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Abstract

Facial expressions are dynamic events comprised of
meaningful temporal segments. A common approach to
facial expression recognition in video is to first convert
variable-length expression sequences into a vector repre-
sentation by computing summary statistics of image-level
features or of spatio-temporal features. These represen-
tations are then passed to a discriminative classifier such
as a support vector machines (SVM). However, these ap-
proaches don’t fully exploit the temporal dynamics of fa-
cial expressions. Hidden Markov Models (HMMs), provide
a method for modeling variable-length expression time-
series. Although HMMs have been explored in the past for
expression classification, they are rarely used since classi-
fication performance is often lower than discriminative ap-
proaches, which may be attributed to the challenges of esti-
mating generative models.

This paper explores an approach for combining the mod-
eling strength of HMMs with the discriminative power of
SVMs via a model-based similarity framework. Each exam-
ple is first instantiated into an Exemplar-HMM model. A
probabilistic kernel is then used to compute a kernel ma-
trix, to be used along with an SVM classifier. This paper
proposes that dynamical models such as HMMs are ad-
vantageous for the facial expression problem space, when
employed in a discriminative, exemplar-based classifica-
tion framework. The approach yields state-of-the-art results
on both posed (CK+ and OULU-CASIA) and spontaneous
(FEEDTUM and AM-FED) expression datasets highlight-
ing the performance advantages of the approach.

1. Introduction
Automatic facial expression recognition (AFER) enables

machines to understand a form of human behavior, and can
be used towards building intelligent systems [4, 11, 12]. Re-

search efforts in the last decade have led to significant im-
provements in AFER and have also opened new research av-
enues [4]. In particular AFER research is transitioning from
expression recognition in images [21, 15] to recognition in
videos [20, 29]. Image based methods, sometimes referred
to as static approaches, utilize visual features from a snap-
shot (such as the apex expression in a sequence [29, 24])
for predicting facial expressions [20, 15]. In image-based
approaches, expression dynamics are not explicitly incor-
porated in the features or in the classifier, and instead are
analyzed in the time series of the output. In addition, image-
based approaches often assume temporal segmentation of
facial expressions for training. Since facial expressions are
dynamic events, video based approaches that incorporate
dynamics earlier, in the features or in the model, may have
an advantage over image-based approaches, and have been
shown to outperform their image based counterparts on sev-
eral AFER problems [9, 26].

Video based approaches can be roughly categorized into
space-time and sequential approaches. In space-time tech-
niques, localized features (in space and time) such as Bag
of Words (BoW) [21], fiducial point positions [18, 8], and
LBPTOP [29], are first extracted across the entire video.
This is followed by applying spatio-temporal pooling op-
erations (such as average or maximum [20]) over the en-
tire video [8] or fixed grids [29] to obtain a fixed length
vector representation [20]. These fixed-length vectors are
then passed to a classifier. Owing to the use of discrimina-
tive classifiers such as Support Vector Machines (SVM), we
shall refer to these approaches as Discriminative space-time
(Disc-ST) methods. Disc-ST methods can extend image-
based features to video based methods by summarizing the
per-frame features over the entire video using summary
statistics [20]. This is known as pooling across the temporal
dimension. Although Disc-ST methods such as LBPTOP
are used frequently for AFER, we highlight two inherent
issues that can result in a performance loss. These are:
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1. Discriminative power: Pooling features across the
entire video (or pre-defined grids) works well for
pre-segmented video clips. However, the approach
can lack discriminative power for unsegmented video,
which can contain more than one expression as well
as neutral periods. For instance the video clip shown
in Figure. 1, is composed of angry expression segment
as well as neutral expression. Since the final features
summarize the entire video, the performance might de-
grade when some sub-segments are non-informative.
For the problem of pain classification in unsegmented
videos, Sikka et al. [20] showed that Disc S-T ap-
proaches yielded a lower performance than methods
utilizing information from task specific sub-segments.

