
Deep Neural Networks for Anatomical Brain Segmentation

Alexandre de Brébisson
Department of Mathematics, Imperial College London

London SW7 2AZ, UK
alexandre.de.brebisson@umontreal.ca

Giovanni Montana
Department of Biomedical Engineering, King’s College London

St Thomas’ Hospital, London SE1 7EH, UK
giovanni.montana@kcl.ac.uk

Abstract

We present a novel approach to automatically segment
magnetic resonance (MR) images of the human brain into
anatomical regions. Our methodology is based on a deep
artificial neural network that assigns each voxel in an MR
image of the brain to its corresponding anatomical region.
The inputs of the network capture information at differ-
ent scales around the voxel of interest: 3D and orthog-
onal 2D intensity patches capture a local spatial context
while downscaled large 2D orthogonal patches and dis-
tances to the regional centroids enforce global spatial con-
sistency. Contrary to commonly used segmentation meth-
ods, our technique does not require any non-linear regis-
tration of the MR images. To benchmark our model, we
used the dataset provided for the MICCAI 2012 challenge
on multi-atlas labelling, which consists of 35 manually seg-
mented MR images of the brain. We obtained competitive
results (mean dice coefficient 0.725, error rate 0.163) show-
ing the potential of our approach. To our knowledge, our
technique is the first to tackle the anatomical segmentation
of the whole brain using deep neural networks.

1. Introduction
Quantitative research in neuroimaging often requires

the anatomical segmentation of the human brain based on
magnetic resonance images (MRIs). Quantitative research
in neuroimaging often requires the anatomical segmenta-
tion of the human brain using magnetic resonance images
(MRIs). For instance, abnormal volumes or shapes of cer-
tain anatomical regions of the brain have been found to
be associated with brain disorders, including Alzheimer’s
disease and Parkinson [10, 18]. The analysis of MR im-
ages is therefore essential to detect these disorders, mon-

itor their evolution and evaluate possible treatments. The
anatomical segmentation of the brain requires a segmenta-
tion protocol defining how each region should be delineated
so that the resulting segmentations are comparable between
brains. However, manually segmenting the brain is a time-
consuming and expensive process that cannot be performed
at a large scale. Its full automation would enable systematic
segmentation of MRIs on the fly as soon as the image is ac-
quired. These potential benefits have encouraged an active
field of research, which is today dominated by multi-atlas
based [9, 11] and patch-based methods [7]. Machine learn-
ing methods consist in training classifiers to assign each
voxel (a 3D pixel) to its anatomical region based on vari-
ous input features describing it, such as its neighbourhood
intensities or location.

Recently, deep neural networks, and in particular convo-
lutional neural networks, have proven to be the state of the
art in many computer vision applications (most notably the
ImageNet contest since 2012 [12]). Contrary to traditional
shallow classifiers in which feature engineering is crucial,
deep learning methods automatically learn hierarchies of
relevant features directly from the raw inputs [1]. Motivated
by these developments, we propose a deep artificial neural
network for the automated segmentation of the entire brain.
This article is organised as follows. In section 2 we briefly
review existing segmentation methodologies and deep neu-
ral networks. In section 3 we describe our proposed archi-
tecture and algorithm. The application to the MICCAI 2012
dataset is presented in section 4, and we conclude with a
discussion in section 5.

2. Background
Given a particular segmentation protocol, automatically

segmenting a 3D MR image of the brain consists in classi-
fying all its voxels into their corresponding protocol region.

In this work, we consider the segmentation of the whole
brain (cortical and sub-cortical areas) into a large number
N of anatomical regions, where N is defined by the seg-
mentation protocol (typically around 100). Knowledge of
the segmentation protocol is implicitly given through a set
of manually labelled 3D brain MRIs. An atlas consists of
an MR image and its corresponding manual segmentation.

