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Abstract

Books are a rich source of both fine-grained information,

how a character, an object or a scene looks like, as well as

high-level semantics, what someone is thinking, feeling and

how these states evolve through a story. This paper aims to

align books to their movie releases in order to provide rich

descriptive explanations for visual content that go semanti-

cally far beyond the captions available in current datasets.

To align movies and books we exploit a neural sentence

embedding that is trained in an unsupervised way from a

large corpus of books, as well as a video-text neural em-

bedding for computing similarities between movie clips and

sentences in the book. We propose a context-aware CNN

to combine information from multiple sources. We demon-

strate good quantitative performance for movie/book align-

ment and show several qualitative examples that showcase

the diversity of tasks our model can be used for.

1. Introduction

A truly intelligent machine needs to not only parse the

surrounding 3D environment, but also understand why peo-

ple take certain actions, what they will do next, what they

could possibly be thinking, and even try to empathize with

them. In this quest, language will play a crucial role in

grounding visual information to high-level semantic con-

cepts. Only a few words in a sentence may convey really

rich semantic information. Language also represents a natu-

ral means of interaction between a naive user and our vision

algorithms, which is particularly important for applications

such as social robotics or assistive driving.

Combining images or videos with language has gotten

significant attention in the past year, partly due to the cre-

ation of CoCo [20], Microsoft’s large-scale captioned im-

age dataset. The field has tackled a diverse set of tasks such

as captioning [15, 13, 40, 39, 24], alignment [13, 17, 38],

Q&A [22, 21], visual model learning from textual descrip-

tions [9, 29], and semantic visual search with natural multi-

sentence queries [19].

∗Denotes equal contribution

Figure 1: Shot from the movie Gone Girl, along with the subtitle,

aligned with the book. We reason about the visual and dialog (text)

alignment between the movie and a book.

Books provide us with very descriptive text that conveys

both fine-grained visual details (how things look like) as

well as high-level semantics (what people think, feel, and

how their states evolve through a story). This source of

knowledge, however, does not come with associated visual

information that would enable us to ground it with natural

language. Grounding descriptions in books to vision would

allow us to get textual explanations or stories about the vi-

sual world rather than short captions available in current

datasets. It could also provide us with a very large amount

of data (with tens of thousands books available online).

In this paper, we exploit the fact that many books have

been turned into movies. Books and their movie releases

have a lot of common knowledge as well as they are com-

plementary in many ways. For instance, books provide de-

tailed descriptions about the intentions and mental states of

the characters, while movies are better at capturing visual

aspects of the settings.

The first challenge we need to address, and the focus of

this paper, is to align books with their movie releases in or-

der to obtain rich descriptions for the visual content. We

aim to align the two sources with two types of information:

visual, where the goal is to link a movie shot to a book para-

graph, and dialog, where we want to find correspondences

between sentences in the movie’s subtitle and sentences in

the book (Fig. 1). We introduce a novel sentence similarity

measure based on a neural sentence embedding trained on

millions of sentences from a large corpus of books. On the

visual side, we extend the neural image-sentence embed-

dings to the video domain and train the model on DVS de-

scriptions of movie clips. Our approach combines different

similarity measures and takes into account contextual infor-
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mation contained in the nearby shots and book sentences.

Our final alignment model is formulated as an energy min-

imization problem that encourages the alignment to follow

a similar timeline. To evaluate the book-movie alignment

model we collected a dataset with 11 movie/book pairs an-

notated with 2,070 shot-to-sentence correspondences. We

demonstrate good quantitative performance and show sev-

eral qualitative examples that showcase the diversity of

tasks our model can be used for. All our data and code are

available: http://www.cs.utoronto.ca/˜mbweb/.

The alignment model enables multiple applications.

Imagine an app which allows the user to browse the book

as the scenes unroll in the movie: perhaps its ending or act-

ing are ambiguous, and one would like to query the book

for answers. Vice-versa, while reading the book one might

want to switch from text to video, particularly for the juicy

scenes. We also show other applications of learning from

movies and books such as book retrieval (finding the book

that goes with a movie and finding other similar books), and

captioning CoCo images with story-like descriptions.

2. Related Work

Most effort in the domain of vision and language has

been devoted to the problem of image captioning. Older

work made use of fixed visual representations and translated

them into textual descriptions [7, 18]. Recently, several

approaches based on RNNs emerged, generating captions

via a learned joint image-text embedding [15, 13, 40, 24].

These approaches have also been extended to generate de-

scriptions of short video clips [39]. In [27], the authors go

beyond describing what is happening in an image and pro-

vide explanations about why something is happening. Re-

lated to ours is also work on image retrieval [11] which aims

to find an image that best depicts a complex description.

