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Abstract

Visual object tracking is challenging as target objects of-

ten undergo significant appearance changes caused by de-

formation, abrupt motion, background clutter and occlu-

sion. In this paper, we exploit features extracted from deep

convolutional neural networks trained on object recognition

datasets to improve tracking accuracy and robustness. The

outputs of the last convolutional layers encode the semantic

information of targets and such representations are robust

to significant appearance variations. However, their spatial

resolution is too coarse to precisely localize targets. In con-

trast, earlier convolutional layers provide more precise lo-

calization but are less invariant to appearance changes. We

interpret the hierarchies of convolutional layers as a non-

linear counterpart of an image pyramid representation and

exploit these multiple levels of abstraction for visual track-

ing. Specifically, we adaptively learn correlation filters on

each convolutional layer to encode the target appearance.

We hierarchically infer the maximum response of each layer

to locate targets. Extensive experimental results on a large-

scale benchmark dataset show that the proposed algorithm

performs favorably against state-of-the-art methods.

1. Introduction

Visual object tracking is one of the fundamental prob-

lems in computer vision with numerous applications [33,

26]. A typical scenario of visual tracking is to track an un-

known target object, specified by a bounding box in the first

frame. Despite significant progress in the recent decades,

visual tracking is still a challenging problem, mainly due

to large appearance changes caused by occlusion, deforma-

tion, abrupt motion, illumination variation, and background

clutter. Recently, features based on convolutional neural

networks (CNNs) have demonstrated state-of-the-art results

on a wide range of visual recognition tasks [20, 11]. It is

thus of great interest to understand how to best exploit the

rich feature hierarchies in CNNs for robust visual tracking.

Existing deep learning based trackers [30, 21, 29,

18] typically draw positive and negative training samples

around the estimated target location to incrementally learn

a classifier over features extracted from a CNN. Two issues

ensue with such approaches. The first issue lies in the use

of neural networks as an online classifier following recent

object recognition algorithms, where only the outputs of the

last layer are used to represent targets. For high-level visual

recognition problems, it is effective to use features from the

last layer as they are most closely related to category-level

semantics and most invariant to nuisance variables such as

intra-class variations and precise location. However, the ob-

jective of visual tracking is to locate targets precisely rather

than to infer their semantic classes. Using only the features

from the last layer is thus not the optimal representation for

targets. The second issue is concerned with extracting train-

ing samples. Training a robust classifier requires a consider-

ably large number of positive and negative samples, which

is not available in visual tracking. In addition, there lies am-

biguity in determining a decision boundary since positive

and negative samples are highly correlated due to sampling

near a target.

In this work, we address these two issues by (i) using the

features from hierarchical layers of CNNs rather than only

the last layer to represent targets; (ii) learning adaptive cor-

relation filters on each CNN layer without the need of sam-

pling. Our approach builds on the observation that although

the last layers of CNNs are more effective to capture seman-

tics, they are insufficient for capturing fine-grained spatial

details such as object positions. The earlier layers, on the

other hand, are precise in localization but do not capture

semantics as illustrated in Figure 1. This observation sug-

gests that reasoning with multiple layers of CNN features

for visual tracking is of great importance as semantics are

robust to significant appearance variations and spatial de-

tails are effective for precise localization. We exploit both

the hierarchical features from the recent advances in CNNs

and the inference approach across multiple levels in clas-

sical computer vision problems. For example, computing

optical flow from the coarse levels of the image pyramid

are efficient, but finer levels are required for obtaining an

accurate and detailed flow field. A coarse-to-fine search-

ing strategy is often adopted for best results [23]. In light
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Figure 1. Convolutional layers of a typical CNN model, e.g.,

AlexNet [20], provide multiple levels of abstraction in the fea-

ture hierarchies. The features in the earlier layers retain higher

spatial resolution for precise localization with low-level visual in-

formation similar to the response map of Gabor filters [4]. On

the other hand, features in the latter layers capture more seman-

tic information and less fine-grained spatial details. Our approach

exploit the semantic information of last layers to handle large ap-

pearance changes and alleviate drifting by using features of earlier

layers for precise localization.

