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Abstract

In this paper, we revisit the classical perspective-n-point
(PnP) problem, and propose the first non-iterative O(n) so-
lution that is fast, generally applicable and globally opti-
mal. Our basic idea is to formulate the PnP problem into
a functional minimization problem and retrieve all its sta-
tionary points by using the Gröbner basis technique. The
novelty lies in a non-unit quaternion representation to pa-
rameterize the rotation and a simple but elegant formula-
tion of the PnP problem into an unconstrained optimization
problem. Interestingly, the polynomial system arising from
its first-order optimality condition assumes two-fold sym-
metry, a nice property that can be utilized to improve speed
and numerical stability of a Gröbner basis solver. Experi-
ment results have demonstrated that, in terms of accuracy,
our proposed solution is definitely better than the state-of-
the-art O(n) methods, and even comparable with the repro-
jection error minimization method.

1. Introduction
Given n (n ≥ 3) 3D reference points in the object frame-

work and their corresponding 2D projections, to determine

the orientation and position of a fully calibrated perspec-

tive camera is known as the perspective-n-point (PnP) prob-
lem [9]. It has widespread applications in augmented re-

ality, incremental structure-from-motion, robot localization

and so on. Considering its importance, there is no surprise

that, in the past few decades, a huge amount of works have

addressed this problem. Unfortunately, to the best of our

knowledge, there does not exist a fast (preferably, real-time)

and globally optimal solution, which is accurate and appli-

cable to a PnP problem with any point number n (n ≥ 3),

any 3D point configuration and arbitrary camera pose.

1.1. Literature Review

The minimal P3P problem has been systematically inves-

tigated in the literature, such as [5] and the recent work [12].

In practice, a P3P solution is usually used in combination

with RANSAC [4] to remove outliers. Considering that da-

ta redundancy generally contributes to improving accuracy,

most of existing works on PnP focus on overconstrained
cases with more than three points. To properly accoun-

t for the latest progress, we would like to roughly catego-

rize them into two groups - the multi-stage methods and the
direct minimization methods.
Typically, the multi-stage methods first estimate the co-

ordinates of some (or all) points in the camera framework,

and transform the PnP problem into the 3D-3D absolute

pose problem, for which there exist closed-form solution-

s [21]. There are a few works, like [11], dedicated to P4P

or P5P, whose application is limited due to the restriction

of point number. To relax this restriction, two linear solu-

tions were presented in [18] and [1], with respective com-

putational complexity O(n5) and O(n8), which are, at least
in theory, applicable to general PnP with n ≥ 4. However,
they are inaccurate when n is small, due to ignoring some
nonlinear constraints. On the contrary, when n is large, their
speed is slow because of their high complexity.

Lepetit et al. [14] introduced several virtual control
points to represent the 3D reference points, and successful-

ly reduced the complexity to O(n). As pointed out in [15],
its accuracy is low for slightly redundant cases with n = 4
or n = 5, due to its underlying linearization scheme. To im-
prove accuracy, Li et al. [15] proposed another non-iterative
O(n) solution, which estimates the coordinates of two spe-
cial endpoints and ignores only one nonlinear constraint.

Without estimating point coordinates, the well-known

direct linear transformation (DLT) method [9] is also a

multi-stage method, since it first determines the projec-

tion matrix and then extracts the calibration parameters and

the camera pose. In the scenario of a calibrated camera,

the DLT method is quite inaccurate due to overlooking the

known calibration parameters.

To sum up, all the aforementioned multi-stage methods

are usually poor in accuracy, due primarily to ignoring some

nonlinear correlation. This is especially true for a PnP prob-
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lem with a few points, in which the accuracy loss can hardly

be compensated by data redundancy. In addition, without a

clearly defined objective function, these methods do not as-

sume overall global optimality, even supposing that there

exists an optimal solution at each stage.

In contrast, the direct minimization methods are charac-
teristic of minimizing a properly defined error function, ei-

ther in the image space or the object space, while taking into

consideration all nonlinear constraints. It is widely known

that minimizing the reprojection error is the best criterion,

which leads to a challenging nonconvex fractional program-

ming problem. Olsson et al. [17] proposed a branch-and-
bound method to retrieve its global optimum. Unfortunate-

ly, it can rarely be used in practice due to its tremendous

computational cost.