2. Temporal alignment: Facial expression in a video
can be characterized as a dynamic event that passes
through several states. A recognition pipeline would
ideally match corresponding states, which requires
temporal alignment between sequences [9]. A fixed
feature pooling strategy ignores this correspondence,
and doesn’t capture temporal relationships between
these states.

Sequential approaches [3, 24, 19] present an alternate strat-
egy for analyzing facial expressions in videos. Such models
first convert a video into a sequence of observations at reg-
ular intervals and then analyze the sequence for presence of
action-specific features and their dynamics. This work fo-
cuses on Hidden Markov Models (HMMs) that can describe
a facial expression as a dynamic event comprising of sev-
eral sub-events (apex, onset and offset) with specific tem-
poral relationships between them [22]. Since a latent state
variable is associated with each observation, HMMs natu-
rally define a temporal segmentation of the video [22, 3].
The training routine of HMM consists of estimating class-
conditional probability distributions for each class. A test
video is then classified into the class that corresponds to
maximum posterior probability.

Because HMMs offer a form of temporal segmentation
and alignment, HMMs provide modeling advantages that
may lead to better classification performance than Disc-
ST methods for AFER. However HMMs, being genera-
tive models, are often weaker classifiers than discrimina-
tive models since estimating probability distributions is a
harder problem than solving the classification problem di-
rectly [14]. As a result, generative HMMs generally have
a lower performance compared to Disc S-T approaches
[9, 24], and are seldom used despite their modeling capabil-
ities. A possible solution towards overcoming the disadvan-
tages of HMMs is to estimate the model parameters within
a discriminative learning framework [1, 16]. Approaches
based on this idea, such as Hidden Conditional Random
Fields, have previously been used for AFER [16]. This

paper follows an alternative solution that focuses on esti-
mating similarity kernels for probability distributions [7, 6].
Such approaches allow the possibility to measure meaning-
ful distances between probabilistic models describing non-
vectorial data.

We argue that when embedded in a discriminative classi-
fication framework based on probabilistic kernels, dynam-
ical models such as HMMs may be effective for the facial
expression problem space. An approach from the machine
learning literature, generative kernels, combines the mod-
eling advantages of HMMs with the discriminative advan-
tages of SVMs in a principled fashion in an exemplar (or
similarity) based classifier [2, 7]. Each example is first ab-
stracted into an individual HMM, which models the spatio-
temporal characteristics specific to that example. A dis-
tance metric, referred to as a probabilistic kernel [6, 7], is
then used for computing distances between two Exemplar-
HMMs. The probabilistic kernel can also be visualized as a
distance between two data points lying on some non-linear
manifold of HMM models. These distances are then used
as an input to a kernel SVM. In this work we employed the
Probabilistic Product Kernel (PPK) [7] since it provides a
closed-form solution for HMMs and can also be interpreted
as estimating distances between the temporal segments (or
states) of two videos while taking into account the transition
probabilities. Exemplar-HMMs with probabilistic product
kernels have been shown to be effective for clustering mo-
tion capture data [7] and recognizing handwritten words
[17]. Here we explore this class of models in the problem
space of facial expression recognition in video. We shall
refer to this approach as Exemplar-HMMs.

The performance advantage of our approach was exhib-
ited through an evaluation on both posed and spontaneous
facial expression datasets. The AFER problems in these
datasets ranged from predicting basic emotions to predict-
ing whether a commercial presented over the internet was
liked. On each of these AFER problems, our approach
achieved state-of-the-art results compared to its Disc-ST
counterparts and also in comparison to recently proposed
AFER algorithms that exploit facial expression dynamics.