of this connection, we learn one adaptive correlation filter

[3, 16, 7, 35, 6, 17] over features extracted from each CNN

layer and use these multi-level correlation response maps to

collaboratively infer the target location. We consider all the

shifted versions of features as training samples and regress

them to a Gaussian function with a small spatial bandwidth,

thereby alleviating the sampling ambiguity of training a bi-

nary discriminative classifier.

We make the following three contributions. First, we

propose to use the rich feature hierarchies of CNNs as tar-

get representations for visual tracking, where both seman-

tics and fine-grained details are simultaneously exploited to

handle large appearance variations and avoid drifting. Sec-

ond, we adaptively learn linear correlation filters on each

CNN layer to alleviate the sampling ambiguity. We infer

the target location using the multi-level correlation response

maps in a coarse-to-fine fashion. Third, we carry out exten-

sive experiments on a large-scale benchmark dataset [32]

with 100 challenging image sequences and demonstrate that

the proposed tracking algorithm performs favorably against

existing state-of-the-art methods in terms of accuracy and

robustness.

2. Related Work

In this section, we discuss tracking methods closely re-

lated to this work. We refer the readers to a comprehensive

review on visual tracking in [33, 22, 26].

Tracking by Binary Classifiers. Visual tracking can be

posed as a repeated detection problem in a local window

(known as tracking-by-detection), where classifiers are of-

ten learned online. For each frame, a set of positive and neg-

ative training samples are collected for incrementally learn-

ing a discriminative classifier to separate a target from its

backgrounds. However, the sampling ambiguity problem

arises with such approaches that draw samples for learn-

ing online classifiers. Slight inaccuracies in labeling sam-

ples affect the classifier and gradually cause the trackers to

drift. Considerable efforts have been made to alleviate these

model update problems caused by sample ambiguity. The

core idea of these algorithms lie in how to properly update

a discriminative classifier to reduce drifts. Examples in-

clude multiple instance learning (MIL) [1], semi-supervised

learning [10, 12], and P-N learning [19]. Instead of learning

only one single classifier, Zhang et al. [34] combine multi-

ple classifiers with different learning rates. On the other

hand, Hare et al. [13] show that the objective of label pre-

diction using a classifier is not explicitly coupled to the ob-

jective of tracking (accurate position estimation) and pose

tracking as a joint structured output prediction problem. By

alleviating the sampling ambiguity problem, these methods

perform well in a recent benchmark study [31]. We address

the sample ambiguity with correlation filters where training

samples are regressed to soft labels of a Gaussian function

rather than binary labels for discriminative classifier learn-

ing.

Tracking by Correlation Filters. Correlation filters for

visual tracking have attracted considerable attention due to

its high computational efficiency with the use of fast Fourier

transforms. Tracking methods based on correlation filters

regress all the circular-shifted versions of input features to a

target Gaussian function and thus no hard-thresholded sam-

ples of target appearance are needed. Bolme et al. [3] learn

a minimum output sum of squared error filter over lumi-

nance channel for fast visual tracking. Several extensions

have been proposed to considerably improves tracking ac-

curacy, including kernelized correlation filters [16], multi-

dimensional features [17, 7], context learning [35] and scale

estimation [6]. In this work, we propose to learn correlation

filters over multi-dimensional features in a way similar to

existing methods [7, 17]. The main differences lie in the use

of learned CNN features rather than hand-crafted features

(e.g., HOG [5] or color-attributes [7]) and we construct mul-

tiple correlation filters on hierarchical convolutional layers

as opposed to only one single filter by existing approaches.