As a trade off, some direct minimization methods [6,16]

minimize instead certain algebraic error functions via local

optimization techniques. For example, Lu et al. [16] devel-
oped an orthogonal iteration method to directly minimize

the object space error, while Garro et al. [6] offered an alter-
nating minimization method to minimize an algebraic error

defined in the image space. However, these local optimiza-

tion based methods suffer from the risk of getting trapped

into local minimum, and provide poor results when they in-

deed do so. Schweighofer and Pinz [19] partially addressed

the problem of multiple local minima with a planar target,

but failed to provide a general solution.

The work [20] tried to avoid local minimum by relax-

ing the PnP problem into a semidefinite programme (SDP).
The major drawback lies in that the relaxation is usually not

tight. It is also inappropriate for real-time applications due

to the dependence on an off-the-shelf SDP solver, in spite

of its O(n) complexity.
The above direct minimization methods [6, 16, 17, 20]

share another shortage that they return only a single solu-

tion, which might not correspond to the true camera pose in

case of multiple solutions.

To resolve these drawbacks, Hesch and Roumeliotis [10]

developed a direct least square (DLS) method with com-

plexity O(n), in which all stationary points are retrieved by
solving the polynomial system derived from its first-order

optimal condition via the resultant technique. Unfortunate-

ly, they parameterized rotation by using the Cayley repre-

sentation, which is degenerate in all cases of 180 degree

rotations around the x-, y- and z-axis1. The accuracy dete-
riorates seriously when the camera pose approaches these

singularities.

As pointed out in [15], in addition to the number of

points n, the configuration of the 3D reference points plays
1On the project page, Hesch and Roumeliotis provided a remedy by

solving DLS three times under different rotated 3D points. Since the com-

putational time would be tripled, this remedy is not attractive, especially

considering that DLS itself is not very fast. In addition, such a remedy

harms the theoretical elegance of global optimality.

a critical role as well. A desirable PnP solution should
be able to handle all 3D point configurations, including

the ordinary-3D, the planar and the quasi-singular (near-

planar or near-linear) configuration. However, some exist-

ing methods, like [14, 20], handle the ordinary-3D and the

planar configuration separately, thus tend to be inaccurate

in the in-between quasi-singular case. Additionally, such

works as [19] dedicate to the planar case, which are inap-

plicable to the other two configurations at all.

1.2. Overview of the Proposed Solution

In this paper, we propose the first non-iterativeO(n) solu-
tion that is fast, globally optimal and universally applicable.

Our basic idea is to formulate the PnP problem into a mini-
mization problem and retrieve all its stationary points by us-

ing the Gröbner basis technique. It is therefore a direct min-

imization method. By using a unusual non-unit quaternion

representation to parameterize rotation, we formulate the

PnP problem into an unconstrained optimization problem.

The polynomial system arising from its first-order optimal-

ity condition is simpler than using the standard unit quater-

nion parameterization. More interestingly, this polynomial

system is of odd-degree, thus assuming two-fold symmetry,

a nice property that can be utilized to improve speed and

numerical stability of a Gröbner basis solver. Being global-

ly optimal, our proposed solution successfully conquers the

problem of local optimality (or even divergence) that might

upset a local optimization based method. It is capable of re-

trieving all solutions, when multiple solutions indeed exist.

Unlike [10], our solution does not suffer from any degener-

acy of camera pose.

Experiment results have demonstrated that, in terms of

accuracy, our proposed solution is definitely better than the

examined state-of-the-art methods. Actually, although our

cost function is only algebraically meaningful, its accuracy

is even comparable to that of the reprojection error mini-

mization method. Theoretically speaking, the computation-

al complexity of our solution is O(n). However, we have
empirically observed that its computational time keeps al-

most constant even with thousands of points. Therefore, the

proposed solution is universally applicable to any PnP prob-
lem, irrespective of the 3D point configuration, the camera

pose and the number of points.

2. Mathematical Formulation

Throughout this paper, matrices, vectors and scalars are

denoted by using capital letters, bold lowercase letters and

plain lowercase letters, respectively. One exception is that

the capital letter T represents matrix or vector transpose.