Multi-atlas based methods (such as [9, 11]) are widely
used methods. For a new query image to segment, such
methods usually consist of the following steps: first, the
n most similar atlases to the query image are selected and
registered to the query image; second, the same registration
transformations are applied to the labels of the n atlases,
and these labels are propagated to produce n segmentations
of the query image; finally the segmentations are combined
using a fusion strategy. These methods heavily rely on a
registration step, in which the atlases are non-linearly reg-
istered to the query image. A global affine or rigid regis-
tration is usually first performed and then followed by a lo-
cal non-rigid registration. This latter registration step relies
on the critical assumption that brains are similar enough to
be accurately mapped from one to another. However, this
is unlikely to be the case if the query brain is too differ-
ent from the atlases in a local area (e.g. if the subject has
a neurodegenerative disorder that introduces drastic struc-
tural changes). Furthermore, regions whose boundaries are
clearly identifiable by a contrast in intensity but arbitrarily
defined by the segmentation protocol are likely to be less
accurately registered. These errors will inevitably have an
effect on the final segmentation. Registrations are also com-
putationally intensive and are usually responsible for the
slowness of atlas-based methods.

In this paper we take a machine learning approach
whereby, given a training set consisting of several atlases, a
model is trained to classify each voxel into its correspond-
ing anatomical region. In particular, we investigate whether
recent advances in representation learning (the field of ma-
chine learning that aims to automatically extract useful rep-
resentations of the data) may prove beneficial for the seg-
mentation problem. Deep learning is the sub-field of rep-
resentation learning concerned with learning multi-level or
hierarchical representations of the data, where each level
is based on the previous one [1]. Lately there has been a
burst of activity around deep neural networks, and in par-
ticular convolutional neural networks, for medical imaging
segmentation problems. These include approaches for the
segmentation of the lungs [16], cells of C. elegans em-
bryos [17], biological neuron membrane [5], tibial carti-
lage [19], bone tissue [4] and cell mitosis [6], amongst oth-
ers. All these applications mostly use 2D convolutional net-
works which take intensity patches as inputs; occasionally
spatial consistency is enforced at a second stage through
post-processing computations such as probabilistic graph-

ical models. Despite this increasing interest in medical
imaging, deep neural networks have not yet been consid-
ered for the problem of the whole brain segmentation into
anatomical regions. Initial work has been carried out for
the segmentation of a single (central) 2D slice of the brain
using local 2D patches as input [14]. By comparison, our
approach tackles the segmentation of the whole 3D brain
and introduces multi-scale input features to enforce the spa-
tial consistency of the segmentation.

3. Architecture of the network

In this section, we describe the inputs and the architec-
ture of the proposed network.

3.1. Input Features

We aim at designing an algorithm that classifies each
voxel into its corresponding anatomical region. Each voxel
must therefore be described by an input vector, which is the
input of our neural network. The choice of input is particu-
larly important as it should capture enough information for
the task while being as parsimonious as possible, mostly for
computational reasons and to avoid overfitting. Two types
of inputs were incorporated in this work in order to ensure
both local precision and global spatial consistency.

3.1.1 Features to ensure local precision.

For each voxel, the local precision of the segmentation is
ensured by the two following features. First, a 3D patch of
size a×a×a centred on the voxel is used to capture local in-
formation at a high level of detail. Second, three 2D orthog-
onal patches of size b× b (each extracted from the sagittal,
coronal and transverse planes respectively), also centred on
the voxel, are added with the purpose of capturing a slightly
broader but still local context around the voxel of interest.
The use of these orthogonal patches can be seen as a trade-
off between a single 2D patch and a 3D patch: they capture
3D information but require a significantly smaller amount
of memory for storage than a dense 3D patch, allowing big-
ger patch sizes to be used.

3.1.2 Features to ensure global spatial consistency.

A second set of inputs was designed to preserve global spa-
tial consistency. Unlike unstructured segmentation tasks, in
which different regions can be arbitrarily positioned in an
image, anatomical regions consistently preserve the same
relative positions in all the subjects. Including global in-
formation is therefore likely to yield additional improve-
ments. An obvious strategy would be to simply increase
the size of the 2D and/or 3D patches introduced earlier
so as to span larger portions of the image and cover more