Tracking by CNNs. Visual representations are of great

importance for object tracking. Numerous hand-crafted

features have been used to represent the target appear-

ance such as subspace representation [24] and color his-

tograms [37]. The recent years have witnessed significant

advances of CNNs on visual recognition problems. Wang

and Yeung [30] propose a deep learning tracker (DLT) us-

ing a multi-layer autoencoder network. This network is pre-

trained on part of the 80M Tiny Image dataset [27] in an un-

supervised fashion. On the other hand, Wang et al. [29] pro-

pose to learn a two-layer neural network on a video repos-

itory [39], where temporally slowness constraints are im-

posed for feature learning. Li et al. [21] construct mul-

tiple CNN classifiers on different instances of target ob-

jects to rule out noisy samples during model update. The
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Figure 2. Visualization of the CNN features of an image with a

horizontal step edge. The first three principle components of fea-

tures from three layers at the dash lines are visualized. Note that

the conv5-4 layer is less effective to locate the step edge due to its

low spatial resolution while the conv3-4 layer is more useful for

precise localization.

DeepTrack [21] learns two-layer CNN classifiers from bi-

nary samples and does not require a pre-training procedure.

Hong et al. [18] learns target-specific saliency map using

a pre-trained CNN. We note that the aforementioned CNN

trackers all rely on positive and negative training samples

and only exploit the features from the last layer. In contrast,

our approach builds on adaptive correlation filters which

regress the dense, circularly shifted samples with soft labels

and effectively alleviate sampling ambiguity. In addition,

we exploit the features from multiple convolutional layers

to encode target appearance. We extract CNN features us-

ing the VGG-Net [25], which is trained on the large-scale

ImageNet dataset [8] with category-level label. We also

note that the DLT [30] and DeepTrack [21] methods update

the appearance models by finetuning CNNs online, while

Wang et al. [29] and our algorithm use classifier learning

for model update.

3. Overview

Our approach builds on the observation that the last lay-

ers of CNNs encode semantic abstraction of targets and

their outputs are robust to appearance variations. On the

other hand, the early layers retain more fine-grained spatial

details and thus are useful for precise localization. We show

in Figure 2 an image of a horizontal step edge and visual-

ize the CNN features on the third, fourth, and fifth convo-

lutional layers, where the fifth convolutional layer is less

effective to locate the sharp boundary due to its low spatial

resolution while the third layer is more useful to locate it

precisely. Our goal is to exploit the best of both semantics

and fine-grained details for visual object tracking. Figure 3

illustrates the main steps of our algorithm: we learn adap-

tive linear correlation filter over the outputs of each convo-

lutional layer and coarse-to-fine search the multi-level cor-

relation response maps to infer the location of targets.

Cropped Search Window

Conv3

Conv4

Conv5

Tracking Output

w
(1)

Position in
last frame

Estimated 
position 

w
(2)

w
(3)

Figure 3. Main steps of the proposed algorithm. Given an image,

we first crop the search window centered at the estimated position

in the previous frame. We use the third, fourth and fifth convolu-

tional layers as our target representations. Each layer indexed by

i is then convolved with the learned linear correlation filter w(i) to

generate a response map, whose location of the maximum value

indicates the estimated target position. We search the multi-level

response maps to infer the target location in a coarse-to-fine fash-

ion.

4. Proposed Algorithm

In this section, we first present the CNN features used in

this work, technical details on learning linear correlation fil-

ters, and the coarse-to-fine searching strategy. We introduce

the online model update in the end.

4.1. Convolutional Features

We uses the convolutional feature maps from a CNN,

e.g., AlexNet [20] or VGG-Net [25], to encode target ap-

pearance. Along with the CNN forward propagation, the

semantical discrimination between objects from different

categories is strengthened, as well as a gradual reduction

of spatial resolution for precise localization (See also Fig-

ure 1). For visual object tracking, we are interested in ac-

curate locations of a target object. We thus ignore the fully-

connected layers as they show little spatial resolution, i.e.,

1×1.