All vectors are column-wise in default.
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2.1. Preliminaries of the PnP Problem

Given n 3D reference points qi =
[
xi yi zi

]T
, i =

1, 2, · · · , n, in the object reference framework, and their cor-
responding projections pi =

[
ui vi 1

]T
, the PnP problem

aims to retrieve the rotation matrix R and the translation

vector t, accounting for camera orientation and position,
respectively. Considering that the perspective camera has

been calibrated, we simply assume that the projections pi
are measured in the normalized homogeneous image coor-

dinate framework. The perspective imaging equation reads

λipi = Rqi + t, i = 1, 2, · · · , n, (1)

where λi denotes the depth factor of the i-th point.

2.2. Rotation Parameterization

A critical issue is how to parameterize the rotation matrix

R, such that the orthonormal constraint RRT = I and the
determinant constraint det(R) = 1 could be satisfied.
There are various parameterization methods for R, such

as the Euler angle, rotation axis-angle, Cayley and unit
quaternion parameterization. To facilitate global optimiza-
tion via polynomial system solving, we advocate instead the
non-unit quaternion parameterization, which is free of any
trigonometric function. Specifically, letting s = a2 + b2 +
c2 + d2, the non-unit quaternion parameterization reads

R =
1

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a2+b2−c2−d2 2bc−2ad 2bd+2ac
2bc+2ad a2−b2+c2−d2 2cd−2ab
2bd−2ac 2cd+2ab a2−b2−c2+d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

where a, b, c, d are the four unknown parameters. It is s-
traightforward to verify that the parameterization in Eq.(2)

satisfies RRT = I and det(R) = 1.
At first sight, the above parameterization is unattractive

at all. First of all, one has to make sure that s is rigorously
positive, i.e., a, b, c, d are not simultaneously zero, so as to
avoid the singularity of dividing by zero. Secondly, Eq.(2)

introduces a fractional term 1
s , which is difficult to handle.

Fortunately, we have recognized that a, b, c, d in E-

q.(2) assume scale and sign ambiguity, i.e., R(a, b, c, d) =
R(ka, kb, kc, kd), for any nonzero k. It is possible to exploit
this property to resolve the concerns on the non-unit quater-

nion representation.

2.3. The Unconstrained Minimization Problem

Since the absolute scale of a, b, c, d in Eq.(2) is arbitrary,
we can fix it by using the reciprocal of the average depth,

i.e., s ≡ 1
1
n
∑n

i=1 λi
= 1
λ̄
. Due to the chirality condition [9],

the average depth λ̄ is rigorously positive. The possibility
of dividing by zero has thus been naturally avoided.

Now we multiply 1
λ̄
at both sides of Eq.(1) and obtain the

following equation

λ̂i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ui

vi
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
rT
1

rT
2

rT
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ qi +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
t̂1
t̂2
t̂3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , i = 1, 2, · · · , n, (3)

in which λ̂i =
λi
λ̄
,
[
t̂1 t̂2 t̂3

]T
= 1
λ̄
t, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
rT
1

rT
2

rT
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a2+b2−c2−d2 2bc−2ad 2bd+2ac
2bc+2ad a2−b2+c2−d2 2cd−2ab
2bd−2ac 2cd+2ab a2−b2−c2+d2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4)

It is straightforward to recognize that

n∑
i=1

λ̂i = n
∑n

i=1 λi∑n
i=1 λi

= n. (5)

In addition, from Eq.(3), we have

λ̂i = rT
3 qi + t̂3, i = 1, 2, · · · , n. (6)

By combining Eq.(5) and Eq.(6), we can express t̂3 via

t̂3 = 1 − rT
3 (
1

n

n∑
i=1

qi) = 1 − rT
3 q̄, (7)

where q̄ represents the centroid of the 3D points.
After plugging λ̂i = 1 + rT

3 (qi − q̄) = 1 + rT
3 q̃i back into

Eq.(3), we have the following equation

(1 + rT
3 q̃i)

[
ui

vi

]
=

[
rT
1

rT
2

]
qi +

[
t̂1
t̂2

]
, i = 1, 2, · · · , n, (8)

where q̃i denotes the i-th 3D point after centralization.
Until now, we have implicitly assumed that the projec-

tions are noise-free. Due to noise, Eq.(8) could not be com-

pletely satisfied in general. Therefore, we directly minimize

the sum of the squared error as our cost function

min
a,b,c,d,t̂1,t̂2

n∑
i=1

[(1 + rT
3 q̃i)ui − rT

1 qi − t̂1]2

+

n∑
i=1

[(1 + rT
3 q̃i)vi − rT

2 qi − t̂2]2.

