
Object Extraction from Bounding Box Prior with Double Sparse Reconstruction

Lingzheng Dai, Jundi Ding, Jian Yang, Fanlong Zhang and Junxia Li

Dept. of CSE, Nanjing University of Science and Technology, Nanjing 210094, PR China

lingzhengdai@163.com,{dingjundi2010,csjyang}@njust.edu.cn,csfzhang@126.com,junxiali99@163.com

Abstract

Extracting objects from natural images has long been an

active problem in image processing. Despite various at-

tempts, it has not been completely solved up to date. Cur-

rent state-of-the-art object proposal methods tend to extract

a set of object segments from an image, and often these are

consequential differences among these results for each im-

age. Another type of methods strive to detect one object in-

to a bounding box where some background parts are often

covered. For these two methodologies, we observe: 1) there

are generally some regions overlapped among different pro-

posals, which are usually from one object; they could be as

object ‘segment hypotheses’; 2) pixels outside the detected

bounding box could be as ‘background hypotheses’ as they

are with high probability from the background. With them,

we formulate the object extraction as a “double” sparse re-

construction problem in terms of the bounding box result-

s. The idea is that object regions should be with small re-

construction errors to segment hypotheses bases, simultane-

ously, they should have large reconstruction errors to back-

ground hypotheses bases. Comprehensive experiments and

evaluations on PASCAL VOC object segmentation dataset

and GrabCut-50 database demonstrate the superiority of

our built method. In particular, we achieve the state-of-the-

art performance for the object segmentation with bounding

box prior on these two benchmark datasets.

1. Introduction

Extracting objects from natural images has long been

one of the most fundamental and critical problems in com-

puter vision and image processing [3][18][28]. It plays a

key role in vision applications, including object recognition,

classification [11][27] [29] [30] , etc. However, experiments

on PASCAL [32] or GrabCut-50 [12] database show that it

is still an unsolved and challenging problem. This is mainly

due to that photographs of natural scenes reflect real-world

variations and are characterized by large ranges of color,

texture and shapes.

Two paradigms have shaped this field of object extrac-

Figure 1. (a) Original image; (b) Background Reconstruction Map

(BRM); (c) Segment Reconstruction Map (SRM); (d) Final object

confidence map.

tion. In the former, a plethora of low-level object proposal

methods [2] [3] [18] have aroused the interest of researcher-

s. Given an input image, its output is a set of visually

consistent object-level segments, often called object can-

didates. Some subsequent operations (e.g., support vector

machines) are used to rank and classify these object candi-

dates for picking out a best one. However, when the seman-

tic regions appear with large appearance diversity, to obtain

a single proposal to cover the whole object accurately is a

non-trivial task, due to bottom-up object proposals tend to

yield the appearance consistency instead of semantic ones.

The latter paradigm is the current detection-based tech-

niques such as Deformable Part Models [19] that have at-

tracted wide interest in computer vision. Based on semi-

local orientation histograms (e.g., SIFT [4], HOG [5]), these

methods are capable of bounding an object as a whole in

one box by using the scanning-window architecture. The

question is that inside the bounding box, many background

pixels are also covered.

Intuitively, it is beneficial to jointly use the bounding box

prior and object proposals for extracting the object entirely

from natural images. On the one hand, benefitting from the

‘object entirety’ performance, as shown in Fig. 1(a), it is

sensible for us to directly extract objects from the bounding

box prior; on the other hand, the output of object proposals

methods is a pool of possibly-overlapping region proposals

that can be used as the search space for objects in the image.

Given the bounding box prior, although many background

components are covered in it, we can easily observe that the

pixels outside the bounding box are with high probability

from the background. Considering this, they could be as

the background hypotheses. Then, we are easy to formu-
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Figure 2. Framework of our double sparse reconstruction based segmentation model. Given an image and bounding box prior of the

object, we first segment the image into super-pixels. Super-pixels outside the bounding box and many object proposals generated by CPM-

C method, respectively, are used to construct the background and segment hypotheses. Background hypotheses are used to reconstruct

the background reconstruction map (BRM), and meanwhile the segment reconstruction map (SRM) is reconstructed through segment hy-

potheses. The output of BRM and SRM are obtained by the proposed double sparse reconstruction framework, including the reconstruction

coefficients. They are then integrated to yield the final object confidence map. Region merging procedure is finally applied on the object

confidence map to make the extracted object with a well-preserved boundary.