Due to the pooling operators used in the CNNs, spa-

tial resolution is gradually reduced with the increase of the

depth of convolutional layers. For example, the convolu-

tional feature maps of pool5 in the VGG-Net are of spatial

size 7× 7, which is 1
32

of the input image size 224× 224.

Such low spatial resolution is insufficient to locate targets

accurately. We alleviate this issue by resizing each feature

map to a fixed larger size with bilinear interpolation. Let h

denote the feature map and x be the upsampled feature map,

the feature vector for the i-th location is:

xi = ∑
k

αikhk, (1)

where the interpolation weight αik depends on the position

of i and k neighboring feature vectors respectively. Note
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Figure 4. Visualization of convolutional layers. (a) four frames

from the challenging MotorRolling sequence. (b)-(d) features are

extracted on convolutional layers conv3-4, conv4-4, and conv5-4

using the VGG-Net [25]. The yellow bounding boxes indicate the

tracking results by our method. Notice that although the appear-

ance of the target changes significantly, the features using the out-

put of the conv5-4 convolution layer (d) is able to discriminate it

readily even the background has dramatically changed. The conv4-

4 (c) and conv3-4 (b) layers encode more fine-grained details and

are useful to locate target precisely.

that this interpolation takes place in the spatial space and

can be seen as an interpolation of location. We visualize

the upsampled outputs of the third, fourth, and fifth lay-

ers by projecting the features onto their corresponding first

three principal components on the MotorRolling sequence

in Figure 4. As shown in Figure 4(d), features on the fifth

layer are effective in discriminating the targets even with

dramatic background changes. We note that this insight is

also exploited in [14] for segmentation and fine-grained lo-

calization using CNNs in which features from multiple lay-

ers are concatenated together. However, this feature repre-

sentation ignores the coarse-to-fine hierarchy in the CNN

architecture, and does not work well for visual tracking as

shown in our experimental validation (See Section 6).

4.2. Correlation Filters

A typical correlation tracker [3, 16, 7, 35, 6] learns a dis-

criminative classifier and estmate the translation of target

objects by searching for the maximum value of correlation

response map. In this work, the outputs of each convolu-

tional layer are used as multi-channel features [9, 2, 17].

Denote x as the l-th layer of feature vector of size M×N ×
D, where M, N, and D indicates the width, height, and the

number of channels, respectively. Here we denote x(l) con-

cisely as x and ignore the dependence of M, N, and D on the

layer index l. We consider all the circular shifts of x along

the M and N dimensions as training samples. Each shifted

sample xm,n, (m,n) ∈ {0,1, . . . ,M − 1}×{0,1, . . . ,N − 1},

has a Gaussian function label y(m,n) = e
−

(m−M/2)2+(n−N/2)2

2σ2 ,

where σ is the kernel width. A correlation filter w with

the same size of x is then learned by solving the following

minimization problem:

w∗ = argmin
w

∑
m,n

‖w ·xm,n − y(m,n)‖2 +λ‖w‖2
2, (2)

where λ is a regularization parameter (λ ≥ 0) and the inner

product is induced by a linear kernel in the Hilbert space,

e.g., w · xm,n = ∑
D
d=1 w⊤

m,n,dxm,n,d . As the label y(m,n) is

soft (not binary), so no hard-thresholded sample is required.

Notice that the minimization problem in (2) is akin to train-

ing the vector correlation filters in [2], and can be solved in

each indivual feature channel using fast Fourier transfor-

mation (FFT). Let the capital letters be the corresponding

Fourier transformed signals. The learned filter in the fre-

quency domain on the d-th (d ∈ {1, . . . ,D}) channel can be

written as

Wd =
Y⊙ X̄d

∑
D
i=1 Xi ⊙ X̄i +λ

. (3)

In (3), Y is the Fourier transformation form of y =
{

y(m,n)|(m,n) ∈ {0,1, . . . ,M−1}×{0,1, . . . ,N−1}
}

and

the bar means complex conjugation. The operator ⊙ is the

Hadamard (element-wise) product. Given an image patch in

the next frame, the feature vector on the l-th layer is denoted

by z and of size M ×N ×D. The l-th correlation response

map is computed by

fl = F
−1
(

D

∑
d=1

Wd ⊙ Z̄d
)

. (4)

The operator F−1 denotes the inverse FFT transform. The

target location on the l-th convolution layer can then be es-

timated by searching for the position of maximum value of

the correlation response map fl of size M×N.

