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Abstract

Saliency in Context (SALICON) is an ongoing effort that

aims at understanding and predicting visual attention. Con-

ventional saliency models typically rely on low-level im-

age statistics to predict human fixations. While these mod-

els perform significantly better than chance, there is still a

large gap between model prediction and human behavior.

This gap is largely due to the limited capability of mod-

els in predicting eye fixations with strong semantic content,

the so-called semantic gap. This paper presents a focused

study to narrow the semantic gap with an architecture based

on Deep Neural Network (DNN). It leverages the represen-

tational power of high-level semantics encoded in DNNs

pretrained for object recognition. Two key components are

fine-tuning the DNNs with an objective function based on

the saliency evaluation metrics, and integrating informa-

tion at different image scales. We compare our method

with 14 saliency models on 6 public eye tracking benchmark

datasets. Results demonstrate that our DNNs can automat-

ically learn features for saliency prediction that surpass by

a big margin the state-of-the-art. In addition, our model

ranks top to date under all seven metrics on the MIT300

challenge set.

1. Introduction

Saliency models predict the probability distribution of

the location of the eye fixations over the image, i.e. the

saliency map. Emulating the way that human observers

look at an image has attracted much interest, since it may

give new insights about the human attentional mechanisms,

†This work was done when Xun Huang was a visiting student at Na-

tional University of Singapore
∗Corresponding author.

and allow for new artificial intelligence applications.

The pioneering theory of feature integration served as

the basis for many of the initial saliency models [37]. The

seminal works by Koch and Ullman [22] and Itti et al. [18]

introduced the first computational architecture of saliency

prediction based on the feature integration theory. Since

then, numerous computational models have been proposed.

For example, Harel et al. [14] extracted multi-scale low-

level features including intensity, color and orientation,

and predicted saliency based on graph algorithms. Bruce

and Tsotsos [2] represented images with Gabor-like fea-

tures learned from independent component analysis and es-

timated saliency as self-information. The recent Boolean

Map Saliency (BMS) model by Zhang and Sclaroff [42]

used color as features and computed saliency based on

Boolean maps that are generated by randomly thresholding

feature maps.

While effective, it is widely accepted that these models

might not be complete in modeling visual attention due to

the lack of features to represent semantic objects of inter-

est [17]. In fact, object detectors have been shown to play

an important role in improving saliency prediction [40],

and several computational models have successfully incor-

porated object detectors into saliency models [4, 21, 44].

However, these detectors are specifically trained for each

category, which makes it difficult to scale. This begs the

question whether the models can be designed to automati-

cally learn the cues from the raw images.

Deep Neural Networks (DNNs) allow the automatic

learning of image representations, and recently achieved as-

tonishing results in many computer vision tasks, e.g. [23,

10]. In saliency prediction, the multi-layer sparse net-

work [33] and Ensemble of Deep Networks (eDN) [39] are

both early architectures that automatically learn the repre-

sentations for saliency prediction. Since the amount of data
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available to learn saliency prediction is scarce, the complex-

ity of the deep architectures cannot be easily scaled to out-

perform current state-of-the-art. In this case, one strategy

is to leverage the big amount of data samples from other

domains like object recognition [6]. Kummerer et al. [24]

initially transferred features directly from a DNN for object

recognition, and showed promising results with a model that

they called Deep Gaze. Depending on the evaluation metric,

Deep Gaze either marginally outperforms previous meth-

ods, or obtains an accuracy in the same range as eDN [39]

and BMS [42], among others.

In this paper, we investigate saliency prediction using

the representational power of the semantic content in DNNs

pretrained in ImageNet [6]. To address the difference in the

task objective between saliency prediction and object recog-

nition, we use saliency evaluation metrics as the objective

to fine-tune the DNNs. Also, since selective attention may

happen at different resolution, we incorporate information

at multiple-scales.