For text-to-image alignment, [17, 8] find correspon-

dences between nouns and pronouns in a caption and visual

objects using several visual and textual potentials. Lin et

al. [19] does so for videos. In [23], the authors align cook-

ing videos with the recipes. Bojanowski et al. [2] local-

ize actions from an ordered list of labels in video clips.

In [13, 34], the authors use RNN embeddings to find the

correspondences. [41] combines neural embeddings with

soft attention in order to align the words to image regions.

Early work on movie-to-text alignment include dynamic

time warping for aligning movies to scripts with the help

of subtitles [6, 5]. Sankar et al. [31] further developed a

system which identified sets of visual and audio features to

align movies and scripts without making use of the subtitles.

Such alignment has been exploited to provide weak labels

for person naming tasks [6, 33, 28].

Closest to our work is [38], which aligns plot synopses to

shots in the TV series for story-based content retrieval. This

work adopts a similarity function between sentences in plot

synopses and shots based on person identities and keywords

in subtitles. Our work differs with theirs in several impor-

tant aspects. First, we tackle a more challenging problem of

movie/book alignment. Unlike plot synopsis, which closely

follow the storyline of movies, books are more verbose and

might vary in the storyline from their movie release. Fur-

thermore, we use learned neural embeddings to compute the

similarities rather than hand-designed similarity functions.

Parallel to our work, [37] aims to align scenes in movies

to chapters in the book. However, their approach operates

on a very coarse level (chapters), while ours does so on the

sentence/paragraph level. Their dataset thus evaluates on

90 scene-chapter correspondences, while our dataset draws

1,800 shot-to-paragraph alignments. Furthermore, the ap-

proaches are inherently different. [37] matches the pres-

ence of characters in a scene to those in a chapter, as well

as uses hand-crafted similarity measures between sentences

in the subtitles and dialogs in the books, similarly to [38].

Rohrbach et al. [30] recently released the Movie De-

scription dataset which contains clips from movies, each

time-stamped with a sentence from DVS (Descriptive Video

Service). The dataset contains clips from over a 100 movies,

and provides a great resource for the captioning techniques.

Our effort here is to align movies with books in order to ob-

tain longer, richer and more high-level video descriptions.

We start by describing our new dataset, and then explain

our proposed approach.

3. The MovieBook and BookCorpus Datasets

We collected two large datasets, one for movie/book

alignment and one with a large number of books.

The MovieBook Dataset. Since no prior work or data ex-

ist on the problem of movie/book alignment, we collected a

new dataset with 11 movies and corresponding books. For

each movie we also have subtitles, which we parse into a

set of time-stamped sentences. Note that no speaker infor-

mation is provided in the subtitles. We parse each book into

sentences and paragraphs.

Our annotators had the movie and a book opened side

by side. They were asked to iterate between browsing the

book and watching a few shots/scenes of the movie, and

trying to find correspondences between them. In particular,

they marked the exact time (in seconds) of correspondence

in the movie and the matching line number in the book file,

indicating the beginning of the matched sentence. On the

video side, we assume that the match spans across a shot (a

video unit with smooth camera motion). If the match was

longer in duration, the annotator also indicated the ending

time. Similarly for the book, if more sentences matched,

the annotator indicated from which to which line a match

occurred. Each alignment was tagged as a visual, dialogue,

or an audio match. Note that even for dialogs, the movie

and book versions are semantically similar but not exactly
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BOOK MOVIE ANNOTATION

Title # sent. # words
# unique

words
avg. # words

per sent.
max # words

per sent.
# para-
graphs

# shots
# sent. in
subtitles

# dialog
align.

# visual
align.

Gone Girl 12,603 148,340 3,849 15 153 3,927 2,604 2,555 76 106

Fight Club 4,229 48,946 1,833 14 90 2,082 2,365 1,864 104 42

No Country for Old Men 8,050 69,824 1,704 10 68 3,189 1,348 889 223 47

Harry Potter and the Sorcerers Stone 6,458 78,596 2,363 15 227 2,925 2,647 1,227 164 73

Shawshank Redemption 2,562 40,140 1,360 18 115 637 1,252 1,879 44 12

The Green Mile 9,467 133,241 3,043 17 119 2,760 2,350 1,846 208 102

American Psycho 11,992 143,631 4,632 16 422 3,945 1,012 1,311 278 85

One Flew Over the Cuckoo Nest 7,103 112,978 2,949 19 192 2,236 1,671 1,553 64 25

The Firm 15,498 135,529 3,685 11 85 5,223 2,423 1,775 82 60

Brokeback Mountain 638 10,640 470 20 173 167 1,205 1,228 80 20

The Road 6,638 58,793 1,580 10 74 2,345 1,108 782 126 49

All 85,238 980,658 9,032 15 156 29,436 19,985 16,909 1,449 621

Table 1: Statistics for our MovieBook Dataset with ground-truth for alignment between books and their movie releases.