4.3. CoarsetoFine Translation Estimation

Given the set of correlation response maps { fl}, we hier-

archically infer the target translation of each layer, i.e., the

location of maximum value in last layer is used as a regular-

ization to search for the maximum value of the earlier layer.

Let (m̂, n̂) = argmaxm,n fl(m,n) indicate the location of the

maximum values on the l-th layer, the optimal location of

target in the (l −1)-th layer is formulated as:

argmax
m,n

fl−1(m,n)+ γ fl(m,n), (5)

s.t. |m− m̂|+ |n− n̂| ≤ r.

The constraint indicates that only the r× r neighboring re-

gions of (m̂, n̂) are searched in the (l − 1)-th correlation

response map. The response values from the last layers
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are weighted by a regularization term γ and then back-

propagated to the response maps of early layers. The target

location is finally estimated by maximizing (5) on the layer

with the finest spatial resolution.

4.4. Model Update

An optimal filter on l-th layer can be updated by mini-

mizing the output error over all tracked results so far as de-

scribed in [2]. However, this involves solving a D×D linear

system of equations per location at (m,n), which is compu-

tationally expensive as the channel number is usually large

with the CNN features (e.g., D = 512 in the conv5-4 and

conv4-4 layers in the VGG-Net). To obtain a robust approx-

imation, we update the numerator Ad and denominator Bd

of the correlation filter Wd in (3) separately using a moving

average:

Ad
t = (1−η)Ad

t−1 +ηY⊙ X̄d
t ; (6a)

Bd
t = (1−η)Bd

t−1 +η
D

∑
i=1

Xi
t ⊙ X̄i

t ; (6b)

Wd
t =

Ad
t

Bd
t +λ

, (6c)

where t is the frame index and η is a learning rate.

5. Implementation Details

We present the main steps of the proposed tracking al-

gorithm in Algorithm 1 and the implementation details as

follows. We adopt the VGG-Net-19 [25] trained on Ima-

geNet [8] for feature extraction. We first remove the fully-

connected layers and use the outputs of the conv3-4, conv4-

4 and conv5-4 convolutional layer as our features. Notice

that we do not use the outputs of the pooling layers because

we want to retain more spatial resolution on each convolu-

tional layer. Given an image frame with searching window

of size M ×N (e.g., 1.8 times of the target size), we set a

fixed spatial size of M
4
× N

4
to resize the features from each

covolutional layer.

The parameters for training correlation filters on each

layer are kept the same. We set the regularization parameter

of (2) to λ = 10−4, and use a kernel width of 0.1 for gener-

ating the Gaussian function labels. Their learning rate η in

(6) is set to 0.01. To remove the boundary discontinuities,

the extracted feature channels of each convolutional layer

are weighted by a cosine window [3]. We set value of γ as

1, 0.5 and 0.02 for the conv4-4, conv3-4, conv5-4 layers, re-

spectively. We observe that the results are not sensitive to

the parameter r for the neighborhood search constraint This

amounts to simply sum over the weighted response maps

from multiple layers to infer the target location.

Algorithm 1: Proposed tracking algorithm.

Input : Initial target position p0,

Output: Estimated object positition pt = (xt ,yt), and

learned correlation filters {wl
t}, l ∈ {5,4,3}.