In a series of experiments, we evaluate our architec-

ture over 6 standard benchmark datasets, namely Ob-

ject and Semantic Images and Eye-tracking (OSIE) [40],

MIT1003 [21], NUS Eye Fixation (NUSEF) [29], Fixations

in Faces (FIFA) [4], PASCAL-S [25] and Toronto [2], based

on three common recognition networks: AlexNet [23],

VGG-16 [34] and GoogLeNet [35]. The results demon-

strate that our architectures can surpass the state-of-the-art

accuracy of saliency prediction by a big margin in all the

tested benchmarks. Our model achieves the best perfor-

mance to date under all evaluation metrics on the MIT300

benchmark [3]. These results suggest that the information

encoded in DNNs is much more informative than current

hand-crafted features to predict saliency. This is particu-

larly effective in predicting gazes with semantic objects, at-

tributed to the semantics encoded in DNNs.

2. DNNs for Saliency Prediction

In this Section, we introduce our method to use DNNs

in saliency prediction. A DNN is a feedforward neural net-

work with constrained connections between layers, that take

the form of convolutions or spatial pooling, besides other

possible non-linearities, e.g. [23]. The sample complexity

of a DNN can be controlled by varying the depth of the net-

work and the number of neurons at each layer. Increasing

the sample complexity comes with the risk of overfitting

when the number of training samples does not scale accord-

ingly.

Thus, learning a DNN only from saliency maps may be

difficult, since even the largest saliency dataset does not

contain millions of training images, as in the object recogni-

tion datasets used to successfully train large DNNs. A well-

known result is that features based on object detectors can

be useful to predict saliency maps [4, 7, 21, 40, 44]. Thus,

DNNs pretrained for object recognition, that are known to

encode powerful semantics features, might be useful as well

for saliency prediction. We introduce an architecture that in-

tegrates the saliency prediction to a DNN pretrained for ob-

ject recognition. This allows to learn with back-propagation

the parameters of the pretrained DNN, by optimizing a

saliency evaluation metric. This yields a substantial im-

provement of the performance over previous works that also

use DNNs, since eDN does not exploit the advantages of

pretraining [39], and Deep Gaze only uses the neural re-

sponses of the DNN without adapting the DNN to saliency

prediction [24]. We illustrate the overall structure of the

DNN in Fig. 1. In the following, we first introduce our ar-

chitecture, and then, the learning of the parameters.

2.1. Architecture of the DNN

We build our architecture from one of the popular DNN

architectures for object recognition [6]. The DNNs we

use are AlexNet [23], VGG-16 [34] and GoogLeNet [35].

These DNNs contain several max-pooling layers, and cas-

cades of convolutional and non-linear layers between pool-

ing layers. The total number of layers depends on each net-

work. Our architecture is based on one of these DNNs in

the context of saliency prediction (see Fig. 1).

Let Yk be a three-dimensional table that contains the

responses of the neurons of the DNN at layer k. Yk has

size mk × nk × dk, that depends on each layer. The first

two dimensions of the table index the spatial location of the

center of the receptive field of the neuron, and the third one

indexes the templates for which the neuron is tuned.

It has been shown that the neural responses at higher lay-

ers in the hierarchy encode more meaningful semantic rep-

resentations than at lower layers [41]. The last layers of

the DNN transform the neural responses to classification

scores that have little spatial information. Since saliency

prediction aims at localizing the salient regions, the neural

responses in mid and high layers might be more informative

than the responses at the last layer.

We found that a good compromise between semantic

representation and spatial information for saliency predic-

tion is to use the last convolution layer, in any of the three

DNNs we use. We denote the neural responses of this layer

as Yc. The number of templates at this layer is dc = 256
for AlexNet, dc = 512 for VGG-16, and dc = 832 for

GoogLeNet. To have neural responses in the image borders,

we add 0 padding in the convolution layers in all the DNN.

This yields a spatial resolution for Yc of mc×nc = 37×50,

for an input image of 600× 800. The layers after Yc in the

DNN including all fully-connected layers are not used for

saliency prediction and we remove them from our architec-

ture. In other words, we use DNN in a fully convolutional

way similar to [27].

