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Abstract

Humans connect language and vision to perceive the

world. How to build a similar connection for computers?

One possible way is via visual concepts, which are text

terms that relate to visually discriminative entities. We pro-

pose an automatic visual concept discovery algorithm using

parallel text and visual corpora; it filters text terms based

on the visual discriminative power of the associated images,

and groups them into concepts using visual and semantic

similarities. We illustrate the applications of the discovered

concepts using bidirectional image and sentence retrieval

task and image tagging task, and show that the discovered

concepts not only outperform several large sets of manually

selected concepts significantly, but also achieves the state-

of-the-art performance in the retrieval task.

1. Introduction

Language and vision are both important for us to under-

stand the world. Humans are good at connecting the two

modalities. Consider the sentence “A fluffy dog leaps to

catch a ball”: we can all relate fluffy dog, dog leap and catch

ball to the visual world and describe them in our own words

easily. However, to enable a computer to do something sim-

ilar, we need to first understand what to learn from the visual

world, and how to relate them to the text world.

Visual concepts are a natural choice to serve as the ba-

sic unit to connect language and vision. A visual concept

is a subset of human vocabulary which specifies a group of

visual entities (e.g. fluffy dog, curly dog). We name the

collection of visual concepts as a visual vocabulary. Com-

puter vision researchers have long collected image exam-

ples of manually selected visual concepts, and used them to

train concept detectors. For example, ImageNet [6] selects

21,841 synsets in WordNet as the visual concepts, and has

by far collected 14,197,122 images in total. One limitation

of the manually selected concepts is that their visual detec-

tors often fail to capture the complexity of the visual world,

∗This work was done when Chuang Gan was a visiting researcher at
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and cannot adapt to different domains. For example, people

may be interested in detecting birthday cakes when they try

to identify a birthday party, but this concept is not present

in ImageNet.

To address this problem, we propose to discover the vi-

sual concepts automatically by joint use of parallel text and

visual corpora. The text data in parallel corpora offers a rich

set of terms humans use to describe visual entities, while

visual data has the potential to help computer organize the

terms into visual concepts. To be useful, we argue that the

visual concepts should have the following properties:

Discriminative: a visual concept must refer to visually

discriminative entities that can be learned by available com-

puter vision algorithms.

Compact: different terms describing the same set of vi-

sual entities should be merged into a single concept.

Our proposed visual concept discovery (VCD) frame-

work first extracts unigrams and dependencies from the text

data. It then computes the visual discriminative power of

these terms using their associated images and filters out the

terms with low cross-validated average precision. The re-

maining terms may be merged together if they correspond

to very similar visual entities. To achieve this, we use se-

mantic similarity and visual similarity scores, and cluster

terms based on these similarities. The final output of VCD

is a concept vocabulary, where each concept consists a set

of terms and has a set of associated images. The pipeline of

our approach is illustrated in Figure 1.

We work with the Flickr 8k data set to discover visual

concepts; it consists of 8,000 images downloaded from the

Flickr website. Each image was annotated by 5 Amazon

Mechanical Turk (AMT) workers to describe its content.

We design a concept based pipeline for bidirectional image

and sentence retrieval task [17] to automatically evaluate

the quality of the discovered concepts. We also conduct a

human evaluation on a free-form image tagging task using

visual concepts. Evaluation results show that the discov-

ered concepts outperform manually selected concepts sig-

nificantly.

Our key contributions include:

• We show that manually selected concepts often fail to
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A black dog and a spotted dog are 

fighting.

A black dog and a tri-colored dog 

playing with each other on the 

road.

Two dogs of different breeds 

looking at each other on the road.

Two dogs on pavement moving 

toward each other.

A cyclist is riding a bicycle on a 

curved road up a hill.

A man on a mountain bike is 

pedaling up a hill.

Man bicycle up a road , while cows 

graze on a hill nearby.

The biker is riding around a curve 

in the road.
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Figure 1. Overview of the concept discovery framework. Given a parallel corpus of images and their descriptions, we first extract unigrams

and dependency bigrams from the text data. These terms are filtered with the cross validation average precision (AP) trained on their

associated images. The remaining terms are grouped into concept clusters based on both visual and semantic similarity.

capture the complexity of and to evolve with the visual

world;

• We propose the VCD framework, which automatically

generates discriminative and compact visual vocabu-

laries from parallel corpora;

• We demonstrate qualitatively and quantitatively that

the discovered concepts outperform several large sets

of manually selected concepts significantly. They

also perform competitively in the image sentence re-

trieval task against state-of-the-art embedding based

approaches.