(9)

Although it is only an algebraic error, as will be demon-

strated in the experiment section, its accuracy is very close

to that of minimizing the reprojection error, i.e. the gold-
standard in multiview geometry [9].

Before really solving Eq.(9), we can easily project out t̂1
and t̂2 in closed-form as follows

t̂1 = ū + rT
3 (
1

n

n∑
i=1

uiq̃i) − rT
1 q̄,

t̂2 = v̄ + rT
3 (
1

n

n∑
i=1

viq̃i) − rT
2 q̄,

(10)
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in which [ū, v̄]T is the centroid of the image projections in
the normalized image coordinate system.

Now letting ααα = [1, a2, ab, ac, ad, b2, bc, bd, c2, cd, d2]T

and plugging Eq.(10) into Eq.(9), we rewrite the cost func-

tion into the matrix form

min
a,b,c,d

f (a, b, c, d) = ||Mααα||22 = αααT MT Mααα, (11)

where M is a 2n×11 matrix that can be constructed by using
pi and qi.

Eq.(11) is our ultimate optimization problem, which

does not include any trigonometric function nor any con-

straint. In addition, it suffers from no degeneracy of camera

pose, and is independent of the 3D point configuration.

2.4. Relation to Existing Works

In the previous section, we have used the non-unit

quaternion to parameterize the rotation, and fixed its scale

by using the reciprocal of the average depth. Actually, we

are able to interpret some existing works in terms of how to

fix the scale of Eq.(2).

The unit quaternion was used in [20]. It is nothing but

to fix the scale in Eq.(2) by using the unit norm constraint

a2 + b2 + c2 + d2 = 1. According to [20], the PnP problem
can be formulated into a constrained optimization problem

min
a,b,c,d

α̂ααT M̂T M̂α̂αα, s.t., a2 + b2 + c2 + d2 = 1, (12)

in which M̂ is a 2n×10 data matrix and α̂αα equals ααα after
removing the first element.

Similar to our formulation, it does not suffer from any

degeneracy. To find its global optimum, [20] used convex

relaxation techniques, which usually provide an approxi-

mate solution, rather than the guaranteed global optimum.

The Cayley parameterization was used in [10]. Through

some basic operations, one can verify that the Cayley pa-

rameterization is the same as R(1, b, c, d), that is, fixing the
scale of Eq.(2) by using a = 1. The major advantage lies

in that the polynomial system in [10] is simpler to solve, s-

ince there remain only three variables. Unfortunately, this

scheme is unstable in case of near-Cayley-degenerate ro-

tations (a ≈ 0), and inapplicable at all in case of Cayley-

degenerate rotations (a = 0).

3. Global Optimization Method
Global optimization has attracted a lot of attention in

multiview geometry, see [8] for a review. Such popular

techniques as branch-and-bound and convex relaxation are

usually time-consuming and only capable of retrieving one

(approximate) optimal solution. Here, we prefer to solve the

polynomial system of the first-order optimality condition of

Eq.(11), so as to identify all stationary points.
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Figure 1. Numerical stability of the polynomial system solvers.

The investigated solvers include the blind GB solver without utiliz-

ing symmetry (Blind GB), the GB solver using two-fold symme-

try (Symmetric GB), the Symmetric GB followed by one damped

Newton polishing step (Symmetric GB + Polish) and the resul-

tant based solver used in DLS [10]. We randomly generate 50

ordinary-3D points and simulate their noise-free projections. Fully

random, near-Cayley-degenerate and Cayley-degenerate rotations

are used in (a), (b) and (c), respectively. The horizontal axis shows

the log10 value of the absolute error between the ground-truth unit-
norm quaternion and the estimated quaternion after normalization,

while the vertical axis shows the counts over 5,000 independent

runs. The instability problem of DLS in (b) and (c) is obvious.

By calculating the derivative of Eq.(11) with respect to

a, b, c, d, the first-order optimality condition reads

∂ f
∂a

= 0,
∂ f
∂b

= 0,
∂ f
∂c

= 0,
∂ f
∂d

= 0, (13)

which is composed of four three-degree polynomials with

respect to a, b, c, d.