The neural responses of Yc tend to detect parts or pat-
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Figure 1: Learning of the DNN architecture for saliency prediction. The architecture consists of a DNN applied at two

different image scales. Readers are referred to [23, 34, 35] to see the detailed model structures that we use. The last

convolutional layer in the pretrained network feeds a randomly initialized convolutional layer with one filter that detects the

salient regions. The parameters are then learnt end-to-end with back-propagation. We use objective functions to optimize

some common saliency evaluation metrics.

terns in objects that are useful for object recognition. To

use Yc for saliency prediction, we add one convolutional

layer after Yc. This convolutional layer has only one fil-

ter, that detects whether the responses in Yc correspond to

a salient region or not. We denote the result of convolving

Yc with the saliency detector filter as Ys, and it encodes the

saliency prediction information at a resolution of ms × ns.

The filter of the convolutional layer for saliency prediction

is of size 1 × 1. This yields the same spatial resolution as

Yc, i.e. ms × ns = 37 × 50. Increasing this size does not

improve the accuracy because the receptive field of the neu-

rons of Yc capture enough context for saliency prediction.

The 1×1 filter of the convolutional layer may select and dis-

card which objects parts or patterns detected by the DNN

are useful for saliency prediction. In the experiments, we

visualize the patterns in the DNN that are used for saliency

prediction.

Finally, to obtain the saliency map, we resize the re-

sponses of Ys with a linear interpolation to match the im-

age size, and we scale it to take values between 0 and 1.

Predicting the saliency map at the spatial resolution of Ys

is effective, but also, it reduces the computational burden

at training time because the number of neural responses to

process from Ys is much lower than the image size.

A common practice of saliency prediction models is to

use information at multiple image scales to improve the ac-

curacy, e.g. [1, 8, 11, 14, 16, 30]. We now extend the DNN

to capture multi-scale information.

Stimuli Human Fine Coarse Fine+Coarse

Figure 2: Saliency prediction with multiple image scales.

The multi-scale DNN can detect salient regions of differ-

ent sizes. In the fine scale, the DNN detects salient regions

of small size, while in the coarse scale, the center of large

salient regions stands out. Images are from OSIE dataset.

Extension to Multi-scale. We use the input image at dif-

ferent scales obtained by downsampling the image. Each

scale is processed by a DNN, and the neural responses of

all DNNs are used to predict the saliency map with the con-

volutional layer we previously introduced. We use I to de-
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note the input image, and I
′ the image I downsampled by

half. Although in principle more scales can be added, we

find adding more scales does not further improve perfor-

mance. We define Y
′

c
as the neural response of the image

at the coarse scale, I′. Thus, we have one DNN to generate

Yc (the blue cuboid in Figure 1) and another to generate

Y
′

c
(the yellow cuboid in Figure 1). These two DNNs share

the same filters, and hence, the neurons are tuned to detect

the same patterns but at a different scale.

Note that Y′

c
has half the spatial resolution of Yc, i.e.

(mc/2) × (nc/2) × dc. To combine the responses of Yc

and Y
′

c
for saliency prediction, we upsample Y

′

c
with a

linear interpolation to match the same spatial resolution as

Yc. The combination of the responses of both Yc and

the resized Y
′

c
yield a number of neural responses equal

to mc × nc × (2 · dc). There are two neurons tuned for the

same pattern that act at two different scales. Finally, these

neural responses feed the 1×1 convolutional layer that gen-

erates the saliency map Ys.

The effect of multi-scale is qualitatively illustrated in

Fig. 2. It can be seen that by combining features from both

scales, our saliency map correctly highlights salient regions

of different sizes.

2.2. Learning with Saliency Evaluation Objectives

In our architecture we have integrated the saliency pre-

diction into the DNN, and the parameters can be learnt with

back-propagation [31]. We initialize the parameters of the

DNN to the pretrained parameters in ImageNet [6], and

then, we learn end-to-end the parameters of all the archi-

tecture. In the experiments, we show that adapting the fea-

tures of the DNN to saliency prediction yields significant

improvement over directly using the off-the-shelf features.

