proximity can be en-

coded using the Laplacian score [11]. This score evaluates

the rth feature fr with the following measure:

Lr =

∑
ij

(
fri − frj

)2
Sij

Var(fr)
, (7)

where Sij is the encoding of affinity of the data points i and

j encoded using feature fr. For example, fri is the patch i
encoded using feature fr. In the supervised setting Sintra

ij

is defined as:

Sintra
ij =

{
1
n2 , if Ci = Cj ∧ i �= j
0, otherwise.

(8)

where C is the class and n in the number of elements in that

class.
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(a) Good separation. (b) Poor separation.

Figure 2: Intra-class and inter-class separation. For the sake of

clarity only one set of intra-class and inter-class connectivities are

shown.

We extend the intra-class Laplacian score, to an inter-

class compactness score Sinter
ij in order to include an as-

sessment of the separability of classes in the feature spaces:

Sinter
ij =

{
1

n·m , if Ci �= Cj

0, otherwise,
(9)

where n and m are the number of elements in the classes

Ci and Cj , respectively. This allows us to assess if features

from different classes, which we desire to remain separate,

are overlapping. An example of the intra-class similarity

and the inter-class distances can be seen in Figure 2. Here

solid lines represent the intra-class feature affinity Sintra
ij

that is calculated for a single feature in each class. The

dashed lines represent the inter-class distances from a single

feature in one class to the features of another class. Thus

we use these metrics to assess the agreement between our

feature space and color space combination and our desired

(separable) feature space.

Our approach is similar to marginal Fisher analysis

(MFA) [25]. The goal of MFA is to find a linear projec-

tion that preserves the desired intra-class structure, while

increasing the inter-class distances [25]. However, our ap-

proach uses the intra and inter class Laplacians to assess

these characteristics in the given feature space.

It should be noted that the Laplacian score cannot be

used to compare the performances of features with differ-

ent dimensions due to the non-linear relationship between

the distributions of L2 distance and the dimension of the

feature space. Hence, the goal of this analysis is not to eval-

uate which of the LBP descriptors perform best but to re-

alize if the dependencies on monochrome conversions and

normalizations is applicable to all the descriptors.

5. Results

5.1. Feature analysis experiment

To evaluate the proposed concept we have carried out an

experiment using a standard texture data set. We present the

results from our feature analysis and validate it by showing

results from a linear SVM classifier.

5.1.1 Data set

The Outex TC 00012 image data set3 contains 24 textures

at 9 orientations and three illuminations: 2300K horizon

sunlight denoted as ‘horizon’, 2856K incandescent CIE A

denoted as ‘inca’, and 4000K fluorescent TL84 denoted as

‘TL84’. The rotation-invariance of the LBP descriptors on

this data set has been shown before [17, 2] and is not of

interest in the context of our analysis. We are interested

in the stability of the features under varying illumination.

Figure 1 shows an example image from this data set.

5.1.2 Feature analysis

Each image in the data set is converted to the six color

spaces and the luminosity channel extracted. Patches of

size 31 × 31 are extracted to be evaluated with each of the

LBP descriptors. Local normalization is performed on these

patches prior to LBP calculation while global normaliza-

tion is applied before to the patch extraction. Note that only

one form of normalization is carried out, not both global

and local. Finally, all features are normalized to have unit

norm. This process results in a total of 30 experiments

(6 monochrome conversions × 5 normalization methods)

where each experiment has a data set of 32400 patches (450

samples/class × 24 classes × 3 illuminations).

Since our ideal feature space increases the margins be-

tween different classes and maintains intra-class locality we

can define the affinity matrix Sintra
ij (8) and our desired

inter-class dissimilarity matrix Sinter
ij (9) with n = m =

450. In each experiment we evaluate the ability of the fea-

ture space to enhance separation and maintain locality with

the change in illumination.

Figure 3 shows the spectral analysis results. The re-

sults for the six monochrome conversion are shown in six

different colors while the results for employing normaliza-

tion methods are shown with different markers. The results

are presented using a normalized score since the Lapla-

cian score is unit-less and only the relative score can be

evaluated. Given a luminosity-normalization pair, the fur-

ther to the left a marker is positioned the better intra-class
closeness is achieved. The further towards the top, the bet-

ter inter-class separation. Hence, markers towards the top

left are performing better than markers towards the bottom

right.

We can observe that the descriptors extracted from the

luminance channel of the XYZ color space (shown in red)

generally demonstrate higher intra-class closeness; i.e. the

red markers are furthest towards the left. For the other con-

version, the descriptors extracted from the luminosity chan-

nels of the Lab, YUV and HSV spaces perform generally

better than those from the HSI and HSL color spaces.

3Data sets available from http://www.outex.oulu.fi.
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Figure 3: Intra-class closeness and inter-class separation of the

features in any color space-normalization pair. Markers towards

the top left are performing better than markers towards the bottom

right. See text for detailed analysis.

Looking at the normalization methodologies, we observe

that the best intra-class closeness is achieved by not per-

forming any normalization (the � in the figure). We see

no obvious answer to which normalization methodology re-

sults in the best inter-class separation, however, we do ob-

serve that the XYZ color space is showing less inter-class

separation when applying normalization.