2. Related Work
This work is motivated by the idea of using model-based

similarity for measuring distances between non-vectorial
data such as time-series or sets of vectors [7, 2, 6, 17]. The
distances are computed by (i) mapping each vector set into a
probability distribution, and (ii) using a probabilistic mea-
sure to compute distances between example specific mod-
els. Availability of distances between examples allows one
to define a kernel and use discriminative classifiers such as
SVMs. The primary benefit underlying these approaches is
the possibility of including example-specific structural in-
formation during classification. This hybrid discriminative-



Figure 1: Shows a facial expression video modeled via an
HMM, where hidden states (shown on top) are assigned to
each observation, while forming a Markov Chain. It depicts
that the HMM modeling is able to represent the video as
comprised of two distinct sub-events (neutral and apex).

generative framework has shown its advantages over holis-
tic feature based approaches on several problem such as
handwriting recognition [17], gene classification [7], and
shape recognition [2], among others.

Previous work has identified the importance of exploit-
ing spatio-temporal structure for classifying facial expres-
sions. In a recent paper by Liu et.al [9], the authors
proposed mid-level representations, referred to as Expres-
sionlets, that were obtained by aligning localized spatio-
temporal features from an input video with a universal
Gaussian Mixture Model (GMM) model. The authors ar-
gued that via localized alignment, their approach (STM-
ExpLet) allows flexible spatio-temporal range among low-
level features and is able to achieve improvements over
Disc-ST approaches. Our approach is motivated on a simi-
lar argument as [9], however it differs on two points. Firstly,
we incorporate temporal information via the model (instead
of low-level features) and secondly the temporal flexibility
is derived from the application of a probabilistic kernel.

3. Methods
3.1. Problem Statement

The training data from a facial expression datasetD with
N samples is represented as D = {Xi, Yi}Ni=1, where Xi

is a facial expression video and Yi ∈ Y is its class label.
Each video is a sequence of images {xit}Ti

t=1, where each
xit ∈ Rd is represented either in native pixel intensity space
or feature space. The final goal of AFER is to predict the
class label for an unseen test sequence. We first briefly de-
scribe the HMM framework being used for spatio-temporal
modeling of facial expression sequences, followed by a de-
scription of probabilistic kernels. Thereafter we propose
our method, referred to as Exemplar-HMMs, for the AFER
task.

3.2. HMMs for AFER

HMM is a parametric model that is used to statistically
describe a time-series under Markov assumption. In partic-
ular, the HMM models the joint probability of a time-series

Xi as a chain of observations xit and corresponding discrete
(unobserved) hidden state zit. For example, in Figure. 1, the
dicrete hidden states are N and A, and the observations are
the individual snapshots shown at the bottom.

In the context of AFER, an HMM can be visualized as
a spatio-temporal model describing a video as a chain of
discrete sub-events. Each hidden state in an HMM model
is essentially an abstraction for a sub-event and describes a
distinct expression state such as neutral or a particular clus-
ter in the space of facial actions (see Figure. 1). Thus an
HMM model consists of two parts (1) dynamic (temporal):
describes the transitions between distinct facial states, and
(2) appearance (spatial): describes the observation space
that characterizes each sub-event. The observation space
was modeled using multivariate Gaussian distribution with
diagonal Covariance matrix. We found this modeling as-
sumption to work well since the Mahanalobis distance used
in Gaussian distribution serves as a good metric for the fa-
cial features used in our experiments and have also been
shown to work well in previous AFER approaches [3].

HMM modeling consists of estimating parameters θ =
{πk, Ak, µk,Σk}Ns

k=1, where πk = Pr(z1 = k) is the initial
probability of being in state k, Ak,j = Pr(zt = k|zt−1 =
j) is the transition probability (stationary) of transitioning
from state j to state k, µk and Σk are the mean vector and
diagonal covariance matix respectively of the Gaussian dis-
tribution corresponding to state k, and Ns is the number
of hidden states. The parameters for an HMM are esti-
mated using maximum likelihood paradigm via the expecta-
tion maximization (EM) algorithm. For effectively learning
the model parameters in current setting we made use of the
Bayesian formulation for HMM as described below.