Another advantage of our learning scheme is that back-

propagation can be used to optimize the saliency evaluation

metric. Previous works use objective functions that do not

directly correspond to the evaluation metric. Typically, a

Support Vector Machine (SVM) is used [21, 33, 39, 40].

Pixels in the saliency map are evaluated using a ground-

truth label that indicates whether the pixel is salient or non-

salient. Back-propagation allows directly optimizing the

saliency metrics, which may better guide the learning to-

wards the goal of saliency prediction.

There is a plethora of saliency evaluation metrics avail-

able that are complementary to each other. The Area Under

the Curve (AUC) [13] is the area under a curve of true pos-

itive rate versus false positive rate for different thresholds

on the saliency map, and the shuffled-AUC (sAUC) [36]

alleviates the effects of center bias in the AUC score. The

Normalized Scanpath Saliency (NSS) [28] computes the av-

erage value at all fixations in a normalized saliency map.

Similarity (Sim) [20] calculates the sum of minimum val-

ues of saliency distribution and fixation distribution at each

point. Finally, the saliency map can be compared with the

human fixation map with the Linear Correlation Coefficient

(CC) [19] and the Kullback-Leibler divergence (KLD) [36].

We use 4 evaluation metrics as objective functions of

the back-propagation, which are NSS, CC, KLD and Sim.

These evaluation metrics have a derivative that can be used

by the gradient descend of back-propagation. We do not

use AUC and sAUC as objective for back-propagation since

the derivative is more involved than for the other evaluation

metrics. In the experiments we show that the objective func-

tion of KLD achieves a good compromise in all evaluation

metrics we use.

3. Experiments

We implement our models within the MatConvNet [38]

framework. After describing the experimental settings, we

analyze the different components of our architecture, and

compare our method with the state-of-the-art.

3.1. Experimental Setup

Datasets. We use 6 popular datasets that differ in terms of

image content and experimental settings to ensure a com-

prehensive comparison. The descriptions of these datasets

are listed below:

- OSIE [40]: This dataset contains 700 images with anno-

tated objects and attributes content. A total number of 15
subjects free-viewed the images for 3 seconds.

- MIT1003 [21]: This dataset includes 1003 images with ev-

eryday indoor and outdoor scenes. All images are presented

to 15 observers for 3 seconds.

- NUSEF [29]: Most images contain emotionally affective

scenes and objects. We use 714 images available, each

viewed on average by 25 subjects for 5 seconds.

- FIFA [4]: Most images in this dataset contain faces as

dominant objects. 8 subjects free-viewed a total number of

200 images for 2 seconds.

- PASCAL-S [25]: This recent dataset contains 850 images

from the PASCAL VOC 2010 dataset [9] with eye fixations

from 8 viewers, as well as salient object labeling.

- Toronto [2]: It contains 120 images and fixation data from

20 viewers. A large proportion of the images do not contain

salient objects that attract attention, which makes it interest-

ing to evaluate the DNN pretrained in object recognition.

Evaluation Metrics. We evaluate the saliency map with

the metrics previously introduced in Sec. 2.2. For most ex-

periments, we use the implementation of sAUC in [1] to

compare the model performance.

A standard practice for evaluation is to Gaussian blur the

saliency maps and find the optimal blurring of the saliency

map for each model. We use a Gaussian kernel with a stan-

dard deviation from 0 to 2 degrees of visual angle with a

step size of 0.25. The evaluation scores we report are ob-

tained as the highest scores obtained with blurring. The
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ground-truth fixation maps are constructed by convolving

a Gaussian kernel with a standard deviation of one degree

of visual angle [7] over the fixation locations of all subjects.

Training and Testing. We use OSIE [40] dataset to train

the parameters of our architecture, even if we test in another

dataset. We observed that learning in this dataset leads to a

better performance than in MIT1003 dataset. We divide the

OSIE dataset into 450 training images, 50 validation images

and 200 test images. We learn the parameters of the DNN

on the training images with stochastic gradient descent with

momentum. We use only one image in each iteration since

we did not get improvement from mini-batch. We use mo-

mentum of 0.9 and a weight decay of 0.0005. The learning

rate is fixed at 10−5 for AlexNet, VGG-16, and 5×10−5 for

GoogLeNet. We stop learning when the objective function

does not improve on the validation set. We trained the net-

work in a single NVIDIA Titan GPU, and it took approxi-

mately between 1 hour to 2 hours depending on the network

used. We tried to augment the training data by flipped and

rotated images, but this did not yield noticeable improve-

ment. During testing, each input image is resized to two

scales (800 pixels and 400 pixels in its largest dimension).