late the object extraction as a reconstruction problem. With

respect to the background hypotheses, the object pixels or

regions should have a large reconstruction error, shown as

brighter regions in Fig .1(b). In addition, object pixels may

be similar with background parts in some low-level cues in

many situations. The background reconstruction errors of

them are close [14]. To solve this, we also consider the ob-

ject candidates that are generated by object proposals meth-

ods as some object segment hypotheses. The reason is that

these object candidates generally exhibit a high overlapping

which is usually from one object. Then, with respect to

the segment hypotheses, the object pixels or regions should

have small reconstruction errors, shown as brighter regions

in Fig .1(c).

The goal of this paper is to greatly enhance the per-

formance for extracting object with the bounding box pri-

or. We propose a double sparse reconstruction method to

object extraction in terms of this prior, which inherits the

merits of both above two terms – background and segmen-

t hypotheses. As shown in Fig. 2, we first apply the S-

LIC [7] method to a testing image and obtain the super-

pixels. Super-pixels outside the bounding box prior are used

to construct the background hypotheses. In our model, the

first reconstruction map is designed to be reconstructed by

the background hypotheses, where super-pixels that exhib-

it large sparse reconstruction errors are predicted as object

regions and that derive small errors to be background com-

ponents. The reconstruction map measures how likely each

super-pixel to be a object region. We refer to it as Back-

ground Reconstruction Map (BRM). And meanwhile a set

of object proposals are generated by applying CPMC [2]

method to build the segment hypotheses. These hypotheses

are fed into our model to calculate the second reconstruc-

tion map, called Segment Reconstruction Map (SRM), in

which the regions that derive a small reconstruction error

with respect to them will be with high probability to be ob-

ject. The proposed framework is able to take full advantage

of the object bounding box prior information and object pro-

posals. The output of BRM and SRM are unified obtained

by our double sparse reconstruction framework, including

the reconstruction coefficients. These two maps are inte-

grated to generate the final object confidence map. Region

merging procedure is finally used on the confidence map to

make the extracted object with a well-preserved boundary.

Figure 2 shows a pipeline of our framework. In summarize,

our contributions are as follows:

• Current popular tendency is to detect the object in one

bounding box as well as many background pixels. We here

build a reconstruction framework that can refine the bound-

ing box detected results, and can precisely put the object

out from the bounding box. It is perhaps more useful for

further vision tasks, such as object recognition and image

understanding.

• Our reconstruction framework not only considers the

background hypotheses, but also uses the object segment

hypotheses. In this way, some challenging cases – where

pixels of the object and its background are very similar or

pixels of within-objects are not similar – can also be well

tackled (see the extracted dog in Figure 2).

• Comprehensive experiments and evaluations on two

challenging object segmentation datasets PASCAL VOC

object segmentation dataset [32] and GrabCut-50 image

segmentation database [12] demonstrate that our built

framework is superior to the state-of-the-art methods.

2. Related Work

Our method could be viewed as a semi-supervised work

because it aims to utilize some object-and-background prior

to guide the object reconstruction. Existing methods that
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use some brush strokes, or bounding box prior to predict

starting seeds or locations of objects are related to our work.

Seed-based approaches: The seed-based methods in-

clude: GraphCut (GC) [15], constrained parametric min-cut

(CPMC) [2] and Laplacian Coordinates [24]. Considering

the image as a graph, GC seeks to find the minimum cut be-

tween seeded regions, where the similarity between neigh-

boring pixels is encoded as edges of this weighted graph.

GC uses a max-flow/min-cut algorithm to find this cut in

order to segment images. Using a graph-cut based model,

Carreira et al. [2] seek to generate a pool of object hypothe-

ses by hypothesizing a set of placements of fore- and back-

ground seeds. For each configuration, segmentation results

are obtained by solving a constrained parametric min-cut.

Particularly, in their model the smoothness term borrows the

definition from gPb [10] of similarity between adjacent pix-

els. Recently, Laplacian Coordinates (LC)[24] is proposed

to minimize a novel quadratic energy function defined from

an affinity graph of pixels. In their model, the average dis-

tance of pairwise pixels is minimized and anisotropic prop-

agation of seeds labels is controlled well. Generally, careful

assignment of these seeds is a non-trivial job, which influ-

ences the segmentation performance critically.

