
 

 

 
 

Abstract 
 

We present a quantitative evaluation of Matrioska, a 
novel framework for the detection and tracking in real-
time of unknown object in a video stream, on the 
LTDT2014 dataset that includes six sequences for the 
evaluation of single-object long-term visual trackers. 
Matrioska follows the approach of tracking by detection: 
the detector localizes the target object in each frame, 
using multiple keypoint-based methods. To account for 
appearance changes, the learning module updates both 
the target object and background model with a growing 
and pruning approach. 
 
 

1. Introduction 
Despite recent innovations, real-time object tracking 

remains one of the most challenging problems in a wide 
range of computer vision applications. The task of 
tracking an unknown object in a video can be referred to 
as long-term tracking [1] or model-free tracking [2]. The 
goal of such systems is to localize the object (we will refer 
to it as target object) in a generic video sequence, given 
only the first bounding box that defines the object in the 
first frame. Tracking objects is challenging because the 
system must deal with changes of appearance, 
illuminations, occlusions, out-of-plane rotations and real-
time processing requirements. 

In its simplest form, tracking can be defined as the 
problem of estimating the object motion in the image 
plane. Numerous approaches have been proposed, but they 
mainly differ in the choice of the object representation, 
that can include: (i) points, (ii) primitive geometric shapes, 
(iii) object silhouette, (iv) skeletal models and more. For 
further details we refer the reader to [3]. 

The main challenge of an object tracking system is the 
difficulty to handle the appearance changes of the target 
object. The appearance changes can be caused by intrinsic 

changes such as pose, scale and shape variation and by 
extrinsic changes such as illumination, camera motion, 
camera viewpoint, and occlusions. To model such 
variability, various approaches have been proposed, such 
as: updating a low dimensional subspace representation 
[4], MIL based [2] and template or patch based.  

Robust algorithms for long-term tracking are generally 
designed as the union of different modules: a tracker, that 
performs object motion analysis, a detector, that localizes 
the object when the tracker accumulates errors during run-
time and a learner that updates the object/background 
model.  

A system that uses only a tracker is prone to failure: 
when the object is occluded or disappears from the camera 
view, the tracker will usually drift. For this reason the 
proposed framework is the union of only two modules: the 
detector and the learner. The detector can use multiple 
keypoint-based methods to correctly localize the object, 
despite changes of illumination, scale, pose and 
occlusions, within a  fallback model. The learning module 
updates the training pool used by the detector to account 
for large changes in the object appearance. Quantitative 
evaluations demonstrate the effectiveness of this approach 
that can be classified as a “tracking-by-detection” 

algorithm, since it tracks the target object by detecting it 
frame by frame.  

1.1. Related work 
Recently a number of surveys ([5], [6], [7]) compared 

the performance of many visual trackers. Different 
outcomes were proposed, especially because VOT 
challenge did not require a re-detector module in case of 
tracker drifts.  

We present a short summary of the most recent trackers. 
PLT (single scale pixel based LUT [26]) runs a classifier 
at a fixed single scale to determine the top scoring 
bounding box. An online sparse structural SVM is used to 
select a small set of features, and a probabilistic object-
background segmentation is used to adjust the weight 
during the training. FoT (Flock of Trackers [9]) estimates 
the object motion using local trackers covering the object. 
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Local-Global Tracking LGT [10] and LGT++ [11] 
combine the target global and local appearance by 
interlacing two layers. EDFT (Enhanced Distribution 
Fields for Tracking  [12]) derives an enhanced 
computational scheme by employing the connection 
between histograms and channel representations. ALIEN 
(Appearance Learning In Evidential Nuisance [17]) 
resides on local features to detect and track. HoughTrack 
[13] and PixelTrack [14] use a voting procedure to detect 
the object. CMT (Consensus-based Matching and 
Tracking [15])  uses a voting procedure exploiting the 
information given by the matching and tracking procedure. 
Matrioska [8] also resides on local features and uses a 
voting procedure. Other interesting approaches are: LT-
FLO [16], GSDT [18], AIF [19], DFT [20] and ORIA 
[21]. 

2. Matrioska Overview 
Matrioska is composed by two modules: detector and 

learning. The detector can use multiple keypoint-based 
methods (such as ORB [23], FREAK [24], SIFT [25] and 
more) to correctly localize the object frame by frame 
exploiting the strengths of each method. We showed how 
the joint use of multiple keypoint-based methods can 
enhance the robustness while keeping real-time 
performance with the use of a fallback strategy. According 
to this strategy only the sufficient keypoint-based methods 
will be used to detect the object in relation to the difficulty 
of the detection on each frame.  

The learning module, on the other hand, updates the 
training pool used by the detector to localize the object in 
presence of strong appearance changes (shape 
deformation, lightning variation and scale and pose 
changes) using a growing-and-pruning approach: while 
tracking the object, the system learns new positive and 
negative samples (keypoints) identified by the detector, as 
Figure 1 shows. To avoid performance degradations, when 
the number of keypoints is greater than a threshold, the 
pruning procedure removes 20% of the samples (typically 
the oldest).  