# of books # of sentences # of words # of unique words mean # of words per sentence median # of words per sentence

11,038 74,004,228 984,846,357 1,316,420 13 11

Table 2: Summary statistics of our BookCorpus dataset. We use this corpus to train the sentence embedding model.

the same. Thus deciding on what defines a match or not is

also somewhat subjective and may slightly vary across our

annotators. Altogether, the annotators spent 90 hours label-

ing 11 movie/book pairs, locating 2,070 correspondences.

Table 1 presents our dataset, while Fig. 6 shows a few

ground-truth alignments. The number of sentences per book

vary from 638 to 15,498, even though the movies are similar

in duration. This indicates a huge diversity in descriptive-

ness across literature, and presents a challenge for match-

ing. Sentences also vary in length, with those in Brokeback

Mountain being twice as long as those in The Road. The

longest sentence in American Psycho has 422 words and

spans over a page in the book.

Aligning movies with books is challenging even for hu-

mans, mostly due to the scale of the data. Each movie is on

average 2h long and has 1,800 shots, while a book has on

average 7,750 sentences. Books also have different styles

of writing, formatting, language, may contain slang (go-

ing vs goin’, or even was vs ’us), etc. Table 1 shows that

finding visual matches was particularly challenging. This

is because descriptions in books can be either very short

and hidden within longer paragraphs or even within a longer

sentence, or very verbose – in which case they get obscured

with the surrounding text – and are hard to spot. Of course,

how close the movie follows the book is also up to the di-

rector, which can be seen through the number of alignments

that our annotators found across different movie/books.

BookCorpus. In order to train our sentence similarity

model we collected a corpus of 11,038 books from the web.

These are free books written by yet unpublished authors.

We only included books that had more than 20K words

in order to filter out perhaps noisier shorter stories. The

dataset has books in 16 different genres, e.g., Romance

(2,865 books), Fantasy (1,479), Science fiction (786), etc.

Table 2 highlights the summary statistics of our corpus.

4. Aligning Books and Movies

Our approach aims to align a movie with a book by ex-

ploiting visual information as well as dialogs. We take shots

as video units and sentences from subtitles to represent di-

alogs. Our goal is to match these to the sentences in the

book. We propose several measures to compute similari-

ties between pairs of sentences as well as shots and sen-

tences. We use our novel deep neural embedding trained

on our large corpus of books to predict similarities between

sentences. Note that an extended version of the sentence

embedding is described in detail in [16] showing how to

deal with million-word vocabularies, and demonstrating its

performance on a large variety of NLP benchmarks. For

comparing shots with sentences we extend the neural em-

bedding of images and text [15] to operate in the video do-

main. We next develop a novel contextual alignment model

that combines information from various similarity measures

and a larger time-scale in order to make better local align-

ment predictions. Finally, we propose a simple pairwise

Conditional Random Field (CRF) that smooths the align-

ments by encouraging them to follow a linear timeline, both

in the video and book domain.

We first explain our sentence, followed by our joint video

to text embedding. We next propose our contextual model

that combines similarities and discuss CRF in more detail.

4.1. SkipThought Vectors

In order to score the similarity between two sentences,

we exploit our architecture for learning unsupervised rep-

resentations of text [16]. The model is loosely inspired by

the skip-gram [25] architecture for learning representations

of words. In the word skip-gram model, a word wi is cho-

sen and must predict its surrounding context (e.g. wi+1 and

wi−1 for a context window of size 1). Our model works in

a similar way but at the sentence level. That is, given a sen-

tence tuple (si−1, si, si+1) our model first encodes the sen-

tence si into a fixed vector, then conditioned on this vector

tries to reconstruct the sentences si−1 and si+1, as shown

in Fig. 2. The motivation for this architecture is inspired

by the distributional hypothesis: sentences that have similar

surrounding context are likely to be both semantically and

syntactically similar. Thus, two sentences that have similar
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Figure 2: Sentence neural embedding [16]. Given a tuple (si−1, si, si+1) of contiguous sentences, where si is the i-th sentence of a book,

the sentence si is encoded and tries to reconstruct the previous sentence si−1 and next sentence si+1. Unattached arrows are connected to

the encoder output. Colors indicate which components share parameters. 〈eos〉 is the end of sentence token.

he started the car , left the parking lot and merged onto the highway a few miles down the road .

he drove down the street off into the distance . he shut the door and watched the taxi drive off .

she watched the lights flicker through the trees as the men drove toward the road .

a messy business to be sure , but necessary to achieve a fine and noble end .

the most effective way to end the battle . they saw their only goal as survival and logically planned a strategy to achieve it .

there would be far fewer casualties and far less destruction .