patch x
size=292, scale=1

patch y
size=292, scale=1

patch z
size=292, scale=1

2DconvPool
W 1

1 20 maps

2DconvPool
W 1

1 20 maps

2DconvPool
W 1

1 20 maps

2DconvPool
W 2

1 50 maps

2DconvPool
W 2

2 50 maps

2DconvPool
W 2

3 50 maps

patch x
size=292, scale=3

patch y
size=292, scale=3

patch z
size=292, scale=3

2DconvPool
W 1

2 20 maps

2DconvPool
W 1

2 20 maps

2DconvPool
W 1

2 20 maps

2DconvPool
W 2

4 50 maps

2DconvPool
W 2

5 50 maps

2DconvPool
W 2

6 50 maps

3D patch
size=133, scale=1

3DconvPool
W 1

3 20 maps

3DconvPool
W 2

7 50 maps

134 distances
to centroids

Layer Noise Identity

FullyCon W 3

3000 neurons

FullyCon W 4

3000 neurons

Softmax W 5

134 neurons

Figure 1: Architecture of SegNet optimised for the MICCAI 2012 dataset. There are 8 pathways, one for each input
feature. The lower layers (on the left-hand side) learn specific representations of their input features, which are then merged
into a joint representation. Each 2DconvPool block represents a convolutional layer followed by a pooling layer. The
colour indicates that the layer blocks share the same parameters. The distances to centroids are estimated as explained in
section 3.3. The parameter values (patch sizes, scales, number of neurons) shown here are those selected for the MICCAI
application, in which the convolutional layers have 5 × 5 kernels and 2 × 2 max-pooling windows. The noise layer is only
activated during training, and the model has a total of 30, 565, 555 parameters.

Figure 2: A downscaled patch spans the same region of the
MRI as the original patch but with a lower resolution.

distant anatomy. However this would generate very high-
dimensional inputs requiring large memory for storage and
would add computational complexity. Instead, we extract
large 2D orthogonal patches that we downscale by a factor
s. As illustrated in figure 2, the downscale operation sim-
ply reduces the resolution of the patch by averaging voxel
intensities within small square windows of size s× s. More
precisely, if sc× sc is the size of the original full-resolution
patches, then the downscaled patches have sizes c × c. In
neural network terminology, this operation is equivalent to
a s × s mean-pooling with stride s. As a result, the down-
scaled patch still captures as large portions of the MRI as

the original patch but with lower resolution.
In addition to the voxel intensities, the coordinates of

each voxel in 3D space are also expected to be very infor-
mative for anatomical segmentation purposes. However the
use of absolute coordinates is predicated on the individual
brain scans to be represented in a common reference space,
which in turn requires performing an initial – and generally
very time consuming – registration of all the images. As
an alternative, we explore the use of relative distances from
each voxel to each one of the N centroids as additional in-
puts of the network. The centroid cl = (xl, yl, zl) of region
l of image I is defined as the center of mass of all the uni-
formly weighted voxels of that region:

cl =

∑
v∈I−1(l) v

|I−1(l)|
,

where I−1(l) represents the set of all voxels belonging to
region l. The distance d – simply taken to be Euclidian –
of a voxel to all the region centroids gives an indication of
the position of the voxel in the image and thus the region
it belongs to. Unlike absolute coordinates, these distances
are invariant to rotations and translations. The distances to
centroids are also invariant to brain scaling upon scaling the

centroids and the image coordinates by the average distance
between two centroids, D, defined as:

D =
N × (N + 1)

2

N∑
i=1

N∑
j=i

d(ci, cj).

This enforces the average distance between two centroids to
be the same for all the brains. In practice, only a few cor-
rect distances from a voxel to the centroids would be suffi-
cient to localise precisely the current voxel, but by adding
all distances we increase the robustness of the resulting seg-
mentation to noise, which is confirmed by our experimental
results. Although these distances can be computed exactly
using the training data set, for which all the centroids are
known, they are unknown on new brains before any seg-
mentation has been performed. To deal with this issue, we
propose a two-stage algorithm, in which the first stage pro-
vides a segmentation of the brain without using these dis-
tances, and then a second, refinement stage is added to fur-
ther improve the segmentation; see section 3.3 for further
details.

3.2. Deep Neural Network

Our proposed network architecture, called SegNet, is
represented in Figure 1. It is a feed-forward network formed
by stacking K layers of artificial neurons. Each layer mod-
els a new representation of the data, in which neurons act as
feature detectors. Recursively, deeper neurons learn to de-
tect new features formed by those detected by the previous
layer. The result is a hierarchy of higher and higher level
feature detectors. This is natural for images as they can be
decomposed into edges, motifs, parts of regions and regions
themselves. We let SegNetl denote the function mapping
the inputs of layer l to its output. Our architecture is then
expressing a function SegNetθ (or more simply SegNet)
defined as

SegNetθ = SegNetK ◦ · · · ◦SegNetl ◦ · · · ◦SegNet1,

where θ represents the parameters of the network, i.e. the
weights and the biases.