 
Figure 1: Matrioska uses two components: the detector and the 
learning module. The detector localizes the target object using 

the information given by the learning module and the latter 
updates the training pool with both positive and negative samples 
(keypoints) identified by the detector. 
 
 

2.1. Outliers Filtering 
Matrioska has been enhanced for testing on LTDT2014 

dataset using a slightly different outlier filtering method. 
Filtering outliers is one of the toughest challenge that 
arises using keypoint-based methods. Many well-known 
robust fitting methods, such as RANSAC or LMedS 
(Least Median of Squares) cannot handle large percentage 
of outliers (greater than 50%). For this reason we use a 
clustering procedure that produces good results even in 
presence of high percentages of outliers [25].  

Specifically, we use a slightly different procedure than 
the original Matrioska: to achieve a higher accuracy we 
cluster features in a four-dimensional accumulator space 
(instead of a three-dimensional space) using every pair of 
keypoints found inside the current frame. A single pair of 
keypoints specifies four parameters: 2D object center 
coordinates, orientation and scale.  

The scale factor can be easily estimated by calculating 
the ratio between the distance of the pair of keypoints of 
the model image on the distance of the respective 
keypoints in the query image. After all pairs of keypoints 
voted their parameters, the most voted bucket, in the 
accumulator space, is used to localize the target object if it 
contains at least four votes.  

The accumulator space can be seen as a sparse matrix, 
therefore to efficiently implement it we use a hash table 
where the four parameters are combined to calculate the 
hash index. Collisions are solved with a chaining 
approach. 

 
 

3. Performance Evaluation 
We present the performance evaluation of Matrioska on 

the dataset provided in LTDT2014. The dataset contains 
six long-term sequences: motocross, volkswagen, 
carchase, LiverRunCropped, NissanSkylineChaseCropped 
and Sitcom. They contain the typical challenges 
encountered with long-term sequences, such as: scale 
changes, appearance changes and partial or total 
occlusion. We use the same parameters for all sequences, 
and because we aim to achieve, along with a good 
robustness, a very fast processing speed we register in the 
Matrioska’s technique pool only ORB keypoints. This is a 

risky choice because ORB is clearly not as robust as SIFT, 
but on the other hand is several order of magnitude faster 
than SIFT. Our motivations are: (i) for long term 
sequences a real-time processing speed is mandatory and 
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(ii) we want to show how Matrioska can achieve a very 
solid performance without using computational expensive 
keypoint-based methods. To evaluate the performance, 
both the distance score and the bounding box overlap 
metrics are used. 

 

3.1. Carchase 
The first sequence, carchase, contains 9928 frames. The 

main challenges of this sequence is the scale changes that 
the target object undergoes during the chase, and the 
strong appearance change at about the frame #6100. 
Figure 2 shows some snapshots of the sequence with 
successful tracking, red points represent negative 
keypoints, while blue represent positive ORB keypoints. 
Green segments show the pair of keypoints used for voting 
the object center in the accumulator space.  

 
 

 
Figure 2: Snapshots from the carchase sequence. The target 
object is correctly localized despite the presence of strong scale 
and appearance changes and a partial occlusion. Green segments 
show the pair of keypoints used to cast the object center votes in 
the accumulator space. 
 

3.2. Volkswagen 
The second sequence, volkswagen, contains 8576 

frames. The main challenge of this sequence is the small 
size of the first appearance of the target object. This can be 
tricky because: (i) a single patch of a single keypoint 
covers the entire object, or, worse, it can describe the 

background instead of the object and (ii) very few 
keypoints may be detected inside the object. For this 
reasons we reduce the patch size used by ORB to 13x13 
pixels, note that in this situation the use of multiple 
keypoint based methods would be very helpful. 

 
 

 
Figure 3: Snapshots from the volkswagen sequence. The target 
object is correctly localized despite the small size of the target 
object in the first frames. 
 

3.3. Motocross 
The third  sequence, motocross, contains 2665 frames. 

The main challenge of this sequence is the appearance and 
scale changes of the motorbike. This sequence might seem 
difficult, but in practice it is not, due to the presence of an 
uniform background that clearly separates the target object 
from the rest of the scene, making a tracker drift very 
unlikely. 

 
 

 
Figure 4: Snapshots from the motocross sequence. The target 
object is correctly localized despite the appearance changes. 
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3.4. LiverRunCropped 
The fourth  sequence, LiverRunCropped, contains 

29598 frames, it is the largest sequence of the dataset. This 
is, along with volkswagen, the most difficult sequence of 
the dataset. The main challenge is the poor quality of the 
video and the low number of keypoints found inside the 
target object in the first frames. 

 
 

 
Figure 5: Snapshots from the LiverRunCropped sequence. The 
target object is correctly localized despite the appearance 
changes. 
 