It takes 0.27s to predict one saliency map with GPU.

3.2. Analysis of the Architecture

We analyze the components of our architecture, in the

OSIE dataset.

Learning Objective. Recall that we can learn the DNN

using different saliency evaluation metrics, i.e. KLD, CC,

NSS, Sim (Sec. 2.2). According to Fig. 3, a model op-

timized for a particular metric generally achieves the best

score in that metric among models using the same DNN.

In the rest of the experiments, we use the parameters learnt

with the KLD objective, since the KLD obtains a good com-

promise among all the evaluation metrics, and the best per-

formance for the sAUC and AUC scores, which are used in

most benchmarks.

Multi-scale. In Fig. 4, we compare the results for architec-

tures that use one or the two scales, and when we do not do

fine-tuning (we fix all weights in the DNN and only train

the last convolutional layer with back-propagation). Re-

sults show that using information at multiple scales boosts

the performance. This performance gain is more evident for

AlexNet and VGG-16 model, but much less for GoogLeNet,

possibly because GoogLeNet already uses multi-scale in-

formation in its inception layers [35].

Fine-tuning. Also in Fig. 4, we can see that fine-tuning

the DNN achieves superior performance than without fine-

tuning, which shows the advantage of adapting the DNN to

saliency prediction. We also report results combining the

DNN features with a linear SVM using the common proce-

dure in the literature [21]. The SVM baseline is learnt in

the same dataset as our architecture, and uses the features
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Figure 3: Comparison of the learning objectives. Each

plot corresponds to a different evaluation metric, i.e. sAUC,

AUC, KLD, CC, NSS and Sim. The four color bars are

DNNs trained with KLD, CC, NSS and Sim evaluation met-

ric objectives. Lower KLD means better performance, and

for other metrics a higher score means better performance.
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Figure 4: Results on multi-scale and fine-tuning. The sAUC

scores for DNNs with one or two scales, and with and with-

out fine-tuning are reported. The SVM is uses the DNNs

features at the fine scale. Fixed means without fine-tuning.

of the DNN at the fine scale. We can see in Fig. 4, that

the fine scale without fine-tuning already improves over the

SVM baseline. This shows the effectiveness of optimizing

saliency metrics rather than the SVM objective.

Note that before fine-tuning, GoogLeNet performs bet-
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Figure 5: Histogram of the weights of the convolutional fil-

ter for saliency prediction. The histogram is compared be-

fore the fine-tuning, and after. Larger absolute weight value

means bigger contribution to saliency prediction.

ter than the other DNN, but after the fine-tuning, the perfor-

mance of VGG-16 dramatically improves and becomes the

best model. Since VGG-16 is the DNN that performs best

in this task, we use it in the rest of the experiments.

Visualization. We analyze the changes produced by the

fine-tuning to the DNN representations. In Fig. 5, we show

the effect of fine-tuning to the histogram of the filter weights

in the last convolutional layer. Before the fine-tuning, the

filter discards many features of the DNN by setting their

weight to 0, and after the fine-tuning, more features are

selected. This suggests that fine-tuning effectively adapts

the DNN representation for saliency prediction. In order to

visualize the change in the neural responses after the fine-

tuning, we use the neurons that are selected by the convolu-

tional layer with the 3 highest and lowest weight values,

which correspond to the neurons that the filter considers

more informative for saliency prediction. Note that the low-

est weight values are negative, and encourage suppressing

the non-salient regions. The visualization is done by dis-

playing the receptive fields in the image that made the neu-

rons respond more strongly in the training set, as in [41]. In

Fig. 6 and 7, we visualize the change produced by the fine-

tuning on the 3 neurons with highest and lowest wight value

before the fine-tuning, respectively. Also observe that the

neurons with highest weight value remain very similar after

the fine-tuning (Fig. 6), since they already encode semantic

content that may be encoded in the DNN for object recogni-

tion. We can see the opposite for the lowest weights, since

the same neuron responds to different patterns after the fine-

tuning (Fig. 7). The patterns after the fine-tuning have the

appearance of non-salient regions without any clear seman-

tic meaning, which may explain why the DNN for object

recognition do not encode them initially.