Table 3: Qualitative results from the sentence skip-gram model. For each query sentence on the left, we retrieve the 4 nearest neighbor

sentences (by inner product) chosen from books the model has not seen before. More results in supplementary.

syntax and semantics are likely to be encoded to a similar

vector. Once the model is trained, we can map any sentence

through the encoder to obtain vector representations, then

score their similarity through an inner product.

The learning signal of the model depends on having con-

tiguous text, where sentences follow one another in se-

quence. A natural corpus for training our model is thus

a large collection of books. Given the size and diversity

of genres, our BookCorpus allows us to learn very general

representations of text. For instance, Table 3 illustrates the

nearest neighbours of query sentences, taken from held out

books that the model was not trained on. These qualitative

results demonstrate that our intuition is correct, with result-

ing nearest neighbors corresponds largely to syntactically

and semantically similar sentences. Note that the sentence

embedding is general and can be applied to other domains

not considered in this paper, which is explored in [16].

To construct an encoder, we use a recurrent neural net-

work, inspired by the success of encoder-decoder models

for neural machine translation [12, 3, 1, 35]. Two kinds

of activation functions have recently gained traction: long

short-term memory (LSTM) [10] and the gated recurrent

unit (GRU) [4]. Both types of activation successfully solve

the vanishing gradient problem, through the use of gates

to control the flow of information. The LSTM unit explic-

ity employs a cell that acts as a carousel with an identity

weight. The flow of information through a cell is controlled

by input, output and forget gates which control what goes

into a cell, what leaves a cell and whether to reset the con-

tents of the cell. The GRU does not use a cell but employs

two gates: an update and a reset gate. In a GRU, the hidden

state is a linear combination of the previous hidden state and

the proposed hidden state, where the combination weights

are controlled by the update gate. GRUs have been shown

to perform just as well as LSTM on several sequence pre-

diction tasks [4] while being simpler. Thus, we use GRU as

the activation function for our encoder and decoder RNNs.

Suppose we are given a sentence tuple (si−1, si, si+1),

and let wt
i denote the t-th word for si and let xt

i be its

word embedding. We break the model description into three

parts: the encoder, decoder and objective function.

Encoder. Let w1
i , . . . , w

N
i denote words in sentence si with

N the number of words in the sentence. The encoder pro-

duces a hidden state ht
i at each time step which forms the

representation of the sequence w1
i , . . . , w

t
i . Thus, the hid-

den state hN
i is the representation of the whole sentence.

The GRU produces the next hidden state as a linear combi-

nation of the previous hidden state and the proposed state

update (we drop subscript i):

ht = (1− zt)⊙ ht−1 + zt ⊙ h̄t (1)

where h̄t is the proposed state update at time t, zt is the up-

date gate and (⊙) denotes a component-wise product. The

update gate takes values between zero and one. In the ex-

treme cases, if the update gate is the vector of ones, the

previous hidden state is completely forgotten and ht = h̄t.

Alternatively, if the update gate is the zero vector, than the

hidden state from the previous time step is simply copied

over, that is ht = ht−1. The update gate is computed as

zt = σ(Wzx
t +Uzh

t−1) (2)

where Wz and Uz are the update gate parameters. The

proposed state update is given by

h̄t = tanh(Wxt +U(rt ⊙ ht−1)) (3)

where rt is the reset gate, which is computed as

rt = σ(Wrx
t +Urh

t−1) (4)

If the reset gate is the zero vector, than the proposed state

update is computed only as a function of the current word.

Thus after iterating this equation sequence for each word,

we obtain a sentence vector hN
i = hi for sentence si.

Decoder. The decoder computation is analogous to the en-

coder, except that the computation is conditioned on the
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sentence vector hi. Two separate decoders are used, one

for the previous sentence si−1 and one for the next sentence

si+1. These decoders use different parameters to compute

their hidden states but both share the same vocabulary ma-

trix V that takes a hidden state and computes a distribution

over words. Thus, the decoders are analogous to an RNN

language model but conditioned on the encoder sequence.

Alternatively, in the context of image caption generation,

the encoded sentence hi plays a similar role as the image.