2. Related Work

Applications of visual concepts. Visual concepts have

been widely used in visual recognition tasks [26, 36, 45].

For example, [11] addresses the problem of describing ob-

jects with pre-defined attributes. Sadeghi et al. [37] propose

to recognize complex visual composites by defining visual

phrases. For video analysis, people commonly use prede-

fined pools of concepts (e.g. blowing candle, cutting cake)

to help classify and describe high-level activities or events

(e.g. birthday party) [40]. However, their concept vocabu-

laries are usually manually selected.

Concept naming and accuracy-specificity trade-off.

Visual concepts can be categorized [34] and organized as a

hierarchy where the leaves are the most specific and the root

is the most general. For example, ImageNet concepts [6]

are organized following the rule-based WordNet [30] hier-

archy. Similar structure also exists for actions [9]. Since

concept classification is not always reliable, Deng et al. [7]

propose a method to allow accuracy-specificity trade-off of

object concepts on WordNet. As WordNet synsets do not

always correspond to how people name the concepts, Or-

donez et al. [31] study the problem of entry-level category

prediction by collecting natural categories from humans.

Concept learning from web data. Our research is

closely related to the recent work on visual data collec-

tion from web images [42, 3, 8, 14] or weakly annotated

videos [2]. Their goal is to collect training images from

the Internet with minimum human supervision, but for pre-

defined concepts. In particular, NEIL [3] starts with a few

exemplar images per concept, and iteratively refines its con-

cept detectors using image search results. LEVAN [8] ex-

plores the sub-categories of a given concept by mining bi-

grams from large text corpus and using the bigrams to re-

trieve training images from image search engines. Recently,

Zhou et al. [44] use noisily tagged Flickr images to train
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concept detectors, but do not consider the semantic similar-

ity among different tags. Our VCD framework is able to

generate the concept vocabulary for them to learn detectors.

Sentence generation and retrieval for images. Im-

age descriptions can be generated by detection or retrieval.

The detection based approach usually defines a set of vi-

sual concepts (e.g. objects, actions and scenes), learns con-

cept detectors and use the top detected concepts to gener-

ate sentences. The sentences can be generated using tem-

plates [16, 41, 23] or language models [33, 25]. The perfor-

mance of detection is often limited by missing concepts and

inaccurate concept detectors. Retrieval-based sentence gen-

eration [32, 24, 43] works by retrieving sentences or sen-

tence components from an existing pool of sentence and

image pairs, and use them for description. The retrieval

criteria is usually based on the visual similarity of image

features. To allow bidirectional retrieval of sentences and

images, several work [17, 15, 12] embed image and text

raw features into a common latent space using methods like

Kernel Canonical Component Analysis [1]. There is also

a trend to embed sentences with recurrent neural networks

(RNN) [39, 19, 28, 4, 21], which achieves the state-of-the-

art performance in sentence retrieval and generation tasks.

3. Visual Concept Discovery Pipeline

This section describes the VCD pipeline. Given a paral-

lel corpus with images and their text descriptions, we first

mine the text data to select candidate concepts. Due to the

diversity of both visual world and human language, the pool

of candidate concepts is large. We use visual data to filter

the terms which are not visually discriminative, and then

group the remaining terms into compact concept clusters.

3.1. Concept Mining From Sentences

To collect the candidate concepts, we use unigrams as

well as the grammatical relations called dependencies [5].

Unlike the syntax tree based representation of sentences,

dependencies operate directly on pairs of words. Consider

a simple sentence “a little boy is riding a white horse”,

white horse and little boy belong to the adjective modifier

(amod) dependency, and ride horse belongs to the direct

object (dobj) dependency. As the number of dependency

types is large, we manually select a subset of 9 types which

are likely to correspond to visual concepts. The selected de-

pendency types are: acomp, agent, amod, dobj, iobj, nsubj,

nsubjpass, prt and vmod.