1 repeat

2 Crop out the searching window in frame t centered

at (xt−1,yt−1) and extract covolutional features

with spatial interpolation using (1);

3 foreach layer l do computing confidence score fl

using w
(l)
t−1 and (4);

4 Coarse-to-fine estimate the new position (xt ,yt ) on

response map set { fl} using (5);

5 Crop out new patch centered at pt = (xt ,yt) and

extract convolutional features with interpolation;

6 foreach layer l do updating correlation filters

{wl
t} using (6);

7 until End of video sequences;

6. Experimental Validations

We evaluate the proposed method on a large benchmark

dataset [32] containing 100 videos with comparisons to

state-of-the-art methods. For completeness, we also report

the results on the benchmark dataset [31] with 50 videos (a

subset of [32]). We quantitatively evaluate trackers using

distance precision rate, overlap ratio, and center location

error. We follow the protocol in [32] and use same param-

eter values for all the sequences and all sensitivity analysis.

More results can be found in the supplementary material.

We implement our tracker in MATLAB on an Intel I7-4770

3.40 GHz CPU with 32 GB RAM, and use the MatConvNet

toolbox [28], where the computation of forward propaga-

tion on CNNs is transferred to a GeForce GTX Titan GPU.

The source code is publicly available on our project page 1.

Quantitative Evaluation. We evaluate the proposed al-

gorithm with comparisons to 12 state-of-the-art track-

ers. These trackers can be broadly categorized into three

classes: (i) deep learning tracker DLT [30] (ii) correla-

tion filter trackers including the CSK [16], STC [35], and

KCF [17]; and (iii) representative tracking algorithms using

single or multiple online classifiers, including the MIL [1],

Struck [13], CT [36], LSHT [15], TLD [19], SCM [38],

MEEM [34], and TGPR [10] methods.

Figure 5 shows the results under one-pass evaluation

(OPE), temporal robustness evaluation (TRE) and spatial

robustness evaluation (SRE) using the distance precision

rate and overlap success rate. Additional comparisons about

OPE, SRE and TRE on the first 50 sequences can be found

in the supplementary materials. Overall, the proposed algo-

1https://sites.google.com/site/chaoma99/

iccv15-tracking
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Table 1. Comparisons with state-of-the-art trackers on the first 50 (I) [31] and entire 100 (II) [32] benchmark sequences. Our approach

performs favorably against existing methods in distance precision (DP) rate at a threshold of 20 pixels, overlap success (OS) rate at an

overlap threshold of 0.5 and center location error (CLE). The first and second best values are highlighted by bold and underline.

Ours DLT KCF STC Struck SCM CT LSHT CSK MIL TLD MEEM TGPR

[30] [17] [35] [13] [38] [36] [15] [16] [1] [19] [34] [10]

DP rate (%)
I 89.1 54.8 74.1 54.7 65.6 64.9 40.6 56.1 54.5 47.5 60.8 83.0 70.5

II 83.7 52.6 69.2 50.7 63.5 57.2 35.9 49.7 51.6 43.9 59.2 78.1 64.3

OS rate (%)
I 74.0 47.8 62.2 36.5 55.9 61.6 34.1 45.7 44.3 37.3 52.1 69.6 62.8

II 65.5 43.0 54.8 31.4 51.6 51.2 27.8 38.8 41.3 33.1 49.7 62.2 53.5

CLE (pixel)
I 15.7 65.2 35.5 80.5 50.6 54.1 78.9 55.7 88.8 62.3 48.1 20.9 51.3

II 22.8 66.5 45.0 86.2 47.1 61.6 80.1 68.2 305 72.1 60.0 27.7 55.5

Speed (FPS)
I 11.0 8.59 245 687 10.0 0.37 38.8 39.6 269 28.1 21.7 20.8 0.66

II 10.4 8.43 243 653 9.84 0.36 44.4 39.9 248 28.0 23.3 20.8 0.64
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Figure 5. Distance precision and overlap success plots over 100

benchmark sequences using one-pass evaluation (OPE), tempo-

ral robustness evaluation (TRE) and spatial robustness evaluation

(SRE). The legend of distance precision contains threshold scores

at 20 pixels while the legend of overlap success contains area-

under-the-curve score for each tracker. Our proposed algorithm

performs favorably against the state-of-the-art trackers.