We describe the decoder for the next sentence si+1 (com-

putation for si−1 is identical). Let ht
i+1 denote the hidden

state of the decoder at time t. The update and reset gates for

the decoder are given as follows (we drop i+ 1):

zt = σ(Wd
zx

t−1 +Ud
zh

t−1 +Czhi) (5)

rt = σ(Wd
rx

t−1 +Ud
rh

t−1 +Crhi) (6)

the hidden state ht
i+1 is then computed as:

h̄t = tanh(Wdxt−1 +Ud(rt ⊙ ht−1) +Chi) (7)

ht
i+1 = (1− zt)⊙ ht−1 + zt ⊙ h̄t (8)

Given ht
i+1, the probability of word wt

i+1 given the previ-

ous t− 1 words and the encoder vector is

P (wt
i+1|w

<t
i+1,hi) ∝ exp(vwt

i+1
ht
i+1) (9)

where vwt
i+1

denotes the row of V corresponding to the

word of wt
i+1. An analogous computation is performed for

the previous sentence si−1.

Objective. Given (si−1, si, si+1), the objective optimized

is the sum of log-probabilities for the next and previous sen-

tences conditioned on the representation of the encoder:

∑

t

logP (wt
i+1|w

<t
i+1,hi) +

∑

t

logP (wt
i−1|w

<t
i−1,hi)

The total objective is the above summed over all such train-

ing tuples. Adam algorithm [14] is used for optimization.

4.2. Visualsemantic embeddings of clips and DVS

The model above describes how to obtain a similarity

score between two sentences, whose representations are

learned from millions of sentences in books. We now dis-

cuss how to obtain similarities between shots and sentences.

Our approach closely follows the image-sentence rank-

ing model proposed by [15]. In their model, an LSTM is

used for encoding a sentence into a fixed vector. A linear

mapping is applied to image features from a convolutional

network. A score is computed based on the inner product

between the normalized sentence and image vectors. Cor-

rect image-sentence pairs are trained to have high score,

while incorrect pairs are assigned low scores.

Figure 3: Our CNN for context-aware similarity computation. It

has 3 conv. layers and a sigmoid layer on top.

In our case, we learn a visual-semantic embedding be-

tween movie clips and their DVS description. DVS (“De-

scriptive Video Service”) is a service that inserts audio de-

scriptions of the movie between the dialogs in order to en-

able the visually impaired to follow the movie like anyone

else. We used the movie description dataset of [30] for

learning our embedding. This dataset has 94 movies, and

54,000 described clips. We represent each movie clip as a

vector corresponding to mean-pooled features across each

frame in the clip. We used the GoogLeNet architecture [36]

as well as hybrid-CNN [42] for extracting frame features.

For DVS, we pre-processed the descriptions by removing

names and replacing these with a someone token.

The LSTM architecture in this work is implemented us-

ing the following equations. As before, we represent a word

embedding at time t of a sentence as xt:

it = σ(Wxix
t +Whim

t−1 +Wcic
t−1) (10)

f t = σ(Wxfx
t +Whfm

t−1 +Wcfc
t−1) (11)

at = tanh(Wxcx
t +Whcm

t−1) (12)

ct = f t ⊙ ct−1 + it ⊙ at (13)

ot = σ(Wxox
t +Whom

t−1 +Wcoc
t) (14)

mt = ot ⊙ tanh(ct) (15)

where (σ) denotes the sigmoid activation function and

(⊙) indicates component-wise multiplication. The states

(it, f t, ct,ot,mt) correspond to input, forget, cell, output

and memory vectors, respectively. If sentence is N long,

then mN = m is the vector representation of the sentence.

Let q denote a movie clip vector, and let v = WIq

be the embedding of the movie clip. We define a scoring

function s(m,v) = m · v, where m and v are first scaled

to have unit norm (making s equivalent to cosine similarity).

We then optimize the following pairwise ranking loss which

sums over the training (m,v) pairs:

min
θ

∑

m

∑

k

max{0, α− s(m,v) + s(m,vk)} (16)

+
∑

v

∑

k

max{0, α− s(v,m) + s(v,mk)}, (17)

with mk a contrastive (non-descriptive) sentence vector for

a clip embedding v, and vice-versa with vk. We train our

model with stochastic gradient descent without momentum.
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Figure 4: Describing movie clips via the book: (top) we align the movie to the book, and show a shot and its corresponding paragraph

(plus one before and after) from the book, (bottom) for a shot we retrieve the best matching paragraph from a corpus of books.

4.3. Context aware similarity

We employ the clip-sentence embedding to compute

similarities between each shot in the movie and each sen-

tence in the book. For dialogs, we use several similarity

measures each capturing a different level of semantic sim-

ilarity. We compute BLEU [26] between each subtitle and

book sentence to identify nearly identical matches. Simi-

larly to [38], we use a tf-idf measure to find near duplicates

but weighing down the influence of the less frequent words.

Finally, we use our sentence embedding learned from books

to score pairs of sentences that are semantically similar but

may have a very different wording (i.e., paraphrasing).