Bayesian HMM: In contrast to learning an HMM from
a set of examples, this work involved learning an HMM
model from a single example. Since HMMs involve many
parameters, learning parameters using only one example
could result in severe over-fitting. Thus to obtain a robust
solution, we employed a Bayesian solution to this problem
by incorporating (conjugate) prior distributions for different
parameters, which can effectively regularize the EM solu-
tion and avoid over-fitting [14, 5]. Normal Inverse-Wishart
distribution was used as a prior for Gaussian parameters,
and the Dirichlet distribution was used for both the param-
eters of initial and transition probabilities. The parameters
are then estimated by using maximum a posteriori (MAP)
estimation along with the EM algorithm (MAP-EM). Inter-
ested readers are refered to [14, 5] for more details. We
found during our experiments that this formulation not only
improved the reliability of model estimation but also im-
proved results by allowing to learn Gaussian observation
states with diagonal covariance structure.



3.3. Probabilistic Kernels

Parametric modeling approaches, such as Gaussian clas-
sifiers and logistic regression represent each object as a
fixed-length feature vector followed by learning the param-
eters of the model. However, a fixed-length representation
might not be the natural choice for objects such as variable
length sequences, probability functions or high-dimensional
objects [17, 7]. An alternate strategy is to design algo-
rithms that are based on measuring the similarity between
pairs of data-points, without ever requiring the explicit fea-
ture representation of each data point. Examples of simi-
larity functions include distances or inner products between
X and X ′, where X and X ′ lie in a space S. We denote
K(X,X ′) ≥ 0 a kernel function. Learning approaches
based on computing kernel functions between data points
are examples of non-parametric methods and are generally
referred to as kernel methods.

In the present work, we represent each datum as a proba-
bility distribution and thereafter use a kernel, referred to as
probabilistic kernel, to compare distances between two dis-
tributions. For the task of AFER, we employ the Probability
Product Kernel (PPK), proposed by Jebara et al., for com-
puting distances between two distributions. PPK is com-
puted between two distributions from the same family with
parameters θ and θ′ as:

KPPK(θ, θ′) =

∫
X1:T

Pr(X1:T |θ)ρ Pr(X1:T |θ′)ρdX1:T

(1)
X1:T refers to a sequence of length T. Here parameter

ρ controls the non-linearity of these kernels, while parame-
ter T determines the temporal extent to which two models
shall be compared. These parameters are important for cal-
culating the distance and are tuned using cross-validation
for each dataset (see Section. 4). PPK can be interpreted as
an inner-product between two probability distributions and
is a positive definite kernel. Alternate probabilistic kernels,
such as Fischer kernel or heat kernels, also exist. However
in this work we concentrate on PPK owing to its computa-
tional feasibility and nonlinear flexibility [7]. Also in con-
trast to the popular kernel based on Kullback-Leibler Diver-
gence, PPK is better able to provide a closed form solution
for HMM models.

3.4. Exemplar-HMMs for AFER

Revisiting the AFER problem discussed in Section. 3.2,
the proposed approach begins by learning an HMM model
(with parameters θi) for each example Xi. The next step
computes a kernel matrix K ∈ RN×N for the training data,
whose elements are computed as K(i, j) = KPPK(θi, θj).
The PPK kernel can be computed efficiently using factor-
ization of HMM as mentioned in [7]. The kernel matrix is
then normalized using a standard normalization procedure:

Knorm(i, j) =
K(i, j)√

K(i, i)
√
K(j, j)

(2)

We then use the kernel matrixKnorm to train a support vec-
tor machine, using the libsvm library.1. The learned classi-
fier can then be used to assign a classification score to a test
sequence (Xt). This score is calculated based the similar-
ity of its model Pr(X|θt) to the models corresponding to
the support vectors identified from the training sequences.
During our experiments we keep Ns (the number of states
in the HMM) constant while learning HMM models for a
dataset. The value of Ns was estimated using double-cross
validation (see Section 4) for each dataset.