Bounding box based approaches: Some work, on the

other hand, use the bounding box prior to guide object seg-

mentation, including [16] [12] [13] [36]. Compared with

seed strokes, bounding box prior is intuitive to users due to

its availability of taking only tow mouse clicks and the e-

merging of object-detection techniques. In GrabCut [16],

this bounding box prior is integrated into the energy func-

tion and the model is iteratively optimized by Expectation

Maximization (EM) method. Further, the object boundary

is refined by border matting in order to get the final seg-

mentation results. The authors [12] further presented a new

graph-cut framework. They investigate the effectiveness of

the sufficiently tight bounding box and integrate this infor-

mation as a constraint into their energy function. To opti-

mize their model, a new rounding algorithm - pinpointing

is handed as the optimization strategy. In [13], segmen-

tation task is tackled as an adaptive figure-ground classifi-

cation algorithm using a user provided bounding box. It

compiles various foreground priors and one common back-

ground prior seamlessly. With the different foreground pri-

ors, many hypotheses are generated with evaluation score

functions. At last, the one with the maximum segmenta-

tion quality score is selected as the best segmentation. Re-

cently, Tang et al. [36] propose an alternative approach to

color clustering using kernel K-means energy. Compared

with histogram or GMM fitting used by [16], they argue

that the fore/background regions can be clustered better us-

ing this energy. Probably the most similar work to us is Xia

[6], which proposes to generate the object shape by direct-

ly selecting the best overlapping segments that align well

to the object boundary and thereafter integrate it into the

subsequent graph-cut based inference algorithm to obtain

the segmentation results. Segmentation performance of this

method heavily relies on the shape based graph-cut process.

We utilize the generated object candidates as segment hy-

potheses bases. However, unlike [6], we operationalize this

idea by exploring the usefulness of each segment towards

object extraction based on an object reconstruction model.

Furthermore, the pairwise correlation information of seg-

ment hypotheses can be preserved in our method, which is

crucial to produce accurate and reliable results.

3. Object Extraction via Double Sparse Recon-

struction

In this section, we present the proposed method in de-

tail. Given a test image, we first segment it into super-

pixels. Then for each bounding box input, the super-pixels

outside the bounding box are used to construct background

hypotheses bases. Meanwhile, we compute a large pool of

object candidates to construct segment hypotheses bases for

each image, using the publicly available Constrained Para-

metric Min-Cuts algorithm (CPMC) [2]. These two bases

are integrated into our model as reconstruction bases for

predicting the object confidence map. The obtained con-

fidence map is further refined through some techniques in-

cluding multi-scale strategy and region merging for extract-

ing object entirely.

3.1. Background Reconstruction

When the bounding box prior is provided, although some

background pixels are covered in it, it can be observed that

the pixels outside it are with high probability from the back-

ground, as shown in Fig. 3. This means that some back-

ground regions can be easily identified. We apply SLIC [7]

method to the test image and segment it into many super-

pixels. Then the super-pixels from outside bounding box

are used to construct the background hypotheses. Intuitive-

ly, using background hypotheses as bases to reconstruc-

t the foreground and background regions, the reconstruc-

tion errors between them shall be different. For this reason,

we seek to distinguish the foreground from the background

based on a sparse reconstruction model.

The first reconstruction map is designed to be recon-

structed by using background hypotheses as bases. For-

mally, let an image X formed by initial super-pixels, i.e.,

X = [x1,x2, . . . ,xM ] ∈ R
N×M , where M is the number

of super-pixels and N is the feature dimension. Let us rep-

resent each super-pixel with mean color features and coor-

dinates, i.e., xi = {L, a, b, R,G,B, x, y}, where both Lab

and RGB color spaces are used to describe its features, and

x, y denote its coordinates.

With the bounding box, the background hypotheses

bases are formally formed as: A = [a1,a2, . . . , aM ] ∈
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Figure 3. Visualization of our learnt sparse representation Y of Eq

1 and background reconstruction map (BRM) constructed using

background hypotheses. From left to right: Original images with

bounding box prior, BRM, the learnt sparse representation Y. For

Y, brighter pixels represent the element of its column yi having

larger magnitude.