These similarity measures indicate the alignment be-

tween the two modalities. However, at the local, sentence

level, alignment can be rather ambiguous. For example, de-

spite being a rather dark book, Gone Girl contains 15 occur-

rences of the sentence “I love you”. We exploit the fact that

a match is not completely isolated but that the sentences (or

shots) around it are also to some extent similar.

We design a context aware similarity measure that takes

into account all individual similarity measures as well as

a fixed context window in both, the movie and book do-

main, and predicts a new similarity score. We stack a set

of M similarity measures into a tensor S(i, j,m), where i,
j, and m are the indices of sentences in the subtitle, in the

book, and individual similarity measures, respectively. In

particular, we use M = 9 similarities: visual and sentence

embedding, BLEU1-5, tf-idf, and a uniform prior. We want

to predict a combined score score(i, j) = f(S(I,J,M))
at each location (i, j) based on all measurements in a fixed

volume defined by a context region I around i, J around j,
and M = 1, . . . ,M . Evaluating the function f(·) at each

location (i, j) on a 3-D tensor S is very similar to apply-

ing a convolution using a kernel of appropriate size. This

motivates us to formulate the function f(·) as a deep con-

volutional neural network (CNN). In this paper, we adopt

a 3-layer CNN as illustrated in Fig. 3. We use ReLU non-

linearity with dropout to regularize our model. We optimize

the cross-entropy loss over the training set using Adam al-

gorithm. Positive examples are from ground truth and we do

hard-negative mining for negative examples (chosen from

shot-sentence pairs that are far away from GT) in training.

4.4. Global Movie/Book Alignment

So far, each shot/sentence was matched independently.

However, most shots in movies and passages in the books

follow a similar timeline. We would like to incorporate this

prior into our alignment. In [38], the authors use dynamic

time warping by enforcing that the shots in the movie can

only match forward in time (to plot synopses in their case).

However, the storyline of the movie and book can have

crossings in time (Fig. 6), and the alignment might contain

giant leaps forwards or backwards. Therefore, we formu-

late a movie/book alignment problem as inference in a Con-

ditional Random Field that encourages nearby shots/dialog

alignments to be consistent. Each node yi in our CRF rep-

resents an alignment of the shot in the movie with its cor-

responding subtitle sentence to a sentence in the book. Its

state space is thus the set of all sentences in the book. The

CRF energy of a configuration y is formulated as:

E(y) =

K∑

i=1

ωuφu(yi) +

K∑

i=1

∑

j∈N (i)

ωpψp(yi, yj)

where K is the number of nodes (shots), and N (i) the left

and right neighbor of yi. Here, φu(·) and ψp(·) are unary

and pairwise potentials, respectively, and ω = (ωu, ωp). We

directly use the output of the CNN from 4.3 as the unary

potential φu(·). For the pairwise potential, we measure the

time span ds(yi, yj) between two neighboring sentences in

the subtitle and the distance db(yi, yj) of their state space in

the book. One pairwise potential is defined as:

ψp(si, sj) =
(ds(si, sj)− db(si, sj))

2

(ds(si, sj)− db(si, sj))
2
+ σ2

(18)

Here σ2 is a robustness parameter to avoid punishing gi-

ant leaps too harsh. Both ds and db are normalized to
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[0, 1]. In addition, we also employ another pairwise po-

tential ψq(si, sj) =
(db(si,sj))

2

(db(si,sj))
2+σ2

to encourage state con-

sistency between nearby sentence nodes. This potential is

helpful when there is a long silence (no dialog) in the movie.

Inference. Our CRF is a chain, thus exact inference is

possible using dynamic programming. We also prune some

states that are very far from the uniform alignment (over

1/3 length of the book) to further speed up computation.

Learning. Since ground-truth is only available for a

sparse set of shots, we regard the states of unobserved nodes

as hidden variables and learn the CRF weights with [32].

5. Experimental Evaluation

We evaluate our model on our dataset of 11 movie/book

pairs. We train the parameters in our model (CNN and CRF)

on Gone Girl, and test our performance on the remaining

10 movies. In terms of training speed, our video-text model

“watches” 1,440 movies per day and our sentence model

reads 870 books per day. We also show various qualitative

results demonstrating the power of our approach.

5.1. Movie/Book Alignment

Evaluating the performance of movie/book alignment is

an interesting problem on its own. This is because our

ground-truth is far from exhaustive – around 200 correspon-

dences were typically found between a movie and its book,

and likely a number of them got missed. Thus, evaluating

the precision is rather tricky. We thus focus our evaluation

on recall, similar to existing work on retrieval. For each shot

that has a GT correspondence in book, we check whether

our prediction is close to the annotated one. We evaluate

recall at the paragraph level, i.e., we say that the GT para-

graph was recalled, if our match was at most 3 paragraphs

away, and the shot was at most 5 subtitle sentences away.