Our network architecture has 8 types of input features
and 8 corresponding pathways that are merged later in the
network. The lowest layers are specific to each type of input
features and aim to learn specialised representations. Apart
from the distances to centroids, these representations are
learnt by 2D and 3D convolutional [13] and pooling lay-
ers [20], denoted 2DconvPool and 3DconvPool, re-
spectively. At a higher layer of this architecture, the indi-
vidual representations are merged into a common represen-
tation across all the inputs. Further layers learn even higher
level representations, which capture complex correlations
across the different input features. These representations
are learnt with fully connected layers, denoted FullyCon.

3.2.1 Convolutional Layers.

2D and 3D patches are processed with convolutional lay-
ers [13], which aim to detect local features at different po-
sitions in an image. The neurons of a convolutional layer
compute their outputs based only on a subset of the inputs,
called the receptive field of the neuron. More precisely, a
neuron in a given convolutional layer depends only on a
spatial contiguous set of the layer inputs, in our case t × t
windows of voxel intensities. Therefore each neuron learns
a particular local feature specific to its receptive field. This
local connectivity considerably reduces the number of pa-
rameters and thus the potential overfitting of the layer. In
addition to local connectivity, a convolutional layer also im-
poses groups of neurons, called feature maps, to share ex-
actly the same weight values. More precisely, a convolu-
tional layer can be decomposed into several feature maps,
whose neurons share the same weights and only differ by
their receptive field. This means that neurons of a same fea-
ture map detect the same feature but from different receptive
fields of the image. The local connectivity and weight shar-
ing constraints can simply be modelled by a sum of convo-
lution operations. The outputs of neurons in feature map k
of layer l is then given by

hl
k = ϕ

(∑
m

W l
m,k ∗ hl−1

m + blk

)
,

where ∗ is the convolution operation and W l
m,k is the

weight matrix for the feature map k of layer l and feature
map m of layer l− 1 (the kernel of the convolution). W l

m,k

is a 2D or a 3D matrix respectively for 2D or 3D images. Its
size is the size of the receptive fields of each neuron in the
feature map. Here hl−1

m is the feature map m of layer l− 1,
and blk is the scalar bias of the feature map k of layer l.

3.2.2 Max-Pooling Layers.

The convolutional layers of our architecture are followed by
max-pooling layers [20], which reduce the size of the fea-
ture maps by merging groups of neurons. More precisely,
for each datapoint, a max-pooling layer shifts a square win-
dow (p× p in our case) over the feature map and select the
most responsive neuron over each position of the window,
the other neurons being discarded. The output of the most
responsive neuron indicates if the feature map has detected
its corresponding feature in the receptive field of the pool-
ing window, the precise receptive field of the feature being
lost. As the local information is particularly important in
our problem, we only considered small windows. The ben-
efits of pooling layers is that they significantly reduce the
number of parameters, making the training simpler and re-
ducing overfitting.

3.2.3 Fully Connected Layers.

The latest layers of our architecture are fully connected lay-
ers, denoted FullyCon. The output vector hl of a fully
connected layer l is given by

hl = SegNetl(hl−1) = ϕ(W lhl−1 + bl),

where hl−1 is the input of the layer l and where ϕ is the
activation function of the layer.

3.2.4 Activation Functions.

Apart from the top layer, we used the same activation func-
tion for all the neurons of our network, the rectifier function
defined by

ϕ : x 7→ max(0, x).

A neuron with the rectifier function is called a REctified
Linear Unit (RELU). Contrary to the more traditional sig-
moid or tanh functions, it is less prone to the vanishing
gradient problem, which has prevented the training of deep
networks for several decades [8].

The top layer of our network architecture uses a softmax
activation function. If zr is the weighted input of output
neuron r, then the output of neuron j is given by

outputj =
ezj∑N
r=1 e

zr

.

The softmax function maps the weighted inputs into [0, 1]
and the outputs can then be interpreted as probabilities. In
practice, to label a voxel, we select the output with the high-
est probability.