Intuition behind PPK kernel: Before proceeding to the
experiment section, it is important to have an intuitive un-
derstanding of the model similarity estimated by the PPK
kernel. The PPK distance consists of two aspects (1) static:
which computes a probabilistic similarity between different
state-wise Gaussian distributions of the two HMM models,
and (2) dynamic: incorporates transition probabilities and
calculates similarity for joint state transitions. The PPK ker-
nel principally combines both these aspects into a recursive
formulation that finally calculates the probability of all pos-
sible state evolution undertaken by the two HMM models
together. The parameter T is important since as T increases,
the distance is dominated by the terminal states of the two
HMMs as governed by the transition probabilities. For ex-
ample, in the case of two expression sequences starting at
neutral and ending at apex, a higher T will result in hav-
ing more contribution from the distances between the apex
states.

4. Experiments
Performance was evaluated was using two sets of exper-

iments. The first set consisted of datasets containing ba-
sic emotions such as anger and sadness, and were captured
under laboratory settings. To further highlight the perfor-
mance advantages, we evaluated our algorithm on more a
challenging AFER problem, where the facial expressions
were spontaneous, and captured under more naturalistic set-
tings.

PPK parameters: The PPK consists of two hyper-
parameters ρ and T . In order to estimate the value of
hyper-parameters without over-fitting on the test set, a dou-
ble cross-validation (CV) protocol was employed. Double-
cross validation simulates separate training, validation, and
test sets, where the hyper-parameters are selected based on
the validation set, and then evaluated on a separate test set.
In this protocol, there are two nested cycles of CV. In the
outer CV cycle, a set of test data is held out. Then an

1SVM is extended to multiclass classification using the one-vs-all strat-
egy.



inner cycle of CV is conducted in order to select hyper-
parameters. We then select the hyper-parameters that yield
the highest average accuracy across all validation folds.
System performance using those hyperparameters is then
evaluated on the held out test set. The value of the two
hyper-parameters was kept constant across a facial expres-
sion dataset.

4.1. Experiments on Posed and Spontaneous Basic
Emotions

In this experiment a video was described as a time-series
of facial landmark points [18, 8]. For every sequence, 49
landmarks points were obtained for each frame by using
supervised gradient descent approach [25]. Displacement
features for each frame were then obtained by subtracting x
and y coordinates of the landmark points in that frame from
the landmark coordinates in the first (neutral frame) in that
video and concatenating these displacements into a single
vector (dimensionality 98) [18]. A linear subspace was sep-
arately computed for each dataset by using these displace-
ment features along with Principal Component Analysis
(PCA) algorithm [14]. The features were then projected to
a low dimensional subspace (of dimensionality dpca) com-
posed of principal components that preserved 99.5% vari-
ance. 2

CK+ Dataset: CK+ [10] is a standard AFER bench-
mark dataset consisting of 593 sequences from 123 subjects.
These subjects were asked to perform a series of 23 facial
displays, of which 327 sequences (118 subjects) were cat-
egorized into one of the seven basic emotion- anger, dis-
gust, fear, happiness, sadness, surprise and contempt. The
length of the sequences in this dataset varies from 10 to
60 frames and the facial expression transitions from onset
(neutral phase) to apex phase. dpca in this case was 46
and the experiments were conducted using the leave-one-
subject out protocol [10], where each fold consisted of data
from just one subject. The prediction task was to predict
the class of an unseen test sample and the performance met-
ric being reported is average accuracy for the seven classes.
The cross-validated values for number of HMM states was
Ns = 2 (neutral and apex) and kernel parameters were
ρ = 0.8 and T = 35.