3.1. A Blind Gröbner Basis Solver

Although solving multivariate polynomial systems is

challenging in general, the multiview geometry communi-

ty has achieved much progress by means of the Gröbner

basis (GB) technique [3]. Kukelova et al. [13] even devel-
oped an automatic generator of GB solvers, which facili-

tates the solving of polynomial systems arising from geo-

metric computer vision problems. The basic procedure is

first to determine the Gröbner bases and the monomial bases

of the quotient ring under the graded reverse lexicographi-

cal ordering, and then to construct the elimination template

that determines which polynomials from the ideal should be

added so as to build the action matrix. Finally, the solution-

s to the original polynomial system are extracted from the

eigen-factorization of the action matrix. The readers are re-

ferred to [13] for more details on the automatic generator

and to [3] for general theories.

By using the automatic generator in [13], we have found

that the polynomial system in Eq.(13) has at most 81 so-

lutions. The size of the elimination template is 575×656,
while that of the action matrix is 81×81. The generated GB
solver takes about 37.2 milliseconds (ms).

One might be interested in solving the polynomial sys-

tem arising from the first-order optimality condition of E-

q.(12), so as to retrieve the guaranteed optimal solution(s).
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Due to the unit-norm constraint, a Lagrange multiplier has

to be introduced, thus leading to a three-degree polynomial

system with respect to five variables. The GB solver auto-

matically generated by [13] is much more complex (e.g., the
elimination template is of size 1523×1603) and thus much
slower. This verifies the advantages of our non-unit quater-

nion parameterization and our unconstrained formulation.

3.2. Utilizing Two-Fold Symmetry

By carefully investigating Eq.(11), we have further not-

ed that the polynomial system in Eq.(13) is of odd-degree.

Specifically, the polynomials in Eq.(13) include three-

degree and one-degree monomials only. It therefore as-

sumes two-fold symmetry, that is, w = 0 is a trivial solu-
tion, and, if any non-zero w is a solution, so is -w, where
w = [a, b, c, d]T . Actually, instead of 81 solutions, there
are at most 40 independent solutions to Eq.(13), which in-

dicates the complexity of the PnP problem with general n.
Very recently, Ask et al. [2] developed general tech-

niques to make use of p-fold symmetry (p = 2 in our prob-
lem) arising from someminimal problems. The basic idea is

to directly eliminate the trivial all-zero solution and careful-

ly generate new equations such that the symmetry could be

preserved. By using symmetry, the size of the elimination

template and that of the action matrix could be drastically

reduced, which in return improves computational speed and

numerical stability.

In [2], one has to solve an integer linear system to extrac-

t the symmetric solutions from the action matrix, which is

very slow. When implementing the two-fold symmetry GB

solver for Eq.(13), we have improved the solution extraction

operation by using the problem structure. We refer the read-

ers to our source code and the supplementary materials for

the implementation details. With an elimination template

of size 348×376 and an action matrix of size 40×40, our
two-fold symmetry GB solver takes about 18.5 ms, about

twice as fast as the blind GB solver. As shown in Fig.1, its

numerical stability is also stronger than the blind version.

It is worthy of mentioning that the five-variable polyno-

mial system from Eq.(12) does not assume full symmetry,

because the introduced Lagrange multiplier is always pos-

itive. Actually, Eq.(13) is the first fully symmetric system,

arising from a non-minimal problem, that we know of.

3.3. Solution Polishing and Extraction

After obtaining all stationary points of Eq.(11), we can

further improve the numerical stability by polishing them

via a single damped Newton step. Specifically, assuming

that w is a stationary point, we polish w through the updat-

ing rule w ← w − Δw. The increment Δw is determined

by Δw = (
∂2 f
∂2w + μI)−1 ∂ f

∂w , in which the damped factor μ is
chosen such that f (w − Δw) ≤ f (w).
As shown in Fig.1, the polishing strategy can drastically

improve the numerical precision, although only one damped

Newton step is used. In addition, the computational cost

is almost negligible, because the dimension of MT M in E-

q.(11) is fixed.

After the polishing step, we only retain those real and

physically feasible stationary points with positive definite

Hessian, i.e. minima. When n ≥ 6, the PnP problem has a
unique solution in general. Therefore, we choose the sta-

tionary point with smallest objective value in Eq.(11) as the

final solution.

In the slightly redundant scenarios with 4 ≤ n ≤ 5, it is
a little bit complicated. We have observed a few extreme

cases, in which two widely different stationary points have

almost the same objective value, yet the objective value of

the correct stationary point is even slightly larger. There-

fore, when 4 ≤ n ≤ 5, we return all remaining minima to

the end user, who might be able to choose the correct one

by using, e.g., motion coherence in a tracking scenario. In
the minimal n = 3 case, we use the same strategy.