Weight Sharing

The reason for sharing the weights W 1
1 (corresponding to

the three orthogonal 2D patches) andW 1
2 (corresponding to

the three orthogonal 2D downscaled patches) between layer
blocks in the lowest layer is that we believe that the low-
est level features that the network learns about the patches
should be the same whatever the orientation of the patch.
This also divides the number of parameters in the first layer
by two, which reduces the risk of overfitting. Experimen-
tally, we have found that this constraint slightly improves
the performance.

3.3. Training Algorithm

Let us denote the training dataset by{
(x(i),y(i)) | i ∈ J1, nK

}
, where for each i, y(i) is

the known desired output of input x(i) (y(i) is a vector of
zeros with a single one at the position of the classification
label). The performance of the network is evaluated using

negative log-likelihood error function, which is defined as
follows

ECE : θ 7→ − 1

n

n∑
i=1

log
(
SegNetθ(x(i)) · y(i)

)
,

where · is the dot product in the output space defined as
a · b =

∑N
j=1 ajbj and θ represents all the parameters

of the network. Training is cast into the minimisation of
ECE , which was carried out by the stochastic gradient de-
scent (SGD) algorithm, a variant of the gradient descent
algorithm commonly used to train large networks on large
datasets [3]. At each update of the weights in the SGD al-
gorithm, instead of considering all the training datapoints to
compute the gradient of the error function ECE , only one
datapoint or a small batch of training datapoints is used. We
also added a momentum term [21,22], which is particularly
beneficial along long narrow valleys of the error function as
it averages the directions of the gradient. If ∆wl

ij(t) denotes
the update of weight wl

ij at iteration t, then the momentum
update rule is given by

∆wl
ij(t) = −α ∂E

∂wl
ij

+m∆wl
ij(t− 1),

where the scalars α and m are the learning rate and the mo-
mentum, respectively.

3.4. Estimation of the Centroids

Training SegNet using the distances to centroids is pos-
sible as the true segmentations are available. However,
when we consider the segmentation of a new brain, we
can not compute directly the centroids. Therefore we pro-
pose the following iterative procedure that uses two neural
networks in sequence. A sub-network, which corresponds
to SegNet without the centroids pathway, is first trained.
Given a new MR image, this sub-network is used to pro-
duce an initial segmentation of the image, which enables
to compute approximated centroids of each region and then
distances between each voxel and these approximated cen-
troids. The full SegNet network, now taking the centroids
pathways as additional input, is then used to obtain a re-
fined segmentation. This refined segmentation is then used
to compute a better approximation of the centroids. These
two last steps can be repeated multiple times until conver-
gence, i.e. no changes in the segmentation output. In prac-
tice, we observed that, when the initial model is already rel-
atively accurate, the algorithm converges really fast in only
a few iterations. When the initial model has poor segmenta-
tion accuracy, the algorithm is slightly longer to converge,
as illustrated in figure 3. When the initial model is really too
bad, the algorithm does not improve the initial accuracy.

Even though the centroids are only approximated, dis-
tances carry sufficient information to identify the region in

which each voxel lies. To enforce robustness to noisy ap-
proximations of the centroids, during the training stage of
the neural network, we artificially corrupt the distances to
centroids by adding gaussian noise for each training data-
point. This makes sure that the network relies less on indi-
vidual distances but more on the statistical properties of the
group of N distances.

0 1 2 3 4 5 6 7

0.4

0.5

0.6

algorithm iterations

va
lid

at
io

n
di

ce
co

ef
fic

ie
nt

without centroids
with centroids

Figure 3: Example of the convergence of the algorithm
for a toy fully-connected network, trained on the MICCAI
dataset 4, with poor initial accuracy. In this particular case,
the approximated distances to centroids, which are updated
at each iteration, significantly improve the segmentation.

4. An application to the MICCAI dataset
We tested our approach on the dataset of the MICCAI

2012 challenge on multi-atlas labelling. At the beginning
of this competition, the organisers released 15 atlases and
20 MRIs (around 2003 pixels) without segmentations. Each
team was required to develop a segmentation algorithm us-
ing the 15 atlases and submit their segmentations for the
20 MRIs. The quality of the segmentation was assessed by
computing the mean dice coefficient over the anatomical re-
gions. The 35 images in this dataset are T1-weighted struc-
tural MRIs obtained from the OASIS project [15] . These
images have been manually aligned using translation and
rotation, and were segmented by NeuroMorphometric into
134 anatomical regions. The non-cortical regions follow the
NeuroMorphometric protocol1, while the cortical regions
follow the BrainCOLOR protocol2. The winning team of
the MICCAI challenge obtained an overall mean dice coef-
ficient of 0.765 and the median coefficient over all the teams
was 0.7251.