3.5. NissanSkylineChaseCropped 
The fifth  sequence, NissanSkylineChaseCropped, 

contains 3742 frames. The main challenge of this 
sequence is the scale changes of the car. In terms of 
difficulty this sequence is very similar to volkswagen, but 
this time the object is much better defined and many more 
keypoints can be detected and described. 

 
 

 
Figure 6: Snapshots from the NissanSkylineChaseCropped 
sequence. 
 

3.6. Sitcom 
The sixth  sequence, Sitcom, contains 3898 frames. The 

main challenge of this sequence is the out-of-plane 
rotation of the target object (in this case a face). Figure 7 
shows some snapshots of Matrioska localizing the target 
object. 

 
 

 
Figure 7: Snapshots from the Sitcom sequence. 

3.7. Failure Cases 
Figure 9 and Figure 8 show typical failure cases of our 
approach. Matrioska uses keypoint-based methods to 
detect the target object in each frame, hence it inherits 
their weaknesses. Failure cases can include: low quality 
sequences, texture-less objects, motion blur, repetitive 
patterns and small objects. Other minor failure cases 
include: out-of-plane rotations and non-rigid deformations. 
 
 

 
Figure 8: Typical failure cases for volkswagen and carchase 
sequences. 
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Figure 8 shows snapshots from volkswagen and carchase 
sequences. Typical failure cases, for these sequences, 
include: very small object size (frame #7105 for 
volkswagen and frame #8087 for carchase) and a strong 
partial occlusion (frame #9212 for carchase). Small 
objects represent a challenge because a single keypoint 
covers the entire object and the system cannot estimate the 
right pose of the object.  

Figure 9 shows snapshots from LiverRunCropped, 
NissanSkylineChaseCropped and Sitcom sequences. 
Typical failure cases, for these sequences, include: a low 
illumination (frame #20302 for the first sequence), a 
motion blur (frame #392 for the second) and a strong pose 
change (frame #626 for the Sitcom sequence). Low 
illumination and motion blur are challenging because the 
keypoints detected inside the target object are not 
sufficient for a correct localization. 

 
 

 
Figure 9: Typical failure cases for LiverRunCropped, 
NissanSkylineChaseCropped and Sitcom sequences. 
 
 

3.8. Experiments 
We report the results obtained with the dataset in terms 

of recall of both the bounding box overlap Φ and the 

center distance δ. The bounding box overlap is defined as: 
 

 

 
where  is the bounding box of the tracker and  is 
the bounding box of the ground truth. 

Table 1 shows the performance of Matrioska. It is 
interesting to note the solid performance obtained by the 
algorithm using only a fraction of the processing time of 
other algorithms. This is possible due to the use of the 
ORB keypoints inside the framework.  

 
Sequence Frames Overlap Distance FPS 
Carchase 9928 0.642 0.850 55 
Volkswagen 8576 0.757 0.842 48 
Motocross 2665 0.749 0.792 52 
LiverRunCropped 29598 0.598 0.610 56 
NissanSkylineCC 3742 0.854 0.894 42 
Sitcom 3898 0.486 0.534 39 

Table 1: Matrioska performance with LTDT sequences. We use 
the default threshold for both overlap (0.5) and center distance 
(20) recall. 

 
For completeness we report the results, in Table 2, 

obtained by the algorithm with the VOT2013 challenge [5] 
(held in conjunction with ICCV2013) aimed to benchmark 
short-term trackers. For the complete set of the 
experiments and further details we refer the reader to [5]. 
For all the experiments we used a 2.67 GHz Intel i7-920 
processor. 

 
Tracker Baseline experiment 
PLT 5.26 
FoT 7.85 
LGT++ 9.99 
EDFT 10.1 
SCTT 10.6 
CCMS 11 
AIF 11.1 
Matrioska 11.5 
LGT 11.6 
DFT 11.9 
LT-FLO 11.9 
GSDT 11.9 
STRUCK 12.6 
IVT 13 
ASAM 13.2 
ORIA 14.1 
PJS-S 15 
SwATrack 15.8 
TLD 16.4 

Table 2: VOT2013 baseline experiment. Matrioska used a 
combination of ORB and SURF for this challenge. 
 

4. Conclusions 
In this paper we evaluated the performance of 

Matrioska with six long-term sequences. We demonstrated 
how this algorithm reaches state-of-the-art accuracy while 
requiring only a fraction of the processing time of other 
trackers. This is possible by using computationally 
efficient techniques such as ORB. Even if some failure 
cases can be evidenced (e.g. low quality sequences, 
texture-less objects, motion blur, repetitive patterns and 
small objects) Matrioska well behaves in most cases. 

We also reported the results obtained for the VOT2013 
challenge aimed to benchmark short-term trackers. In this 
case we used a combination of ORB and SURF and 
demonstrated how Matrioska can handle both short and 
long-term sequences.  

Regarding future developments, to avoid failure cases 
as much as possible, it would be interesting to integrate a 
new module to handle texture-less objects and low quality 
sequences.  
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