4. Experiment Results

In this section, we experimentally investigate our op-

timal solution to the PnP problem, referred to as OPnP,
and compare it with the state-of-the-art solutions. For the

ordinary-3D case and the quasi-singular case, we consid-

er two multi-stage methods, including EPnP+GN together

with a few Gauss-Newton steps [14] andRPnP [15], as well
as three direct minimization based methods, including the

direct least square solution (DLS) [10], the approximate op-
timal solution by using SDP convex relaxation (SDP) [20]
and the popular iterative method by Lu et al. [16], denot-
ed by LHM in short. For the planar case, we include in-

to comparison EPnP without Gauss-Newton steps, RPnP,
DLS and SDP. In addition, the iterative method in [19]
specialized to the planar case is also considered, which is

denoted by SP+LHM. The authors of DLS [10] provided
a remedy to conquer the degeneracy of the Cayley repre-

sentation by solving DLS three times under differently ro-
tated 3D points. We include into comparison this remedy

(DLS+++) as well.
Considering that our objective function is only alge-

braically meaningful, it might be of great interest to com-

pare it with the reprojection error minimization method.

Unfortunately, the branch-and-bound method in [17] is very

slow. In addition, it returns a single solution, which might

be totally different from the ground-truth when 4 ≤ n ≤ 5.
Therefore, we minimize the reprojection error by using the

Levenberg-Marquardt method, starting from the solution(s)

from OPnP. We denote it by OPnP+LM.
We implement our OPnP solution in MATLAB2, which

2Our source code and scripts to reproduce all results are available at

https://sites.google.com/site/yinqiangzheng/.
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(a) Ordinary-3D Point Configuration
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(b) Quasi-Singular Point Configuration (Note that LHM lies outside the visible region)
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(c) Planar Point Configuration

Figure 2. Experiment results w.r.t. varying point numbers (1st and 2nd columns, δ=2 pixels) and varying noise levels (3rd and 4th columns,

n=10) in case of ordinary-3D, quasi-singular and planar point configuration, shown in (a), (b) and (c), respectively.

incorporates the symmetric GB solver and the polishing s-

trategy. We use publicly available source codes of EPnP,
EPnP+GN, RPnP, DLS (the fast version), DLS+++ and
SDP. LHM and SP+LHM are available in the toolbox pro-

vided in [15]. We run all codes in MATLAB on a notebook

with 2.8GHz CPU and 4GB RAM.

4.1. Simulated Data

We assume a virtual perspective camera with image res-

olution of 640×480 pixels and focal length 800 pixels. The
principle point lies in the image center. n 3D reference

points are randomly generated in the camera framework.

For the ordinary-3D case, these points are randomly dis-

tributed in the x-, y- and z-range of [-2,2]×[-2,2]×[4,8],
while for the quasi-singular case, they are in the range of

[1,2]×[1,2]×[4,8]. Then, we choose the ground-truth trans-

lation ttrue such that the origin of the object framework coin-

cides with the centroid of these 3D points, and rotate these

3D points by using a randomly generated ground-truth rota-

tion matrix Rtrue. We measure the absolute error in degrees

between Rtrue and the estimated rotation matrix R, which
is defined as erot(degrees) = max3k=1 acos(dot(rk

true, rk)) ×
180/π, where rk

true and rk are the k-th column of Rtrue and R,
and dot(·, ·) and acos(·) represent the dot product and arc-
cosine operation, respectively. The translation error is mea-

sured by the relative difference between ttrue and t defined
as etrans(%) = ||ttrue − t||/||t|| × 100.

4.1.1 Varying Point Numbers and Noise Levels

We first vary the point number n from 4 to 15, and add zero-
mean Gaussian noise with fixed deviation δ=2 pixels onto
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Figure 3. Running time w.r.t. varying number of points. A close-

up is shown at the right.

the image projections. At each n, 500 independent test sets
are generated. We present the average rotation and transla-

tion error in the 1st and 2nd column of Fig.2.

Then, we fix the point number n to be 10 and vary the
noise deviation level δ from 0.5 to 5 pixels. At each noise
level, we run 500 independent trials and report the average

rotation and translation error in the 3rd and 4th column of

Fig.2. More results with the median errors are shown in the

supplementary material.