We set out to study the performance of SegNet on this
dataset despite the fact that deep learning techniques gener-
ally require much larger training datasets. All computations
had to be run in-memory using a single NVIDIA Tesla K40
GPU with 12GB memory. Therefore we faced a trade-off

1http://neuromorphometrics.org:8080/Seg/
2http://www.braincolor.org/protocols/cortical_

protocol.php

(a) 29× 29 patches (b = 29).

(b) 87 × 87 original patches downscaled into 29 × 29 patches
(c = 29, s = 3).

Figure 4: Example of random 2D patches from the MICCAI
dataset.

Figure 5: Example of three orthogonal patches centred on
the voxel of interest. Screenshots captured with ITK-SNAP.

between the number of datapoints and the number of dimen-
sions of the dataset. On the basis of initial tests, we decided
to extract randomly and uniformly across the brain a sam-
ple of approximately 20k voxels from each one of the 15 at-
lases, for a total of 300k voxels for training purposes, which
amounts to only approximatively 1.5% of all the available
voxels in the dataset. For each voxel, we extracted a 7377-
dimensional input vector consisting of a 3D patch of 133

voxel intensities (a = 13), three 2D orthogonal patches of
292 voxel intensities (b = 29), three 2D downscaled patches
of size 292 containing averaged voxel intensities (the origi-
nal patch width is 87 and the scale is 3, i.e. c = 29, s = 3)
and 134 distances to centroids. Figure 5 shows a sample
of 2D patches. A validation dataset consisting of 40k data
points was also extracted from the the 15 atlases.

Early stopping was applied to the error rate on the vali-
dation dataset with a patience of 10 epochs. Although we
were primarily interested in the dice coefficient, we applied
early stopping to the error rate, which is more stable than
the dice coefficient as a single misclassification (especially
if it occurs for a small region) impacts more the latter than
the former. The final architecture has 7 layers (K = 7). The
sizes of the convolution kernels were set to 5 × 5 (t = 5)

http://neuromorphometrics.org:8080/Seg/
http://www.braincolor.org/protocols/cortical_protocol.php
http://www.braincolor.org/protocols/cortical_protocol.php

and those of the pooling windows to 2 × 2 (p = 2). The
other parameters are reported in Figure 1. The resulting ar-
chitecture has a total of 30, 565, 555 parameters. We used
a batch size of 200 data points. The momentum and learn-
ing rate were both tuned and set respectively to m = 0.5
and α = 0.05. The code3 is based on Theano [2], a python
library that compiles symbolical expressions into C/CUDA
code that can run on GPUs.

Model Number
of inputs

Val error

Local precision features
2D patch 292 0.607
3D patch 133 0.303
3 2D patches 3× 292 0.175

Spatial consistency features
3 2D downscaled patches 3× 292 0.207
coordinates (x, y, z) 3 0.410
distances to centroids 134 0.305

Combining features
3 2D patches +
3 2D downscaled patches 6× 292 0.124

SegNet
6× 292 +
133 + 134

0.105

Table 1: Validation errors of models optimized for individ-
ual and combined input features. SegNet is the network
represented in Fig. 1.

Table 1 shows the validation error rate for various model
architectures that only include one input at a time, and
whose parameters have been optimised on the training data.
Here it can be observed that the combined use of three 2D
orthogonal patches dramatically improves the segmentation
performance compared to 2D or 3D patches. We can also
notice that the distances to centroids, in addition to their
invariance qualities, significantly outperform the coordi-
nates (x, y, z). We also observed that, for already manually
segmented brains, using estimated centroids yield equiva-
lent results as using the true centroids. Our best model,
SegNet, was selected on the basis of the validation error
(0.105). Evaluated on the 20 testing MRIs of the MICCAI
challenge, it has a mean dice coefficient of 0.725 and an
error rate of 0.163. The 20 testing MRIs were never used
during the training nor the selection of architectures.