Before Fine-tuning

After Fine-tuning

Figure 6: Visualization of the three neurons with highest

weight before the fine-tuning. Each neuron is visualized by

displaying the receptive fields of the images that produced

the highest response of the neuron. Each column visualizes

the same neuron before and after fine-tuning.

Before Fine-tuning

After Fine-tuning

Figure 7: Visualization of the three neurons with lowest

weight before the fine-tuning. The same visualization as in

Fig. 6. Each column visualizes the same neuron before and

after fine-tuning.

3.3. Comparison with Stateoftheart

We now compare our best-performed model (multi-scale

VGG-16, learnt with KLD as objective) with the state-of-

the-art in different datasets.

Comparison on Public Eye Tracking Datasets. We

compare our method with 14 saliency prediction mod-

els, which are BMS [42], Adaptive Whitening Saliency

(AWS) [11], Attention based on Information Maxi-

mization (AIM) [2], RARE [30], Local and Global

saliency (LG) [1], eDN [39], Judd’s model [21], im-

age Signature Saliency (SigSal) [15], Context-Aware

Saliency (CAS) [12], Covariance-based Saliency (Cov-

Sal) [8], multi-scale Quaternion DCT (∆QDCT) [32],

Saliency Using Natural statistics (SUN) [43], Graph-Based

Visual Saliency (GBVS) [14], and Itti’s model (ITTI) [16]
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Figure 8: Comparison to state-of-the-art in 6 datasets. We report the sAUC scores of different saliency models under optimal

blurring on 6 datasets. The red line indicates the Human Inter-Observer (IO) score. The models are arranged from left to

right in ascending order of average sAUC score on all datasets.

on 6 datasets. Many of them are recently published mod-

els that have shown top performance on saliency evalua-

tion datasets. We use the recommended parameter settings

provided by the authors. For models with explicit center-

bias, we disable their center-bias for a fair comparison, and

this improves their sAUC score. We also report the Human

Inter-Observer (IO) score [1]. For a given image the fixa-

tion maps from all subjects except one are used to predict

the eye fixations of the discarded subject. The score is av-

eraged over all images and all subjects to give the IO score.

Fig. 8 shows that our model outperforms all the meth-

ods in the 6 datasets by a substantial margin. BMS achieves

the second-best performance on all datasets except FIFA.

In the datasets with more objects, the gap between our re-

sults and the second best is more remarkable. For instance,

in the popular MIT1003 dataset, our method achieves 0.76
sAUC while BMS achieves 0.69. In the Toronto dataset,

since the images have fewer objects that attract eye fixa-

tions, the performance gap between our prediction and oth-

ers is relatively smaller, but still noticeable.

We also compare our model with a very recently pub-

lished saliency model based on DNN [26]. We compare the

saliency maps in MIT1003 and Toronto, since these are the

only two datasets that we both use the same testing images.

In MIT1003, the new model obtains a sAUC score of 0.71,

which outperforms BMS (0.69) but is much lower than the

sAUC score of our model (0.76). In Toronto, the new model

obtains an sAUC score similar to BMS (0.72), while our

model obtains 0.75. In addition, our inference time (0.27s)

Evaluation

Metric
Gauss S-o-a Ours

Infinite

Humans

Relative

Advance

AUC-Judd 0.78 0.84 Deep Gaze 0.87 0.91 42.9%

AUC-Borji 0.77 0.83 Deep Gaze 0.85 0.87 50.0%

sAUC 0.51 0.68 AWS 0.74 0.80 50.0%

NSS 0.92 1.41 BMS 2.12 3.18 40.1%

CC 0.38 0.55 BMS 0.74 1 42.2%

Similarity 0.39 0.51 BMS 0.60 1 18.4%

EMD 4.81 3.33 OS 2.62 0 21.3%

Table 1: Results in the MIT300 Online Benchmark. 7 dif-

ferent evaluation metrics are used to compare the results of

state-of-the-art and our model.

is much faster than theirs (14s) even our network is larger,

due to the efficiency of our fully convolutional architecture

compared to their patch-by-patch scanning strategy.