R
N×M , where ai = xi if ai belongs to the bounding box

outside regions, otherwise ai = 0. For an image, we seek to

represent each x by using a over-complete dictionary whose

vectors are background bases themselves, i.e., x = Ay. It

can be sought by solving the following optimization prob-

lem:

ŷi = argmin
yi

1

2
||xi −Ayi||

2
2 + λ1||yi||1 (1)

where λ1 is the regularized parameter and ℓ1 penalty can

yield a sparse solution for yi. The ℓ2 norm is used to min-

imizing the distance between the prediction reconstruction

and each super-pixel. After obtaining the solution ŷi, it is

easily to design a sparse representation based classifier [1]

in terms of its reconstruction residual. The corresponding

reconstruction residual is defined by

r(ŷi) = ||xi −Aŷi||
2
2 (2)

An example of Y = [ŷ1, ŷ2, . . . , ŷM ] is presented in

Fig. 3, from which we can see that all the representation of

yi of super-pixels outside the bounding box are located in

the diagonal of the affinity matrix, while the regions with-

in the bounding box are not in the diagonal. This means

that the super-pixels outside the bounding box are repre-

sented by themselves, and super-pixel within the bounding

box is represented by linear combination of the background

hypotheses bases A. The combination coefficients are the

elements of yi, with larger magnitude showing brighter.

After obtaining the representation Y, we can yield the

r(ŷi) for each super-pixel by (2). Within the bounding

box, the super-pixels that belong to background regions can

be well reconstructed by background hypotheses bases A

through (1) and thus they may have small sparse reconstruc-

tion errors. On the contrary, the super-pixels that belong

to object regions derive large sparse reconstruction errors,

which gives us a straightforward way to express each super-

pixel in the image with its reconstruction residual. We nor-

malize the reconstruction residual value of each super-pixel

Figure 4. Segment hypotheses bases generation. We first use

CPMC method to generate the proposals for the image. Given

an input image, its output is a pool of visually consistent object-

level segments, as shown in green regions. Then the super-pixels

of each proposal that are covered by green region are character-

ized with 1, represented by solid nodes; otherwise they are with

0, represented by hollow nodes. They are all aligned to form the

segment hypotheses bases SB, each column of which is viewed as

vector basis. Green and red columns are such examples.

into [0, 1]. Super-pixels that yield larger values are shown in

brighter, meanwhile that have smaller values will illustrate

darker, as shown in Fig. 3. We refer to it as background

reconstruction map (BRM).

However, the reconstruction residual measure that drives

the BRM may not be robust to images that contain mul-

tiple instances of similar objects: super-pixels outside the

bounding box would look similar to super-pixels inside it

and yield low residuals for foreground. In this case, the re-

construction map can benefit from object candidates.

3.2. Segment Reconstruction

Give an input image, object proposal methods can gen-

erate a pool of visually consistent object-level segments,

as shown in Fig. 4. It can be observed that there are

often some regions overlapped among different segments,

which are usually from one object. We are interested in us-

ing these candidates to construct segment hypotheses bases.

The CPMC method [2] is used to generate the set of object

proposals. Note that the procedure of ranking or classifi-

cation of generated segments of [2] is not applied in our

work. The second reconstruction map is designed to be re-

constructed by using segment hypotheses as bases.

Different from previous work, such as [17] [6], the way

we pursue is not only to make such segments more pow-

erful by summing them but also to exploit the cross infor-

mation between them, adapted to the sparse reconstruction

model. To achieve this, extracting objects from images is

formulated as a segment reconstruction problem, where the

reconstruction map of each super-pixel is expressed as a lin-

ear combination of generated segment hypotheses bases, re-

ferred as Segment Reconstruction Map (SRM).

Suppose S1, S2, . . . , Sc ⊂ R
2 be the regions of the

remaining segments cropped by the bounding box, let

Ti : R
2 → {0, 1} be the characteristic function of
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each super-pixel rj for all j = 1, . . . ,M of Si. Then

we use vector SBi = [Ti(r1), Ti(r2), . . . , Ti(rM )]T ∈
R

M to represent each segment hypothesis Si, and SB =
[SB1,SB2, . . . ,SBc]

T ∈ R
c×M be all segment hypotheses

bases. An example of generating SB is illustrated in Fig. 4.