Figure 6 illustrates how well the downscaled patches and
the distances to centroids enforce the global spatial consis-
tency of the segmentations. Figure 7 shows the manual and
automatic segmentations of a particular MRI. We notice that
the misclassified voxels tend to lie on the boundaries of the

3Available at https://github.com/adbrebs/brain_
segmentation

(a) (b) (c)

Figure 6: Comparison of the automatic and manual seg-
mentations of the cerebral white matter region (in green) of
the right hemisphere of an example MRI (ID: 1004). (a)
Segmentation returned by the network using only the three
orthogonal 2D patches as inputs, (b) Manual segmentation,
(c) Segmentation returned by SegNet. Contrary to (c), (a)
wrongly classifies some parts of the left hemisphere.

regions, as expected.

(a) Manual segmentation.

(b) Predicted segmentation.

(c) Difference, white voxels are identical while blue are different.

Figure 7: Comparison of the manual brain segmentation of
a subject (ID: 1004) to that predicted by SegNet. The
mean dice coefficient is 0.74.

5. Conclusion

We designed a deep neural network architecture to auto-
matically segment brain MRIs. We benchmarked it against
the multi-atlas methods of the MICCAI challenge of 2012
and obtained competitive results (mean dice 0.725). Con-
trary to multi-atlas based methods, ours do not rely on any
non-linear registrations of the MRIs. Therefore, although

https://github.com/adbrebs/brain_segmentation
https://github.com/adbrebs/brain_segmentation

this has not been verified in the context of this work, we
also expect our method to generalise better when the query
image exhibits an abnormal region volume or shape that is
not represented in the training atlases.

We proposed two types of input features and a corre-
sponding architecture to precisely delineate the boundaries
of the regions while ensuring global spatial consistency.
Due to current memory constraints on single GPU cards,
we opted for a multi-scale system with different sizes of in-
tensity patches. The three orthogonal patches significantly
outperformed the individual 2D or 3D patches, proving that
they are an excellent trade-off to capture 3D information
with considerably less memory than a dense 3D patch. We
introduced two other input vectors ensuring the global spa-
tial consistency of the segmentation. First, we showed that
the network can learn surprisingly well the relative posi-
tions of the regions with large raw downscaled 2D patches
of voxel intensities. Second, we showed that distances to
centroids, despite their imprecision, provide robust inputs
to efficiently capture the location of the voxel in the brain.
Their robustness is due to their redundancy and their in-
dependence to translations and rotations. In our approach,
global consistency was therefore enforced by the inputs of
the model without having to resort to any complicated post-
processing, such as conditional random fields, which are
commonly used in the literature. We also observed that
distances to centroids and downscaled patches contain re-
dundant information and one may consider only one of
these two sets of features and obtain almost the same per-
formance. On the one hand downscaled patches have the
advantage of using the raw averaged intensities, while dis-
tances to centroids require a preprocessing step to approx-
imate the centroids by using two networks. On the other
hand downscaled patches take a significantly larger amount
of memory than the 134 distances to centroids. Remaining
errors are rather due to local imprecision of the segmenta-
tions and lie on the boundaries of the regions (cf. figure 7c).
Future work should focus on improving this local precision
by, for example, sampling more training data points along
these boundaries.

We obtained our best model by optimising the mean dice
coefficient indirectly by considering the plain negative log-
likelihood as cost function. However, we believe that future
research should consider more sophisticated cost function
that can take into account the high class imbalance of the
problem (in the MICCAI dataset, the smallest region ac-
counts for only 0.01% of the brain volume, whereas the
biggest accounts for 16.9%). We carried out a few exper-
iments in which we weighted the error of each datapoint
with penalty terms such as Vtrue

Vpred
(Vtrue and Vpred are re-

spectively the volumes of the true and predicted regions of
the datapoint) but these attempts did not lead to substantial
improvements. We also tried to sample the same number of

voxels per anatomical region but it did not seem to improve
the performance.