As a noisier measure, we also compute recall and precision

at multiple alignment thresholds and report AP (avg. prec.).

Results are shown in Table 5. Columns show different

instantiations of our model: we show the leave-one-feature-

out setting (∅ indicates that all features were used), compare

how different depths of the context-aware CNN influence

performance, and compare it to our full model (CRF) in the

last column. We get the highest boost with a deeper CNN –

recall improves by 10%, AP doubles. Generally, each fea-

ture helps performance. Our sentence embedding (SENT)

helps by 5% while video-text embedding (VIS) helps by

4% in recall. CRF which encourages temporal smooth-

ness generally helps, bringing additional 1%. Replacing

our sentence embedding by mean-pooling over word2vec

features [25] decreases recall by 3.2%. To evaluate our

contextual model, we train a linear SVM that combines all

similarity measures but ignores context (SVM). Compared

with 1-layer CNN, SVM gets a slightly better AP but much
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Table 4: Book “retrieval” results. For a movie (left), we rank
books wrt to their alignment similarity with the movie.

worse recall, and our 3 layer CNN outperforms SVM by a

large margin. We also show how a uniform timeline (UNI)

performs on its own. That is, for each shot in the movie, we

find the sentence at the same location (measured in lines) in

the book. We plot the alignment for a few movies in Fig. 6.

5.2. Describing Movies via the Book

We next show qualitative results of our alignment. In

particular, we run our model on each movie/book pair, and

visualize the passage in the book that a particular shot in

the movie aligns to. The results are shown in Fig. 4. We can

also caption movies by matching shots to paragraphs in a

corpus of books, shown in Fig. 4. Here we do not encourage

a linear timeline (CRF) since the stories are unrelated, and

we only match at the local, shot-paragraph level.

5.3. Book “Retrieval”

In this experiment, we compute alignment between a

movie and all (test) 9 books, and check whether our model

retrieves the correct book. We achieve perfect performance.

Results for two movies are in Table 4, while Suppl. mat.

shows results for all movies. Under each book we show the

computed similarity. We use the energy from the CRF, and

scale all similarities relative to the highest one (100). In-

terestingly, the second ranked book for American Psycho is

Cuckoo’s Nest, both dark movies.

5.4. The CoCoBook: Writing Stories for CoCo

Our next experiment shows that our model is able to

“generate” descriptive stories for images. In particular, we

used the image-text embedding from [15] and generated a

simple caption for an image. We used this caption as a

query, and used our sentence embedding to find top 10 near-

est sentences from our BookCorpus. We re-ranked these

based on the 1-gram precision of non-stop words. We show

the best sentence as well as 2 sentences before and after it

in the book. Results are in Fig. 5. We are able to retrieve

semantically meaningful stories to explain the images.

6. Conclusion

We explored a new problem of movie-book alignment.

We proposed an approach that computes several similarities

between shots and dialogs and sentences in the book. We

proposed a novel sentence embedding trained unsupervised

from a large corpus of books, used to compute similarities

between sentences. We extended the image-text neural em-

beddings to video, and proposed a context-aware alignment
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the club was a little emptier than i would
have expected for the late afternoon , and the
bartender , in red waistcoat and bowtie , was
busy wiping down his counter , replacing
peanuts and putting out new coasters . a
television with the latest la liga news was
hung in an upper corner , and behind him ,
rows of bottles were reflected in a giant bar
mirror . above the stools , a pergola-type
overhead structure held rows of wine glasses
. it was a classy place , with ferns in the
corner , and not the kind of bar to which i
was accustomed . my places usually had a
more ... relaxed feel .

he felt like an idiot for yelling at
the child , but his frustration and
trepidation was getting the better
of him . he glanced toward the
shadowed hall and quickly nodded
toward melissa before making his
way forward . he came across more
children sitting upon a couch in the
living room . they watched him , but
did n’t move and did n’t speak . his
skin started to feel like hundreds of
tiny spiders were running up and down
it and he hurried on .

a few miles before tioga road reached
highway 395 and the town of lee
vining , smith turned onto a narrow
blacktop road . on either side were
parched , grassy open slopes with
barbed-wire fences marking property
lines . cattle and horses grazed
under trees whose black silhouettes
stood stark against the gold-velvet
mountains . marty burst into song :
“home , home on the range , where
the deer and the antelope play ! where
seldom is heard a discouraging word
and the skies are not cloudy all day!”