Results on MIT300 Online Benchmark. We also sub-

mitted our results to the MIT300 benchmark [3]. This

benchmark contains 300 natural images with eye fixations

from 39 subjects. The eye fixations are not public avail-

able to prevent fitting to the test set. To date, 41 saliency

models are compared using 7 standard evaluation metrics.

Details of these metrics and comparisons can be found

in [3]. In Table 1, we report our results, together with pre-

vious state-of-the-art for each metric, and two baselines, a

Gaussian centered in the image, and the Infinite Humans

score which is the maximum achievable score computed

by using infinite observers to predict fixations from a dif-

ferent set of infinite observers. Since infinite observers

are not available in practice, the benchmark team [20] use

extrapolation to find the value of the score as a limit as
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Figure 9: Qualitative Results. We compare our results with 14 saliency prediction models, namely BMS [42], AWS [11],

AIM [2], RARE [30], LG [1], eDN [39], Judd [21], SigSal [15], CAS [12], CovSal [8], ∆QDCT [32], SUN [43], GBVS [14],

and ITTI [16]. Our saliency maps are very localized in the salient regions compared to the rest of the methods.

the number of observers goes to infinity. Before our re-

sults, it was unclear which method was performing best

since BMS [42] ranked top for NSS, CC and Similar-

ity, Deep Gaze [24] ranked top for AUC-Judd and AUC-

Borji, AWS [11] for sAUC, and Outlier Saliency (OS) [5]

for Earth Mover’s Distance (EMD) [3]. Our model out-

performs previous state-of-the-art under all metrics, with-

out the need of center bias. To give a clear idea of how

much our results relatively advance the state-of-the-art ac-

curacy to perfect prediction, we report the improvement

as (Sours − Sstate-of-the-art)/(Shuman − Sstate-of-the-art).
Thus, a 50% improvement means that our results are half

way between current state-of-the-art and perfection.

Qualitative Results. In Fig. 9, we compare the saliency

maps of all the models. Our method can effectively detect

salient regions with semantic content like faces (row 2, 6

and 7), human (row 3 and 5), animals (row 1, 2 and 6) and

text (row 2). When there is no semantic object that attracts

fixations (row 8), our model can still perform reasonably

well, indicating that some low-level information may be

captured by our DNN. Observe that our architecture can de-

tect salient regions in different sizes (row 1, 4 and 8). Also,

note that our saliency maps are very localized in the salient

regions compared with other methods, even when images

have cluttered backgrounds (row 1 and 3).

Limitations. Fig. 10 shows some typical failure cases. The

first row shows that our model does not perform well in

a synthetic image, while models like ITTI that are based

entirely on low-level cues may perform a bit better. The

second row shows that when there is no explicit object in

the image that may attract attention, the eye fixations tend

to be biased toward image center, which our model fails to

predict. Note that eDN, which is also based on DNN, does

Stimuli Human Ours eDN ITTI

Figure 10: Example of failure modes. The first row shows

a synthetic image and the second row shows an image with

plain natural scenes. Images are selected from MIT1003

and Toronto dataset.

not predict fixations better than our model on these images.

4. Conclusions

Recent studies have suggested the importance of seman-

tic information in predicting human fixations. To reduce

the semantic gap between model prediction and human be-

havior, we re-architect DNNs for object recognition to the

task of saliency prediction. We fine-tune the network with

saliency metric as an objective function, and use informa-

tion at multiple scales. This leads to a saliency prediction

accuracy that significantly outperforms the state-of-the-art.
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