The concept mining process proceeds as follows: we first

parse the sentences in the parallel corpus with the Stanford

CoreNLP parser [5], and collect the terms with the interest-

ing dependency types. We also select unigrams which are

annotated as noun, verb, adjective and adverb by a part-of-

speech tagger. We use the lemmatized form of the selected

unigrams and phrases such that nouns in singular and plu-

Preserved terms Filtered terms

play tennis, play basketball play

bench, kayak red bench, blue kayak

sheer, tri-colored real, Mexican

biker, dog cigar, chess

Table 1. Preserved and filtered terms from Flickr 8k data set. A

term might be filtered if it’s abstract (first row), too detailed (sec-

ond row) or not visually discriminative (third row). Sometimes

our algorithm may filter out visual entities which are difficult to

recognize (final row).

ral forms and verbs in different tenses are grouped together.

After parsing the whole corpus, we remove the terms which

occur fewer than k times.

3.2. Concept Filtering and Clustering

The unigrams and dependencies selected from text data

contain terms which may not have concrete visual patterns

or may not be easy to learn with visual features. The images

in the parallel corpora are helpful to filter out these terms.

We represent images using feature activations from pre-

trained deep convolutional neural networks (CNN), they are

image-level holistic features.

Since the number of terms mined from text data is large,

the concept filtering algorithm needs to be efficient. For the

images associated with a certain term, we do a 2-fold cross

validation with a linear SVM, using randomly sampled neg-

ative training data. We compute average precision (AP) on

cross-validated results, and remove the terms with AP lower

than a threshold. Some of the preserved and filtered terms

are listed in Table 1.

Many of the remaining terms are synonyms (e.g. ride

bicycle and ride bike). These terms are likely to confuse

the concept classifier training algorithm. It is important to

merge them together to make the concept set more compact.

Besides, although some terms refer to different visual enti-

ties, they are similar visually and semantically (e.g. a red

jersey and a orange jersey); it is often beneficial to group

them together to have more image examples for training.

This motivates us to cluster the concepts based on both vi-

sual similarity and semantic similarity.

Visual similarity: We use the holistic image features to

measure visual similarity between different candidate con-

cept terms. We learn two classifiers ft1 and ft2 for terms t1
and t2 using their associated image sets It1 and It2 ; negative

data is randomly sampled from those not associated with t1
and t2. To measure the similarity from t1 to t2, we com-

pute the median of classifier ft1 ’s response on the positive

samples of t2.

Ŝv(t1, t2) = medianI∈It2
(ft1(I)) (1)

Sv(t1, t2) = min
(
Ŝv(t1, t2), Ŝv(t2, t1)

)
(2)
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Type Concept terms

Object {jersey, red jersey, orange jersey}

Activity {dribble, player dribble, dribble ball}

Attribute {mountainous, hilly}

Scene {blue water, clear water, green water}

Mixed {swimming, diving, pool, blue pool}

Mixed {ride bull, rodeo, buck, bull}

Table 2. Concepts discovered by our framework from Flickr 8k

data set.

Here the outputs of ft1 are normalized to [0, 1] by a Sigmoid

function. We take the minimum of Ŝv(t1, t2) and Ŝv(t2, t1)
to make it a symmetric similarity measurement.

The intuition behind this similarity measurement is that

visual instances associated with a term are more likely to

get high scores from the classifiers of other visually similar

terms.

Semantic similarity: We also measure the similarity of

two terms in the semantic space, which are computed by

data-driven word embeddings. In particular, we train a skip-

gram model [29] using the English dump of Wikipedia. The

basic idea of skip-gram model is to fit the word embeddings

such that the words in corpus can predict their context with

high probability. Semantically similar words lie close to

each other in the embedded space.

Word embedding algorithm assigns a D-dimension vec-

tor for each word in the vocabulary. For dependencies, we

take the average of the word vectors from each word of the

dependency, and L2-normalize the averaged vector. The se-

mantic similarity Sw(t1, t2) of two candidate concept terms

t1 and t2 is defined as the cosine similarity of their word

embeddings.

Concept clustering: Denote the visual similarity matrix

as Sv and the semantic similarity matrix as Sw, we compute

the overall similarity matrix by

S = Sλ
v · S1−λ

w (3)

where · is element-wise matrix multiplication and λ ∈ [0, 1]
is a parameter controlling the weight assigned to visual sim-

ilarity.