After obtaining the SB, we can yield the averaging map

of it. With them, di that represents each super-pixel of S-

RM is predicted by finding the best linear combination of

segment hypotheses bases. The SRM of all super-pixels are

denoted as D = [d1,d2, . . . ,dM ] ∈ R
c×M , and we can

obtain it by solving the following optimization problem:

{ŷi, d̂i} =arg min
di,yi

||di − SByi||1 + λ1||yi||1

+ λ3||di − SB(i)||
2
2

(3)

where λ3 is the regularized parameter and SB(i) ∈ R
c rep-

resents the average map of SB, its each element is the aver-

age magnitude of i-th column vector of SB.

Within the bounding box, the super-pixels that belong

to the object regions can be well reconstructed by segment

hypotheses bases SB and thus have small sparse reconstruc-

tion errors. The elements of yi corresponding to the object

can be identified by (3). We predict the SRM not only by

minimizing ℓ2 distance between the prediction reconstruc-

tion map and the average map, but also finding the best lin-

ear combination of segment hypotheses bases to build it.

The SRM of all super-pixels are together predicted by us-

ing the designed construction framework which is capable

of capturing the correlations among all segment hypotheses.

Fig. 5 depicts some SRM results, from which we can see

that super-pixels from object regions exhibit brighter color

than that of background components, indicating that they

can be reconstructed well by segment hypotheses bases.

3.3. Double Sparse Reconstruction

To make full use of all the information produced by the

set of generated segment hypotheses and extracted back-

ground regions seamlessly, the derived SB and A should

be integrated into an unified framework of object recon-

struction. Here, our consideration for formulating the in-

ference process is two-side: to inherit the advantages of s-

parse representation, the representation of the background

and segment hypotheses bases is encouraged to be sparse; to

make use of the cross-information of segment hypotheses,

the segment reconstruction error of each super-pixel should

be enforced to be sparsity-consistent simultaneously. By

considering both sides, the joint reconstruction is achieved

via the following problem:

{ŷi, d̂i} =arg min
yi,di

1

2
||xi −Ayi||

2
2 + λ1||yi||1+

λ2||di − SByi||1 + λ3||di − SB(i)||
2
2

(4)

Figure 5. Some segment reconstruction map (SRM) results: (top)

original images; (bottom) corresponding SRMs.

After feeding SB and A into above model, we can ob-

tain the output of BRM and SRM of each super-pixel by

the unified sparse reconstruction framework, including the

reconstruction coefficients. We refer to it as Double Sparse

Reconstruction model. The proposed framework is able to

take full advantages of background hypotheses information

and object proposals.

These two output maps of (5), BRM and SRM, are inte-

grated to generate the final object confidence map. Specif-

ically, after obtaining the optimal solution of Eq. (4) for

each super-pixel x, we can directly use ŷi and d̂i =
[di1, di2, . . . , dic]

T to yield the object confidence map of the

super-pixel as

oi = r(ŷi) + αΣc
j=1dij (5)

where, α is a parameter to balance the effect of two recon-

struction map. Since the confidence map learnt from the re-

construction framework is defined at super-pixel level, ob-

jects are tend to be fragmented with heterogeneous parts and

strong internal contours. In order to cope with this issue, we

compute the super-pixels of the image at a multi-scale strat-

egy. Then, the final object confidence map is calculated by

averaging them in order to tackle the large ranges of object

color, texture, shape, or other attributes.

After obtaining the object confidence map for an image,

the result is projected back to the image. To obtain the ob-

ject extraction result, the most easily choice is to directly

use the map with above a threshold as object and the resi-

dent as the background. However, it is hard to set a fixed

threshold to find the object for each image due to natural

images are very complex.

As proposed in [17], self-similarly can be used to refine

the segmentation. In this part, the top high scores serve as

object seeds and the segmentation result can be then ob-

tained by a region merging strategy. To achieve this, we

use the method of [26] to merge the initial regions for more

precise object extraction result.