In our experiments, we obtained good validation results
by training huge networks, sometimes composed of tens of
millions of parameters, with a relatively small amount of
data (a few thousands already provided decent results). Al-
though the trained networks overfit the training data, they
still generalise fairly well to unseen MRIs. The reason is
likely due to the fact that, contrary to natural images, brain
MRIs are highly structured and there is relatively little vari-
ability between regions from one brain to another. This may
explain why relatively few voxels are sufficient during train-
ing. Using more training atlases in order to capture more
variability during training would be the ideal solution to re-
duce overfitting, and we expect that substantial improve-
ments can be achieved by increasing the number of train-
ing atlases. Unfortunately, atlases are rare and expensive
to obtain. Further work should consider generating artifi-
cial atlases from the existing ones by applying small trans-
formations such as rotations, scaling, noise or other small
distortions that may be plausible in real MRIs. Instead of
creating whole new artificial atlases, these transformations
could be included in the model itself as we did with our
noise layer that corrupts distances to centroids on the fly.

References
[1] Y. Bengio. Learning deep architectures for AI. Foundations

and trends R© in Machine Learning, 2(1):1–127, 2009. 1, 2
[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU Math Expression Compiler. In
Proceedings of the Python for Scientific Computing Confer-
ence (SciPy), year = 2010, location = Austin, TX, note =
Oral Presentation, June. 7

[3] O. Bousquet and L. Bottou. The tradeoffs of large scale
learning. In Advances in neural information processing sys-
tems, pages=161–168, year=2008. 5

[4] C. Cernazanu-Glavan and S. Holban. Segmentation of bone
structure in X-ray images using convolutional neural net-
work. Adv. Electr. Comput. Eng, 13(1):87–94, 2013. 2

[5] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmid-
huber. Deep neural networks segment neuronal membranes
in electron microscopy images. In Advances in neural infor-
mation processing systems, pages=2843–2851, year=2012.
2

[6] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmid-
huber. Mitosis detection in breast cancer histology im-
ages with deep neural networks. In Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2013,
pages=411–418, year=2013, publisher=Springer. 2

[7] P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles,
and D. L. Collins. Patch-based segmentation using expert
priors: Application to hippocampus and ventricle segmenta-
tion. NeuroImage, 54(2):940–954, 2011. 1

[8] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier
networks. In Proceedings of the 14th International Confer-
ence on Artificial Intelligence and Statistics. JMLR W&CP
Volume, volume=15, pages=315–323, year=2011. 5

[9] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and
A. Hammers. Automatic anatomical brain MRI segmenta-
tion combining label propagation and decision fusion. Neu-
roImage, 33(1):115–126, 2006. 1, 2

[10] M. Hutchinson and U. Raff. Structural changes of the sub-
stantia nigra in Parkinson’s disease as revealed by MR imag-
ing. American journal of neuroradiology, 21(4):697–701,
2000. 1

[11] A. Klein, B. Mensh, S. Ghosh, J. Tourville, and J. Hirsch.
Mindboggle: automated brain labeling with multiple atlases.
BMC medical imaging, 5(1):7, 2005. 1, 2

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages=1097–1105, year=2012. 1

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 4

[14] N. Lee, A. F. Laine, and A. Klein. Towards a deep learn-
ing approach to brain parcellation. In Biomedical Imaging:
From Nano to Macro, 2011 IEEE International Symposium
on, pages=321–324, year=2011, organization=IEEE. 2

[15] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C.
Morris, and R. L. Buckner. Open Access Series of Imaging
Studies (OASIS): cross-sectional MRI data in young, middle
aged, nondemented, and demented older adults. Journal of
cognitive neuroscience, 19(9):1498–1507, 2007. 6

[16] I. Middleton and R. I. Damper. Segmentation of magnetic
resonance images using a combination of neural networks
and active contour models. Medical engineering & physics,
26(1):71–86, 2004. 2

[17] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and
P. E. Barbano. Toward automatic phenotyping of developing
embryos from videos. Image Processing, IEEE Transactions
on, 14(9):1360–1371, 2005. 2

[18] J. R. Petrella, R. E. Coleman, and P. M. Doraiswamy. Neu-
roimaging and Early Diagnosis of Alzheimer Disease: A
Look to the Future 1. Radiology, 226(2):315–336, 2003. 1

[19] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and
M. Nielsen. Deep feature learning for knee cartilage
segmentation using a triplanar convolutional neural net-
work. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2013, pages=246–253, year=2013,
publisher=Springer. 2

[20] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Un-
supervised learning of invariant feature hierarchies with ap-
plications to object recognition. In Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages=1–8, year=2007, organization=IEEE. 4

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Cognitive mod-
eling, 1988. 5

[22] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.

In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), pages=1139–1147, year=2013.
5