We then use spectral clustering to cluster the candidate

concept terms into K concept groups. It is a natural choice

when similarity matrix is available. We use the algorithm

implemented in the Python SKLearn toolkit, fix the eigen

solver to arpack and assign the labels with K-means.

After the clustering stage, each concept is represented as

a set of terms, as well as their associated visual instances.

One can use the associated visual instances to train concept

detectors with SVM or neural networks.

λ Concept terms

0 {wedding, church}, {skyscraper, tall building}

1 {skyscraper, church}, {wedding, birthday}

0.3 {wedding, bridal party}, {church}, {skyscraper}

Table 3. Different λ affects the term groupings in the discovered

concepts. Total concept number is fixed to 1,200.

3.3. Discussion

Table 2 shows some of the concepts discovered by our

framework. It can automatically generate concepts related

to objects, attributes, scenes and activities, and identify the

different terms associated with each concept. We observe

that sometimes a more general term (jersey) is merged with

a more specific term (red jersey) due to high visual similar-

ity.

We also find that there are some mixed type concepts of

objects, activities and scenes. For example, swimming and

pool belongs to the same concept, possibly due to their high

co-occurrence rate. One extreme case is that German and

German Shepherd are grouped together as the two words

always occur together in the training data. We believe the

problem can be mitigated by using a larger parallel corpus.

Table 3 shows different concept clusters when semantic

similarity is ignored (λ = 0), dominant (λ = 1) and com-

bined with visual similarity. As expected, when λ is small,

terms that look similar or often co-occur in images tend to

be grouped together. As our semantic similarity is based on

word co-occurrence, ignoring visual similarity may lead to

sub-optimal concept clusters such as wedding and birthday.

4. Concept Based Image and Sentence Re-

trieval

Consider a set of images, each of which has a few ground

truth sentence annotations, the goal of bidirectional retrieval

is to learn a ranking function from image to sentence and

vice versa, such that the ground truth entries rank at the top

of the retrieved list. Many previous methods approach the

task by learning embeddings from raw feature space [17,

20, 15].

We propose an alternative approach to the embedding

based methods which uses concept space directly. Let’s

start with the sentence to image direction. With the discov-

ered concepts, this problem can be approached by two steps:

first, identify the concepts from the sentences; second, se-

lect the images with highest responses for those concepts.

Suppose we take the sum of the concept responses, this is

equivalent to projecting the sentence into the same concept-

based space as images, and measuring the image sentence

similarity by an inner product. This formulation allows us

to use the same similarity function for image to sentence

and sentence to image retrieval.
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Sentence mapping: Mapping a sentence to the concept

space is straightforward. We run the same parser as used

in concept mining to collect terms. Remember that each

concept is represented as a set of terms: denote the term set

for the incoming sentence as T = {t1, t2, ..., tN}, and the

term set for concept i as Ci = {ci
1
, ci

2
, ..., ciM}, we have the

sentence’s response for Ci as

φi(T ) = max
t∈T ,c∈Ci

δ(t, c) (4)

Here δ(t, c) is a function that measures the similarity be-

tween t and c. We set δ(t, c) = 1 if the cosine similarity of

t and c’s word embedding is greater than a certain threshold,

and 0 otherwise. In practice we set the threshold to 0.95.

There are some common concepts which occur in most

of the sentences (e.g. a person); to down-weight these

common concepts, we normalize the scores with term

frequency-inverse document frequency (tf-idf), learned

from the training text corpus.

Image mapping: To measure the response of an image

to a certain concept, we need to collect its positive and neg-

ative examples. For concepts discovered from parallel cor-

pora, we have their associated images. The set of training

images can be augmented with existing image data sets or

by manual annotation.

Assume that training images are ready and concept clas-

sifiers have been trained, we then compute the continuous

classifier scores for an image over all concepts, and nor-

malize each of them to be [−1, 1]. The normalization step

is important as using non-negative confidence scores biases

the system towards longer sentences.

Since image and text data are mapped into a common

concept space, the performance of bidirectional retrieval de-

pends on: (1) whether the concept vocabulary covers the

terms and visual entities used in query data; (2) whether

concept detectors are powerful enough to extract useful in-

formation from visual data. It is thus useful to evaluate the

quality of discovered concepts against existing concept vo-

cabularies and their concept detectors.