Oulu-CASIA VIS Dataset: The Oulu-CASIA VIS
dataset is a subset of the Oulu-CASIA NIR-VIS dataset
[28], in which all videos were captured under the visible
(VIS) light condition. It consisted of 480 samples from 80
subjects displaying one of the six basic emotion- anger, dis-
gust, fear, happiness, sadness and surprise. The subjects
were asked to make a facial expression matching an expres-
sion sequence shown on a monitor. The length of the se-
quences varies from 9 to 72 frames and each video begins

2dpca for each dataset varied from 46 − 54, which means that due to
PCA feature dimensionality was reduced by almost 50%.

at neutral expression and ends at apex expression (similar
to CK+). dpca in this case was 54. The experiments were
conducted in a subject-independent format by using a 10
fold CV [9]. The evaluation task was to predict the class
of an unseen test sample and the performance metric being
reported is average accuracy for the six classes. The cross-
validated values for number of HMM states was Ns = 2
(neutral and apex) and kernel parameters were ρ = 0.9 and
T = 30.

FEEDTUM: The FEEDTUM facial expression dataset
[23] consists of spontaneous facial expressions elicited by
presenting the subjects with a set of carefully selected video
stimuli. This is different from both CK+ and Oulu-CASIA
VIS datasets, where the subjects were asked to perform spe-
cific facial movements. Moreover, in most cases the fa-
cial expressions sequences evolved from neutral to apex and
then back to neutral, and the variability of the duration and
timing of these phases was higher. dpca in this case was
52. The dataset contains 19 subjects (320 videos) showing
six basis emotions- anger, disgust, fear, happiness, sadness
and surprise. As above, each video was described as a time
series of facial landmark points computed using supervised
gradient descent. The experiments were conducted using
leave-one-subject out protocol, where each fold consisted
of data from just one subject. The evaluation task was to
predict the class of an unseen test sample and the perfor-
mance metric being reported is average accuracy for the six
classes. The cross-validated values for number of HMM
states was Ns = 3 and kernel parameters were ρ = 0.6 and
T = 11.

4.2. Experiments on Facial Action Time Series

To further evaluate the effectiveness of our approach,
an additional set of experiments was conducted on another
spontaneous facial expression dataset, the AM-FED dataset
[12]. The AFER problem on this dataset was more challeng-
ing since the expression videos were not only unsegmented
but also lacked prior information about the onset, duration
and frequency of the target expression. Since the videos
in this dataset involved large out-of-plane head movements,
we were unable to use automatic facial landmark points as
the frame-level feature representation as was done in the
previous experiments. Instead we made use of the frame-
level action unit (AU) annotations provided with this dataset
for the time-series data. Action Units correspond roughly
to movement of individual facial muscles. The focus of this
paper is on modeling sequences, and not on feature extrac-
tion. The AU data provides a spontaneous biological time
series, where the features are highly precise, thereby provid-
ing an alternate way to evaluate the sequence classification
approach.

AM-FED: The AM-FED dataset consists of 242 se-
quences that were recorded on a web-cam while different



subjects were viewing three Superbowl commercials. Af-
ter watching the videos, the subjects provided self-report
ratings for two questions: ”Did you like the video?” and
”Would you like to watch this video again?”. The self-
report responses could be positive (1), neutral (0) or neg-
ative (-1). Similar to the protocol used in [13], only videos
where the labels are either positive or negative were in-
cluded and the target was to predict these binary self-
report responses given a test video. The final dataset con-
sisted of 103 and 170 sequences for ”Watch/Not Watch
again” and ”Like/Does not like” prediction tasks respec-
tively. In line with the evaluation protocol described in [12],
the experiments were conducted in a (3 fold) leave-one-
advertisement-out protocol, where the videos correspond-
ing to one advertisement were used for testing and remain-
ing for training. Average AUC score across all folds is
reported as the evaluation metric. Of the frame-level an-
notations provided with this dataset, we discarded annota-
tions for those facial actions that were either available for a
few examples or had a low inter-coder reliability. The final
frame-level representation comprised of annotations for AU
2, 4, 5, 14, 17, Unilateral left AU 12, Unilateral right AU 12,
Negative AU 12 and Unilateral left AU 14 along with smile
and expressability ratings (dimensionality was 11). In this
dataset the value for each AU was the percent of annota-
tors indicating presence of the AU in the frame. We thresh-
olded all AU annotations < 50% to 0 and ≥ 50% to 1. The
cross-validated values for number of HMM states for task
”Like/Does not like” was Ns = 2 and kernel parameters
were ρ = 1.2 and T = 35, while for task ”Watch/Not Watch
again” wasNs = 3 and kernel parameters were ρ = 0.6 and
T = 5.