3.4. Optimization Process

We aim to optimize Eq. (4). Obviously, there are only

two parameters to optimize. We propose to optimize it w.r.t
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Figure 6. Some exemplar original images (top) from VOC dataset

and object confidence map generated by Eq (5) (Best viewed in

color).

representation coefficient yi and di alternatively. The opti-

mization procedure is keeping di fixed to optimize yi , and

keeping yi fixed to optimize di iteratively, repeating until

convergence.

Specifically: it consists of the following iterations:

(i) Given di = dk
i , optimize Eq. (4), update yk+1

i ← yk
i

(ii) Given yi = yk
i , optimize Eq. (4), update dk+1

i ← dk
i

The detailed Optimization Process of Eq. (4) is presented

in supplementary material.

4. Experiments

In this section, we study the quality of the proposed dou-

ble sparse reconstruction method for object extraction. We

conduct comprehensive experiments on two publicly avail-

able datasts: PASCAL VOC object segmentation dataset

[32] and GrabCut-50 dataset [12].

Confidence Map Details: This part presents the imple-

mentation details of final confidence map generation. As

the confidence map learnt from Eq. (4) is processed at

super-pixel level, objects are tend to be fragmented with

heterogeneous parts and strong internal contours. In order

to cope with this, we compute the super-pixels of an image

at a multi-scale strategy. For each image, we first perfor-

m over-segmentation by SLIC [7] at eight different scales,

with super-pixel number set respectively from 50 to 400.

Then we run the double sparse reconstruction method eight

times, and obtain the object confidence map by averaging

the eight results. We set λ1 = 0.01, λ2 = 0.01, λ3 = 0.01
and µ = 1 in all experiments.

Some final object confidence maps are displayed in Fig.

6. It can be observed that pixels from object regions exhibit

brighter color, further advocating the value of our method

compared with directing merging segment hypotheses.

4.1. GrabCut50

Comparison with Bounding Box based Methods: In

this part, we provide comparisons against various bound-

ing box based segmentation methods. We first conduct ex-

periments on the popular interaction image segmentation

dataset GrabCut-50, which is provided by [12] and includes

50 images with ground truth bounding boxes.

Figure 7. Some object extraction results of our approach on the

GrabCut-50 dataset [12].

We use error-rate to evaluate the segmentation perfor-

mance for different approaches, which is defined as the per-

centage of mislabeled pixels inside the bounding box. We

compare our double sparse reconstruction method with fol-

lowing state-of-the-art: [16] [12] [13] [36] [6]. Results on

this benchmark are reported on Table. 1. Our proposed

method achieves the mean score 3.2% on this database, sig-

nificantly outperforming the two bounding box based meth-

ods (GrabCut [16] and Tang et al. [36]). When more in-

teractive priors are used, GrabCut-Pinpoint [12] and F-G

Classification [13] on this dataset can achieve better perfor-

mance. Our method also obtain lower error score (3.2% vs

3.7% for [12] and 5.4% for [13]). This verifies the effective-

ness of our method for extracting object from image with

bounding box prior. For fair comparison, we also report the

results of method [6] that use graph-cut based procedure to

increase the final segmentation performance (3.3%) by inte-

grating the shape prior generated by CPMC proposals. Our

method does not use this procedure and achieve competitive

results with [6]. This demonstrates that our double sparse

reconstruction model has the capability of directly predict-

ing the reasonable object confidence map for object extract-

ing without graph-cut based procedure which is commonly

used by many interactive segmentation methods.

Some qualitative segmentation results are displayed in

Fig. 7. The extracted objects by our method are highlighted

by color mask. Our method successfully predicts the masks

of objects that are in complex background. For example, for

the banana in the clustered flowers, we can detect it entire-

ly with well-preserved boundaries. It demonstrates that our

framework performs well for extracting objects from natu-

ral images.