5. Evaluation

In this section, we first evaluate our proposed concept

discovery pipeline based on the bidirectional sentence im-

age retrieval task. We use the discovered concepts to gen-

erate concept-based image descriptions, and report human

evaluation results.

5.1. Bidirectional Sentence Image Retrieval

Data: We use 6,000 images from the Flickr 8k [17] data

set for training, 1,000 images for validation and another

1,000 for testing. We use all 5 sentences per image for

both training and testing. Flickr 30k [43] is an extended

version of Flickr 8k. We select 29,000 images (no overlap

to the testing images) to study whether more training data

yields better concept detectors. We also report results when

the visual concept discovery, concept detector training and

evaluation are all conducted on Flickr 30k. For this pur-

pose, we use the standard setting [19, 21] where 29,000 im-

ages are used for training, 1,000 images for validation and

1,000 images for testing. Again, each image comes with 5

sentences. Finally, we randomly select 1,000 images from

the lately released Microsoft COCO [27] data set to study if

the discovered concept vocabulary and associated classifiers

generalize to another data set.

Evaluation metric: Recall@k is used for evaluation. It

computes the percentage of ground truth entries ranked in

the top k retrieved results, over all queries. We also report

median rank of the first retrieved ground truth entries.

Image representation and classifier training: Similar

to [15, 21], we extracted CNN activations as image-level

features; such features have shown state-of-the-art perfor-

mance in recent object recognition results [22, 13]. We

adapted the CNN implementation provided by Caffe [18],

and used the 19-layer network architecture and parameters

from Oxford [38]. The feature activations from the net-

work’s first fully-connected layer fc6 were used as image

representations, each of which has 4,096 dimensions.

To train concept classifiers, we normalized the feature

activations with L2-norm. We randomly sampled 1,000 im-

ages as negative data. We used the linear SVM [10] in the

concept discovery stage for its faster running time, and χ2

kernel SVM to train final concept classifiers as it is a nat-

ural choice for histogram-like features and provides higher

performance than linear SVM.

Comparison against embedding-based approaches:

We first compare the performance of our concept-based

pipeline against embedding based approaches. We set the

parameters of our system using the validation set. For con-

cept discovery, we kept all terms with at least 5 occurrences

in the training sentences, this gave us an initial list of 5,309

terms. We filtered all terms with average precision lower

than 0.15, which preserved 2,877 terms. We set λ to be 0.6

and number of concepts to be 1,200.

Several recent embedding based approaches [20, 39, 19,

28, 4, 21] are included for comparison. Most of these ap-

proaches use CNN-based image representations (in partic-

ular, [21] uses the same Oxford architecture), and embed

sentences with recurrent neural network (RNN) or its vari-

ations. We make sure that the experiment setup and data

partitioning for all systems are the same, and report num-

bers in the original papers if available.

Table 4 lists the evaluation performance for all systems.

We can see that the concept based framework achieves simi-

lar or better performance against the state-of-the-art embed-

ding based systems. This confirms the framework is a valid

pipeline for bidirectional image and sentence retrieval task.
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Image to sentence Sentence to image

Method R@1 R@5 R@10 Median rank R@1 R@5 R@10 Median rank

Karpathy et al. [19] 16.5 40.6 54.2 7.6 11.8 32.1 44.7 12.4

Mao et al. [28] 14.5 37.2 48.5 11 11.5 31.0 42.4 14

Kiros et al. [21] 18.0 40.9 55.0 8 12.5 37.0 51.5 10

Concepts (trained on Flickr 8k) 18.7 41.9 54.7 8 16.7 40.7 54.0 9

Concepts (trained on Flickr 30k) 21.1 45.9 59.0 7 17.9 42.8 55.8 8

Table 4. Retrieval evaluation compared with embedding based methods on Flickr 8k. Higher Recall@k and lower median rank are better.

Image to sentence Sentence to image

Method R@1 R@5 R@10 Median rank R@1 R@5 R@10 Median rank

Karpathy et al. [19] 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2

Mao et al. [28] 18.4 40.2 50.9 10 12.6 31.2 41.5 16

Kiros et al. [21] 23.0 50.7 62.9 5 16.8 42.0 56.5 8

Concepts (trained on Flickr 30k) 26.6 52.0 63.7 5 18.3 42.2 56.0 8

Table 5. Retrieval evaluation on Flickr 30k. Higher Recall@k and lower median rank are better.