“number seventy-three, second to last from
the corner. adam slowed the porsche as he
approached the quaint-he could think of no
other word to use , even though “quaint”
was one he normally, manfully, avoided-
townhouse, coming to a halt beside a sleek
jaguar sedan. it was a quiet street, devoid of
traffic at this hour on a monday night. in the
bluish-tinted light of a corner street lamp,
he developed a quick visual impression of
wrought-iron railings on tidy front stoops,
window boxes full of bright chrysanthemums,
beveled glass in bay windows , and lace
curtains. townhouses around here didn’t rent
cheaply, he couldn’t help but observe .

Figure 5: CoCoBook: We generate a caption for a CoCo image via [15] and retrieve its best matched sentence (+ 2 before and after) from

a large book corpus. One can see a semantic relevance of the retrieved passage to the image.

Figure 6: Alignment results of our model compared to ground-truth alignment.

UNI SVM
1 layer CNN w/o one feature

CNN-3 CRF
∅ BLEU TF-IDF SENT VIS SCENE PRIOR

Fight Club
AP 1.22 0.73 0.45 0.41 0.40 0.50 0.64 0.50 0.48 1.95 5.17

Recall 2.36 10.38 12.26 12.74 11.79 11.79 12.74 11.79 11.79 17.92 19.81

The Green Mile
AP 0.00 14.05 14.12 14.09 6.92 10.12 9.83 13.00 14.42 28.80 27.60

Recall 0.00 51.42 62.46 60.57 53.94 57.10 55.52 60.57 62.78 74.13 78.23

Harry Potter and the

Sorcerers Stone

AP 0.00 10.30 8.09 8.18 5.66 7.84 7.95 8.04 8.20 27.17 23.65

Recall 0.00 44.35 51.05 52.30 46.03 48.54 48.54 49.37 52.72 76.57 78.66

American Psycho
AP 0.00 14.78 16.76 17.22 12.29 14.88 14.95 15.68 16.54 34.32 32.87

Recall 0.27 34.25 67.12 66.58 60.82 64.66 63.56 66.58 67.67 81.92 80.27

One Flew Over the

Cuckoo Nest

AP 0.00 5.68 8.14 6.27 1.93 8.49 8.51 9.32 9.04 14.83 21.13

Recall 1.01 25.25 41.41 34.34 32.32 36.36 37.37 36.36 40.40 49.49 54.55

Shawshank Redemption AP 0.00 8.94 8.60 8.89 4.35 7.99 8.91 9.22 7.86 19.33 19.96

Recall 1.79 46.43 78.57 76.79 73.21 73.21 78.57 75.00 78.57 94.64 96.79

The Firm
AP 0.05 4.46 7.91 8.66 2.02 6.22 7.15 7.25 7.26 18.34 20.74

Recall 1.38 18.62 33.79 36.55 26.90 23.45 26.90 30.34 31.03 37.93 44.83

Brokeback Mountain
AP 2.36 24.91 16.55 17.82 14.60 15.16 15.58 15.41 16.21 31.80 30.58

Recall 27.0 74.00 88.00 92.00 86.00 86.00 88.00 86.00 87.00 98.00 100.00

The Road
AP 0.00 13.77 6.58 7.83 3.04 5.11 5.47 6.09 7.00 19.80 19.58

Recall 1.12 41.90 43.02 48.04 32.96 38.55 37.99 42.46 44.13 65.36 65.10

No Country for Old

Men

AP 0.00 12.11 9.00 9.39 8.22 9.40 9.35 8.63 9.40 28.75 30.45

Recall 1.12 33.46 48.90 49.63 46.69 47.79 51.10 49.26 48.53 71.69 72.79

Mean Recall 3.88 38.01 52.66 52.95 47.07 48.75 50.03 50.77 52.46 66.77 69.10

AP 0.40 10.97 9.62 9.88 5.94 8.57 8.83 9.31 9.64 22.51 23.17

Table 5: Performance of our model for movies in our dataset under different settings and metrics. UNI: uniform timeline, SVM: linear

SVM trained to combine different similarities measures. The 1-layer CNN columns evaluate the leave-one-fature-out setting, where ∅
indicates all features are used, BLEU: no BLEU sentence similarity measure is used, TF-IDF: no tf-idf sentence similarity measure, SENT:

our sentence embedding is not used, VIS: our video-text embedding not used, SCENE: no hybrid-CNN [42] is used in video representation,

PRIOR: no uniform prior is used. CNN-3 is a 3-layer context-aware similarity measure, and CRF is our full model that uses CNN-3 features.

model that takes into account all the available similarities.

We showed results on a new dataset of movie/book align-

ments as well as several quantitative results that showcase

the power and potential of our approach.
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