Comparison with Seed based Methods: As the pro-

cedure of region merging servers as a seed-based region

merging strategy, in this part we additionally compare the

proposed method to the state-of-the-art seed based segmen-

tation approaches, including Laplacian Coordinates (LC)

approach [24], Graph Cuts (GC), Power Watershed (PWS)

[21], Maximun Spanning Forest with Kruskal’s (MSFK)

and Prim’s (MSFP) algorithm [22] and Random Walker (R-

W) [23]. As these does not use the bounding box prior and

for fair comparison, we directly use the published results
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Method Error-rate

GrabCut [16] 8.1 %

Kernel Segmentation [36] 9.7 %

Adaptive Kernel Segmentation [36] 7.1 %

GrabCut-Pinpoint [12] 3.7 %

F-G Classification [13] 5.4 %

Xia [6] 3.3 %

Ours 3.2 %

Table 1. Error-rate of bounding box prior based algorithms Grab-

Cut, GrabCut-Pinpoint, Adaptive Kernel Segmentation, F-G Clas-

sification, Xia, and our method on the Grabcut-50 dataset.

Method RI GCE VoI

GC 0.9714 0.0268 0.1877

MSFK [22] 0.9690 0.0292 0.2013

MSFP 0.9689 0.0293 0.2018

PWS [21] 0.9704 0.0278 0.1931

RW [23] 0.9700 0.0280 0.1934

LC [24] 0.9715 0.0262 0.1836

Ours 0.9765 0.0262 0.1654

Table 2. PRI, GCE and VoI of seed based prior based algorithms

Graph-cut, MSFK, MSFP, PWS, RW, LC and our method on the

Grabcut-50 dataset

on [24] with three distinct region quality metrics to evaluate

the segmentation quality of the proposed method: Proba-

bilistic Rand Index (PRI) [9] (higher probability is better);

Variation of Information (VoI) [8] (lower distance is better);

and Global Consistency Error (GCE) [20] (lower distance

is better).

We present the three quality metrics for each method in

Table 2. Generally, our method outperforms previous seed-

based approaches in this dataset, e.g., PWS [21], MSFK,

MSFP [22] and RW [23]. We also compare our approach

with the state-of-the-art LC method [24], which is one of

the best performing seed based approach in the GrabCut-50

image segmentation task. In terms of three quality metric-

s, our method achieves better results for two metrics, e.g.,

0.9765 vs 0.9715 [24] for PRI, 0.1654 vs 0.1836 [24] for

VoI, and achieves the same GCE score 0.0262, indicating

that our method achieves the best scores in three evaluation

qualities. This further advocates the value of our double s-

parse reconstruction method for object extraction compared

to seed based methods. Our region merging procedure on-

ly depends on the confidence map derived from the sparse

reconstruction method, which is understandable: compared

to the user input strokes location, the confidence map car-

ries on more information in describing objects of natural

images.

4.2. PASCAL VOC

In order to more thoroughly evaluate segmentation per-

formance, we have experimented with our method on the

PASCAL VOC object segmentation dataset [32]. We use

images from the validation dataset to evaluate the method

performance, where the bounding box for each object is

Method IoU

GraphCut 63.1 %

SegmentsSum 56.7 %

Xia [6] 72.6 %

Our 73.2 %

Table 3. IoU of bounding box prior based algorithms GraphCut,

SegmentsSum, Xia [6], and our method on the PASCAL VOC

2011 validation Set.

Method [3] [11] [25] [27]ad. [27] [18] [3] [2] ours

Nc 1100 1100 1100 1100 1100 100 100 100 −
avg 71.6 71.4 67.4 63.1 58.9 63.7 61.7 59.0 73.3

Table 4. Jaccard similarity (%) of our method vs oracle scores of

object proposals methods on VOC 2012 validation dataset [32].

provided. We use Intersection over Union (IoU) [32] mea-

sure to evaluate the performance of comparing methods.

The weight α in Eq. (5) is set over the interval [0.8, 2] for

all experiments on VOC validation dataset. We vary the pa-

rameter α with a step size of 0.1. Each specific category

shares a fixed α.

Compared with State-of-the-art Methods: A series of

experiments have been conducted on the VOC 2011 val-

idation database which contains 1,112 images. For these

images, the bounding boxes are provided by ground truth.

To demonstrate the effectiveness of the proposed method

for utilizing the segment hypotheses to extract objects, we

first compare our method with the result that directly merges

segments generated by CPMC [2], named as SegmentsSum.