Enhancing concept classifiers with more data: The

concept classifiers we trained for previous experiment only

used training images from Flickr 8k data set. To check if

the discovered concepts can benefit from additional training

data, we collect the images associated with the discovered

concepts from Flickr 30k data set. Since Flickr 30k con-

tains images which overlap with the validation and testing

partitions of Flickr 8k data set, we removed those images

and used around 29,000 images for training.

In the last row of Table 4, we list the results of the con-

cept based approach using Flickr 30k training data. We can

see that there is a significant improvement in every metric.

Since the only difference is the use of additional training

data, the results indicate that the individual concept clas-

sifiers benefit from extra training data. It is worth noting

that while additional data may also be helpful for embed-

ding based approaches, it has to be in the form of image and

sentence pairs. Such annotation tends to be more expensive

and time consuming to obtain than concept annotation.

Evaluation on Flickr 30k dataset: Evaluation on Flickr

30k follows the same strategy as on Flickr 8k, where pa-

rameters were set using validation data. We kept 9,742

terms which have at least 5 occurrences in the training sen-

tences. We then filtered all terms with average precision

lower than 0.15, which preserved 4,158 terms. We set λ to

be 0.4 and number of concepts to be 1,600. Table 5 shows

that our method achieves comparable or better performance

than other embedding based approaches.

Concept transfer to other data sets: It is important to

investigate whether the discovered concepts are generaliz-

able. For this purpose, we randomly selected 1,000 images

and their associated 5,000 text descriptions from the valida-

tion partition of Microsoft COCO data set [27].

We used the concepts discovered and trained from Flickr

8k data set, and compared with several existing concept vo-

cabularies:

ImageNet 1k [35] is a subset of ImageNet data set, with

1,000 categories used in ILSVRC 2014 evaluation. The

classifiers were trained using the same Oxford CNN archi-

tecture used for feature extraction.

LEVAN [8] selected 305 concepts manually, and ex-

plored Google Ngram data to collect 113,983 sub-concepts.

They collected Internet images and trained detectors with

Deformable Part Model (DPM). We used the learned mod-

els provided by the authors.

NEIL [3] has 2,702 manually selected concepts, each of

which was trained with DPM using weakly supervised im-

ages from search engines. We also used the models released

by the authors.

Among the three baselines above, ImageNet 1k relies on

the same set of CNN-based features as our discovered con-

cepts. To further investigate the effect of concept selection,

we took the concept lists provided by the authors of LEVAN

and NEIL, and re-trained their concept detectors using our

proposed pipeline. To achieve this, we selected training im-

ages associated with the concepts from Flickr 8k dataset,

and learned concept detectors using the same CNN feature

extractors and classifier training strategies as our proposed

pipeline.

Table 6 lists the performance of using different vocab-

ularies. We can see that the discovered concepts clearly

outperform manually selected vocabularies, but the

cross-dataset performance is lower than same-dataset

performance. We found that COCO uses many visual

concepts discovered in Flickr 8k, though some are miss-

ing (e.g. giraffes). Compared with the concepts discovered

by Flickr 8k, the three manually selected vocabularies lack

many terms used in the COCO data set to describe the visual

entities. This inevitably hurts their performance in the re-

trieval task. The performance of NEIL and LEVAN is worse
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Image to sentence Sentence to image

Vocabulary R@1 R@5 R@10 Median rank R@1 R@5 R@10 Median rank

ImageNet 1k [35] 2.5 6.7 9.7 714 1.6 5.0 8.5 315

LEVAN [8] 0.0 0.4 1.2 1348 0.2 1.1 1.7 443

NEIL [3] 0.1 0.7 1.1 1103 0.2 0.9 2.0 446

LEVAN [8] (trained on Flickr 8k) 1.2 5.7 9.5 360 2.6 9.1 14.7 113

NEIL [3] (trained on Flickr 8k) 1.4 5.7 8.9 278 3.7 11.3 18.3 92

Flickr 8k Concepts (ours) 10.4 29.3 40.0 17 9.8 27.5 39.0 17

Table 6. Retrieval evaluation for different concept vocabularies on COCO data set.