4.3. Algorithms compared

We compared Exemplar-HMMs to three baseline algo-
rithms. The first is a standard Disc-ST pipeline, where the
frame-level features across a video are summarized using
Mean-pooling and Max-pooling. The second baseline al-
gorithm is LBPTOP, which is amongst the most common
Disc-ST approaches for AFER. For implementing LBP-
TOP, spatio-temporal features were extracted from non-
overlapping blocks and concatenated into a single vector.
The features from Disc-ST pipelines and LBPTOP were
passed as input to a SVM classifier with rbf kernel. The
third baseline algorithm is a generative HMM classifier
(Section. 1). Same frame-level features were used in Disc-
ST pipelines and HMM to facilitate a fair comparison. The
parameters for HMM (number of states), LBPTOP (size of
non-overlapping blocks) and rbf kernel (kernel width) were
determined using the double CV procedure described in
Section. 4. In addition, we have also provided the perfor-
mance of a recent state-of-the-art algorithm [9] for making
a relative comparison to our algorithm.

5. Results and Discussion
The results for CK+ and OULU-CASIA VIS datasets

are shown in Table. 1a, AM-FED dataset in Table. 1b and
FEEDTUM dataset in Table. 2. The results are divided into
two blocks (using double lines), into Disc-ST methods and
dynamic methods, where the term ’dynamic’ refers to ap-
proaches explicitly incorporating temporal information in-
side the algorithm. Our contention that Exemplar-HMMs
is able to overcome the limitations of HMMs by combining
its modeling advantages with a discriminative classification
paradigm is supported by the comparison to the standard
HMM. The proposed approach outperforms the standard
HMM on all the datasets by an appreciable margin. For
example, the absolute performance improvement is approx-
imately 10% accuracy for CK+ and OULU-CASIA, and 5%
for FEEDTUM.

Our approach outperforms the baseline Disc-ST method
with Max-pooling and Mean-pooling on all datasets. The
performance advantage for Exemplar-HMMs is greatest for
the AM-FED spontaneous expression dataset. For instance,
on the Like/Don’t Like task, the AUC score for Mean-
pooling and Max-pooling are .66 and .61 respectively, com-
pared to .84 for Exemplar-HMMs, and for the Watch-
again/Don’t Watch-again task, the AUC score for our ap-
proach is .92 compared to .87 and .89 for Mean-pooling and
Max-pooling respectively. This increase in performance
can be attributed to the ability of Exemplar-HMMs to ad-
dress the key modeling issuess in Disc-ST methods (1) dis-
criminative information, and (2) temporal alignment, as dis-
cussed in Section. 1. We further observed that our ap-
proach outperformed LBPTOP method on all three emotion
datasets. This is particularly interesting since LBPTOP uti-
lizes image textures that may be capable of capturing more
information than the geometric features [27] employed in
our method. Moreover the (absolute) performance increase
is greater for the spontaneous expression dataset FEED-
TUM (5.9% hike) than the posed datasets CK+ (3.3%) and
OULU-CASIA VIS (3.5%). One possible explanation is
that LBPTOP doesn’t take into account the temporal struc-
ture inherent in a time-series, and this information might
be important for expression recognition on spontaneous ex-
pressions such as those in FEEDTUM.