The results are reported in Table 3. SegmentsSum achieves

the Jaccard score of 56.7% on this database. Our method

gives a huge boost in segmentation accuracy. It obtain-

s 73.2% by leveraging the segment hypotheses based on

a sparse reconstruction framework. For fair comparison,

we further compare our method against the state-of-the-art

methods GraphCut and [6]. With the bounding box pri-

or, the method of GraphCut and [6] achieve 63.1% and

72.6% of average Jaccard score on this database, respec-

tively. Our method also outperforms these two baselines

GraphCut and [6] which integrates object shape guidance

generated by CPMC method into their graph-cut-based op-

timization. This further demonstrates that the image objects

can be effectively reconstructed by our proposed double s-

parse reconstruction method. And our methodology is more

powerful than the segment hypothesis integrated approach-

es for extracting objects.

Some qualitative extraction results of our method are vi-

sualized in Fig. 8. Many objects from different categories

are included which are often with intrinsic inhomogeneity.

The extracted objects of our method are highlighted by col-

or mask. It is visually clear that our method can produce

satisfactory results for extracting the objects of large ap-

pearance or pose variations in natural images. However, in

some cases, our method will fail, as shown in Fig. 9

Compared with Object Candidate Generation Meth-
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Figure 8. Object extraction results of our approach on VOC validation dataset: the extracted objects are highlighted by color mask overlaid

on images, objects from different bounding boxes in an image are illustrated by different colors. (Best view in color)

ods: As the segment hypotheses are generated by the ob-

ject proposals method [2] in our method, in this part, we

will compare our proposed method to the state-of-the-art

object proposals methods to demonstrate the effectiveness

of our strategy for object extraction. Note that, to measure

the quality of proposals, candidates generation methods re-

port an “oracle” score that selected best candidate for each

object (also Best Spatial Support score (BSS) [35]) among

the pool with respect to the number of candidates. For ex-

ample, when the number of object candidates is 100, each

one is evaluated with the ground truth and then reports the

best score among them. Obviously, the Jaccard score of our

method is not an oracle score.

Table 4 reports the detailed comparison of Jaccard sim-

ilarity of our method with the oracle scores of object pro-

posal generation methods on VOC 2012 validation dataset.

These methods include [2][3] [18] [11] [25] [27]. On this

database, when the total number of candidates of these

methods is 100, CPMC [2] achieves 59% of oracle score

and the state-of-the-art object proposal method MCG [18]

achieves 63.7% of oracle score. The proposed methodol-

ogy achieves 73.3% of the mean Jaccard score (which is

not an oracle score) on this dataset, clearly outperforming

the state-of-the-arts. This verifies the effectiveness of our

algorithm for obtaining accurate extraction results: the per-

formance is even comparable with the oracle scores of the

state-of-the-art object proposals methods.

Note that in this work, we do not mean to claim that our

method is always superior over MCG method. It is predi-

cated that in [18], MCG can achieve better results with gen-

erating more object candidates. For example, when they

generate about 1000 object candidates for each image then

report the best overlap ones, the oracle score increases to

76.0%. It is reasonable that they can achieve better result-

s when the number of object candidates among the pool is

getting larger. However it makes more difficult to pick out

the best proposal.

5. Conclusion

This paper presents a double sparse reconstruction

method to extract objects from images with the bounding

Figure 9. Some failure cases of our approach. The results are

overlaid on the images with same color. (a) is due to the “hat”

region, since it has very similar attributes with background region-

s, meanwhile little segment hypothesis has segment the hat into

figure-ground. (b) is due to inaccurate super-pixels acquisition,

since the legs of the object are so small. (c) is due to the large

texture variation, region merging procedure cannot extract the tail

accurately.

box prior. Object regions can be well reconstructed by our

model since they are with small reconstruction errors to seg-

ment hypotheses bases, simultaneously, large reconstruc-

tion errors to background hypotheses bases. Region merg-

ing procedure is finally used to make the reconstructed ob-

ject with a well-preserved boundary. The proposed object

extraction method is examined on two popular segmenta-

tion databases: PASCAL VOC object segmentation dataset

and GrabCut-50 database, and experimental results indicate

that (i) the proposed method is more robust than state-of-

the-art semi-supervised methods for object extraction, and

(ii) the proposed double sparse reconstruction scheme is

more powerful than the segments integrated approaches for

characterizing the correlation information between regions.

Our future work will focus on how to obtain bounding box

for natural image with more robustness.
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