rithm perform favorably against the state-of-the-art meth-

ods in all three metrics: OPE, TRE and SRE. We present

the quantitative comparisons of distance precision rate at

20 pixels, overlap success rate at 0.5, center location er-

rors, and tracking speed in Table 1. We report both the

results on the first 50 sequences (Benchmark I) [31] and

all 100 sequences (Benchmark II) [32]. Table 1 shows that

our algorithm performs well against state-of-the-art track-

ers in distance precision (DP) rate, overlap success (OS)

rate and center location error (CLE). Notice that with entire

100 sequences, Benchmark II is more challenging where

all the compared trackers perform worse than on Bench-

mark I. Among the state-of-the-art trackers, the MEEM

method [34] achieves the second best results. The proposed

method achieves lower CLE of 22.8 pixels over 100 video

sequences, compared to the second best result from the

MEEM tracker with 27.7 pixels. Our tracker runs at around

10 frames per second. The main computational load of our

tracker is the forward propagation process to extract fea-

tures (around 45% of the computing time for each frame).

Attribute-based Evaluation. We further analyze the

tracker performance under different video attributes (e.g.,

background clutter, occlusion, fast motion) annotated in the

benchmark [32]. Figure 6 shows the OPE for eight main

video attributes. From Figure 6, we have the following ob-

servations. First, our method is effective in handling back-

ground clutters which can be explained by considering fea-

tures with semantics and spatial details from the hierarchi-

cal layers of CNNs. In contrast, the DLT method pre-trains

the network with an unsupervised model and only uses the

output of last layer of the trained neural network as fea-

tures. This suggests CNN features (e.g., VGG-Net) learned

with category-level supervision are more effective to dis-

criminate targets from background. Second, our method

performs well in the presence of scale variations as the last

layer of the pre-trained model retains semantic information

insensitive to scale changes. Third, our method does not

perform as well in the presence of occlusion and object

deformation. This can be attributed to the holistic feature

representation used in our model. Re-detection modules or

part-based models will be considered in our future work.

Feature Analysis. To analyze the effectiveness of the pro-

posed algorithm, we compare the performance of using dif-

ferent convolutional layers as features on the benchmark
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Figure 6. Distance precision plots over eight tracking challenges of fast motion, background clutter, scale variation, deformation, illumina-

tion variation, occlusion, in-plane rotation, and low resolution. The legend contains the scores at a threshold of 20 pixels for each tracker.

Our proposed algorithm performs favorably against the state-of-the-art trackers with these eight challenging attributes.
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Figure 7. Performance evaluation using different convolutional

layers as features. Each single layer (c5,c4 and c3), the combi-

nation of the conv5-4 and conv4-4 layers (c5-c4), and the concate-

nation of three layers (c543) are evaluated using both VGG-Net

and AlexNet.

with 100 sequences. We first test on each single layer

(c5, c4 and c3), and then perform coarse-to-fine search on

the fifth and fourth layers (c5-c4). We also concatenate

these three layers together (c543) as the hypercolumns used

in [14]. However, such concatenation breaks down the hier-

archies over CNN layers and thus does not perform well for

visual tracking. In addition, we test the features extracted

from the AlexNet [20] with a same scheme. Figure 7 shows

the top 10 performing methods with different features us-

ing OPE, where the values at the legends with DP is based

on the threshold of 20 pixels while values at the legend

of OS is based on area under the curve (AUC). Note that

the features extracted from the VGG-Net are more effective

than the AlexNet for tracking because strengthened seman-

tic with deeper architecture is more insensitive to significant

appearance change. In addition, the tracking performance

is improved with hierarchically inference on the translation

cues using multiple CNN layers.