From Fig.2, we can observe that the two representative

multi-stage methods EPnP+GN (EPnP in the planar case)
and RPnP are not accurate enough, even in the presence

of redundant correspondences (e.g., n=10) and moderate
noise. The major reason lies in their underlying approxi-

mation schemes. However, this does not necessarily mean

that any direct minimization method is accurate. For exam-

ple, due to possible local optimum, the local optimization

based methods LHM and SP+LHM tend to be inaccurate,

especially when n is small. The convex relaxation in SDP
might not be tight. As expected, DLS is inaccurate on the
average, due to the singularities of the Cayley parameteriza-

tion. Although the remedy in DLS+++ is effective to avoid
degeneracy, its computational time would be tripled.

Some existing methods are sensitive to the point config-

uration. For example, EPnP+GN and LHM are much less

accurate in the quasi-singular case than in the ordinary-3D

case, while SDP andEPnP deteriorate drastically in the pla-
nar case.

As shown in Fig.2, OPnP has definitely better accu-

racy than the examined state-of-the-art methods (excep-

t DLS+++), irrespective of the point configuration and
the point number. Being an algebraic error based method,

it is even comparable with the reprojection error based

methodOPnP+LM. This is understandable. As pointed out
by Hartley [7], minimizing a reasonably defined algebra-

ic error might provide accurate results, as long as all con-

straints are exactly enforced and data are properly normal-

ized. Our OPnP solution exactly handles the challenging
rotation constraint and uses centralized 3D points and im-

age projections (Eq.(8) and Eq.(11)), which serves as data

normalization in a certain sense.
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Figure 4. The mean rotation error (left) and the mean translation

error (right) w.r.t. varying noise levels in the minimal n=3 case.

4.1.2 Computational Time

The complexity of solving the polynomial system in Eq.(13)

is O(1). Due to the matrix multiplication of MT M in E-

q.(11), the overall complexity of OPnP is O(n). We are
interested in how it compares with existing O(n) solutions,
including EPnP+GN, RPnP, DLS and SDP.
We vary n from 4 to 2004. For each n, we conduct 500 in-

dependent tests and report the average running time in mil-

liseconds (ms) in Fig.3. We can observe that DLS and S-
DP are not fast enough for real-time applications even with
moderate n. In contrast, our OPnP takes about 20 ms even
in the presence of thousands of points. This is due primarily

to the vectorization implementation in OPnP, which is not
so straightforward in the process of implementating DLS.
Although EPnP+GN and RPnP are faster when n is not
extremely large (e.g., n ≤ 1000), our OPnP solution is still
very competitive, especially considering its high accuracy

and general applicability.

4.1.3 Comparison with the P3P Solver

As a general solution, OPnP is not designed to defeat exist-
ing minimal P3P solutions, like [12]. However, if one hap-

pens to encounter a P3P problem, OPnP is still applicable.
Here, we compare OPnP with the prominent P3P solution
in [12]. We vary the noise level from 0 to 5 pixels and show

the mean rotation and translation error over 500 indepen-

dent trials in Fig.4, from which we can see that OPnP has
the same accuracy as that of [12].

4.2. Real Images

We have also tested our OPnP solution on real images.
We first establish tentative correspondences by matching

SIFT points between the input image and the reference im-

age. After removing outliers by RANSAC, we estimate the

camera pose and augment the input image by using the pro-

jection of the model contour. As shown in Fig.5, our OPnP
solution offers visually pleasing results.

5. Conclusion
We have revisited the PnP problem and proposed the first

non-iterative O(n) solution that is fast, general and globally
optimal. Our contribution is to parameterize the rotation by
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Figure 5. Experiment results using a 3D box (1st row) and a planar book cover (2nd row). In each row, the first image is the reference, for

which we have constructed a model. The remaining four images are the input ones, which have been augmented with the projected contour

by using the pose from our OPnP solution.

using non-unit quaternion and formulate the PnP problem
into an unconstrained optimization problem. Surprisingly,

the polynomial system arising from its first-order optimality

condition is of odd-degree, thus assuming two-fold symme-

try, a nice property that can be utilized to improve speed and

numerical stability of a Gröbner basis solver. As verified by

experiment results, even with a few point correspondences,

our proposed solution is quite accurate, irrespective of the

point configuration and the camera pose. In addition, the

problem scale would not pose any difficulty, since its com-

putational time keeps almost unchanged as the point num-

ber increases (up to a few thousands).
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