We also compared the performance of Exemplar-HMMs
with a recent (2014) state-of-the-art algorithm (STM-
ExpLet [9]) that explicitly adds temporal information inside
the algorithm. Exemplar-HMMs achieved 75.62% accuracy
on OULU-CASIA VIS dataset, which was similar to the ac-
curacy of STM-ExpLet (74.59%). For CK+ our results were
calculated using the standard leave-one-subject-out proto-
col as mentioned in [10], while 10 fold CV was used to
calculate results in STM-ExpLet paper. Thus for making a
fair comparison we ran a 10 fold CV (randomized over 10
runs) for CK+ and obtained an accuracy of 93.89% com-



Method CK+ OULU-CASIA VIS
Geom. + Mean-pooling 92.42 (±1.58) 70.83 (±2.84)
Geom. + Max-pooling 92.74 (±1.67) 69.76 (±1.73)

LBPTOP [29] 91.30(±1.79) 72.08(±2.22)

HMM 85.35(±2.16) 63.54(±3.10)
STM-ExpLet [9] 94.19 (N/A) 74.59 (N/A)

Exemplar-HMMs 94.60(±1.37) 75.62(±2.10)

(a) Results (mean % accuracy) for CK+ and OULU-CASIA VIS

Method Like/Don’t Like Watch-again/
Don’t Watch-again

AU + Mean-pooling .66 .87
AU + Max-pooling .61 .89

HMM .58 .84
Exemplar-HMMs .84 .92

(b) Results (mean area under the ROC curve) for AM-FED.

Table 1: Results from experimental evaluation.

pared to 94.16% in STM-ExpLet. Although the results from
our algorithm seems comparable to the state-of-the-art, it
is important to note that our algorithm was based on geo-
metric features while STM-ExpLet used 3D texture based
appearance features, which are capable of capturing more
information and have also previously been shown to outper-
form geometric features [27]. Thus the observation that the
present classification paradigm is able to match the state-
of-the-art results on current AFER problems despite using
simpler features highlights both its performance advantages
and the promising nature of the present research direction
for tackling AFER. In order to extend current approach to
texture based features, we have discussed our ongoing work
to exploit high-dimensional features in the current pipeline
in the next section.

6. Conclusion and Future Work

This paper builds upon the idea that facial expressions
have a specific temporal structure that can be explicitly
modeled using latent variable sequential models. Focus-
ing on Hidden Markov Models, we argue that they provide
certain modeling benefits over temporally holistic feature
based approaches for facial expression recognition. How-
ever owing to their generative nature, HMMs typically have
a lower classification performance than discriminative clas-
sifiers such as Support Vector Machines (SVMs). This
paper explored an approach for combining the modeling
strength of HMMs with the discriminative power of SVMs
via probabilistic kernels for the task of facial expression
recognition. This combination was achieved by model-
ing each example with an HMM, followed by computing a
kernel matrix, via Probabilistic Product Kernels, that com-
prised the input to an SVM. By achieving state-of-the-art re-
sults on both posed and spontaneous datasets, this approach
highlighted its performance advantage for video-based fa-
cial expression recognition compared to traditional HMMs,

and compared to discriminative approaches based on tem-
porally holistic features.

This preliminary work showed both the modeling and
performance advantages of an approach relying on model-
based similarity for AFER. Building on this line of research,
our current focus is on extending both HMMs and proba-
bilistic kernels to handle high-dimensional spatio-temporal
features that can further enhance its modeling advantages.
This is being accomplished by the application of the ker-
nel trick for embedding data-points in an implicit projec-
tion space, and then extending HMMs and probabilistic
measures to work with kernels. We shall also explore the
possibility of using other probabilistic kernels (Fisher, KL-
divergence etc.) as part of our future work.

Method Accuracy %
Geom. + Mean-pooling 48.91(±3.70)
Geom. + Max-pooling 53.87(±2.59)

LBPTOP [29] 48.17(±3.31)

HMM 48.23(±3.88)
Exemplar-HMMs 54.14(±3.72)

Table 2: Results (mean % accuracy) from FEEDTUM.
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