Qualitative Evaluation. Figure 8 shows some track-

ing results of the top performing tracking methods:

MEEM [34], KCF [17], DLT [30], Struck [13], and the pro-

posed algorithm on 12 challenging sequences. The MEEM

tracker performs well in sequences with deformation, rota-

tion and occlusion (Basketball, Bolt, Jogging-1, and Skiing),

but fails when background clutter and fast motion occur

(Board, Soccer, Diving, MotorRolling, and Human9) as the

quantized color channels features are less effective in han-

dling cluttered backgrounds. We also note that the MEEM

drifts quickly as it use only luminance intensity features in

the Freeman4 sequence. The KCF tracker learns a kernel-

ized correlation filter with a Gaussian kernel over HOG fea-

tures. It performs well in sequences with partial deforma-

tion and fast motion (Basketball, Bolt), but drifts when tar-

get objects undergo heavy occlusions (Jogging-1) and rota-

tions (MotorRolling and Skiing). The DLT method does not

fully exploit the semantic and fine-grained information as

we did, thus fails to track the targets on the selected chal-

lenging sequences. The Struck method does not perform

well in sequences with deformation, background clutter and

rotation (Basketball, Bolt, MotorRolling and Skiing), and

heavy occlusions (Jogging-1). Although the use of struc-

tured outputs effectively alleviates the sampling ambiguity

issues, the representation with hand-crafted features are not

effective in accounting for large appearance changes.

The reasons that the proposed algorithm performs well

can be explained by two main aspects. First, the vi-

sual representation using hierarchical convolutional fea-

tures learned from a large-scale dataset are more effec-

tive than conventional hand-crafted features. With CNN
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Figure 8. Qualitative evaluation of the proposed algorithm, the MEEM [34], KCF [17], DLT [30], Struck [13] methods on twelve challeng-

ing sequences (from left to right and top to down are Basketball, Board, Bolt, Diving, Jogging-1, Human9, Freeman4, Matrix, MotorRolling,

Skating2-1, Skiing and Soccer, respectively).

features from multiple levels, our features contains both

category-level semantics and fine-grained details, which ac-

count for appearance changes caused by deformations, rota-

tions and background clutters (Board, Soccer, Diving, Ski-

ing, and Human9). It is worth mentioning that for the most

challenging MotorRolling sequence, none of the 12 state-

of-the-art methods are able to track targets well whereas

our method achieves the distance precision rate of 94.5%.

Second, the linear correlation filters trained on convolu-

tional features are updated properly to account for appear-

ance variations.

Failure Cases. We show a few failure cases in Figure 9.

For the Girl2 and Lemming sequences, when long-term oc-

clusions occur, the proposed tracker fails to follow targets

as the proposed method is not equipped with a re-detection

module as opposed to the TLD and MEEM methods. An

alternative implementation with conservative update of cor-

relation filters using (6) succeeds in following targets. For

the Singer2 sequence, it is not effective to use semantic fea-

tures to differentiate the dark foreground from the bright

background. In such cases, the use of features extracted on

the first layer of CNNs alone is able to track the target well

as fine-grained spatial details weigh more in this sequence.

7. Conclusions

In this paper, we propose an effective algorithm for vi-

sual object tracking by exploiting rich feature hierarchies of

#120 #380 #025

Figure 9. Failure cases (Girl2, Lemming and Singer2). Red boxes

show our results and the green ones are ground truth.

CNNs learned from a large-scale dataset. The last convo-

lutional layers of CNNs retain semantics of target objects,

which are robust to significant appearance variations. The

early convolutional layers encode more fine-grained spatial

details, which are useful for precise location. Both features

with semantics and fine-grained details are simultaneously

exploited for visual tracking. We train a liner correlation fil-

ter on each convolutional layer and infer the target position

with a coarse-to-fine searching approach. Extensive exper-

imental results show that the proposed algorithm performs

favorably against the state-of-the-art methods in terms of

accuracy and robustness.
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