Figure 2. Impact of λ when testing on Flickr 8k data set (blue) and

COCO data set (red). Recall@5 for sentence retrieval is used.

Figure 3. Impact of total number of concepts when testing on

Flickr 8k data set (blue) and COCO data set (red). Recall@5 for

sentence retrieval is used.

than ImageNet 1k, which might be explained by the weakly

Internet images they used to train concept detectors. Al-

though re-training from Flickr 8k using deep features helps

improve retrieval performance of NEIL and LEVAN, our

system still outperforms the two by large margins.

Impact of concept discovery parameters: Figure 2 and

Figure 3 shows the impact of visual similarity weight λ and

the total number of concepts on the retrieval performance.

To save space, we only display results of recall@5 for the

sentence retrieval direction.

We can see from the figures that both visual and seman-

tic similarities are important for concept clustering, this is

particular true when the concepts trained from Flickr 8k

were applied to COCO. Increasing the number of concepts

helps at the beginning, as many visually discriminative con-

cepts are grouped together when the number of concepts is

small. However, as the number increases, the improvement

becomes flat, and even hurts the concepts’ ability to gener-

alize.

5.2. Human Evaluation of Image Tagging

We also evaluated the quality of the discovered concepts

on the image tagging task whose goal is to generate tags

to describe the content of images. Compared with sentence

retrieval, the image tagging task has a higher degree of free-

dom as the combination of tags is not limited by the existing

sentences in the pool.

Evaluation setup: We used the concept classifiers to

generate image tags. For each image, we selected the top

three concepts with highest classifier scores. Since a con-

cept may have more than one text terms, we picked up to

two text terms randomly for display.

For evaluation, we asked 15 human evaluators to com-

pare two sets of tags generated by different concept vocab-

ularies. The evaluators were asked to select which set of

tags better describes the image based on the accuracy of

the generated tags and the coverage of visual entities in the

image, or whether the two sets of tags are equally good or

bad. The final label per image was combined using major-

ity vote. On average, 85% of the evaluators agreed on their

votes for specific images.

We compared the concepts discovered from Flickr 8k

and the manually selected ImageNet 1k concept vocabulary.

The classifiers for the discovered concepts were trained us-

ing the 6,000 images from Flickr 8k. We did not compare

the discovered concepts against NEIL and LEVAN as they

performed very poorly in the retrieval task. To test how the

concepts generalize to a different data set, we used the same

1,000 images from the COCO data set as used in retrieval
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Better Worse Same

64.1% 22.9% 12.9%

Table 7. Percentage of images where tags generated by the discov-

ered concepts are better, worse or the same compared with Ima-

geNet 1k.

Figure 4. Tags generated using ImageNet 1k concepts (blue) and

the discovered concepts (green). Tags preferred by evaluators are

marked in red blocks.

task for evaluation.

Result analysis: Table 7 shows the evaluators’ prefer-

ence on the image tags generated by the discovered con-

cepts and ImageNet 1k. We can see that the discovered con-

cepts generated better tags for 64.1% of the images. This

agrees with the trend observed in the bidirectional retrieval

task.

As shown in Figure 4, tags generated by ImageNet 1k

has the following problems which might cause evaluators

to label them as worse: first, many of the visual entities do

not have corresponding concepts in the vocabulary; second,

ImageNet 1k has many fine-grained concepts (e.g. differ-

ent species of dogs), while more general terms might be

preferred by evaluators. On the other hand, the discovered

concepts are able to reflect how human name the visual en-

tities, and have a higher concept coverage. However, due to

the number of training examples is relatively limited, some-

times the response of different concept classifiers are corre-

lated (e.g. bed and sit down).

6. Conclusion

This paper studies the problem of automatic concept dis-

covery from parallel corpora. We propose a concept fil-

tering and clustering algorithm using both text and visual

information. Automatic evaluation using bidirectional im-

age and text retrieval and human evaluation of image tag-

ging task show that the discovered concepts achieve state-

of-the-art performance, and outperform several large man-

ually selected concept vocabularies significantly. A natural

future direction is to train concept detectors for the discov-

ered concepts using web images.
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