5.1.3 SVM evaluation

To verify the spectral feature analysis results presented

above, we have performed classification employing a lin-

ear SVM [13]. We performed 3-fold cross validation by

training on one illumination, e.g. horizon, and testing on

the other two, e.g. inca and TL844. The cost parameter, C,

was found by performing an exponential grid search in the

range [10−3−103] [12]. The training set consisted of 10800

patches (450 patches/image× 24 classes) and the test set of

21600 patches (450 patches/image × 24 classes × 2 illumi-

nations).

The results of the classifications are shown in Figure 4

and presented in terms of the average F1 score of the three

training/test sets. We observe that the best classification re-

sults are achieved in the XYZ, Lab and YUV color space,

4We observed that when trained on two illuminations and tested on the

third, the SVM classified the test samples with 100% accuracy regardless

of monochrome conversion and normalization method. We are therefore

presenting the more challenging problem of training on a single illumina-

tion and testing on two other.
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Figure 4: SVM classification results. The results are shown in

terms of the mean, best and worst F1 scores. See text for detailed

analysis.

while the descriptors extracted from the luminosity chan-

nels of the HSI/HSL/HSV perform worst. This was ex-

pected looking at the spectral analysis results in Figure 3.

Also here, we do not observe any noticeable performance

difference between the normalization methods, except in the

XYZ color space.

These findings are significant since they provide an ex-

perimental validation of the use of spectral feature analy-

sis as a general tool for measuring separation in feature

space. However, it is important to notice that the presented

methodology cannot be employed to measure the difference

between the different features, i.e. we could not predict

the LBP-HF8,1 descriptor to be performing better than the

LBPriu2
8,1 or any of the other descriptors. Developing feature

analysis methodologies that can detect this is an ongoing

research topic and, as supported by these results, of great

importance.

5.2. Real world data set validation

To validate the results attained in the previous section

we have carried out another experiment where we perform

benthic habitat classification using LBP descriptors.

5.2.1 Tasmania data set

The data set consists of 1258 images from 14 different Au-

tonomous Underwater Vehicle (AUV) dives captured of the

east coast of Tasmania, Australia. Due to the nature of the

underwater images they exhibit large variability in illumi-

nation, attenuation and color correctness. The images have

been labeled by expert marine scientists, with each image
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Figure 5: Example images from the Tasmania data set.

containing 50 labels, defining a taxonomical hierarchy of

19 species and substrate forms [3]. Figure 5 illustrates a

few example images from the data set5.

5.2.2 Results

Multi-resolution LBP features have previously been shown

[17, 2] to perform superior to single-resolution descriptors.

In this more challenging data set, we therefore employed

a multi-resolution LBP-HF descriptor, by concatenating a

LBP-HF8,1 and a LBP-HF8,3 descriptor. Two-thirds of the

data set was used for training and one third for validation.

Again we employed three-fold cross validation and expo-

nential grid search for the cost parameter C.

The results are shown in Figure 6. Figure 6a shows

the spectral analysis result, while Figures 6b-6c show the

precision-recall and the F1-scores, respectively. From the

spectral analysis results we notice that the normalization is

having a very large impact on this data set; all the � are in

the bottom right. We can see that this is clearly reflected

in the precision-recall plot of the classification results in

Figure 6b. From the spectral analysis, the global meth-

ods are producing higher inter-class separation while the

local methods are producing higher intra-class closeness.

In the SVM classification results, the global normalization

methods produce slightly better results than the local nor-

malization methods. Hence, we can observe that the ad-

ditional inter-class separation gained by employing global

normalization was more significant than the added intra-

class closeness in the local normalization methods. For this

data set, this difference is possibly due to excessive noise

amplification in the small patches. Finally, from the F1

scores we can see that again that the XYZ, YUV and Lab

conversions result in the highest classification results. The

best classification is achieved by employing XYZ conver-

sion and global image stretching, which results in an F1 =
75.3. The bottom line is that an increase of almost 40% is

attained by choosing a more appropriate monochrome con-

version and normalization method.

5The data set can be downloaded from http://marine.acfr.
usyd.edu.au/datasets.

6. Conclusion

This paper has introduced a classifier-free metric to ana-

lyze the performance of descriptors in terms of their intra-

class compactness and inter-class separability under a vary-

ing condition. We demonstrated the effect of color-to-

monochrome conversions and image normalization meth-

ods on the popular Local Binary Pattern texture descriptors.

The results attained with the proposed metric were validated

extensively using standard classification techniques.

The outcome of our analysis was that the choice of

color-to-monochrome conversion does indeed matter; this

should not come as a surprise as these conversions are lossy

and can be non-linear. The best performance was con-

sistently achieved by employing a linear conversion from

RGB: XYZ, YUV, Lab, and HSV. In particular the conver-

sion to XYZ resulted in best performance in all tests.

We also demonstrated that the spectral analysis can cap-

ture the effects of image normalization and found that

there can be noticeable improvement when the illumina-

tion changes across the images are extreme. This is in light

that the LBP features are themselves designed to be robust

against changes in intensity.

While LBPs were used in this study the proposed method

can be equally applied to other descriptors and other test

scenarios. In future studies, it would be interesting to in-

vestigate the effect of color-to-monochrome conversion on

other popular descriptors such as SIFT, HOG etc, and to de-

fine metrics to compare descriptors of various dimensions.

One limitation of the presented method is that it cannot be

used to compare descriptors with different dimensionality.

The ability to do so is very important and is an active re-

search topic.
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