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Abstract

We propose a distinctive feature vector compression

method based on least error quantization. This method

can be applied to several biometrics methods using fea-

ture vectors, and allows us to significantly reduce the mem-

ory size of feature vectors without degrading the recogni-

tion performance. In this paper, we prove that minimiz-

ing quantization error between the compressed and origi-

nal vectors is most effective to control the performance in

face recognition. A conventional method uses non-uniform

quantizer which minimizes the quantization error in terms

of L2-distance. However, face recognition methods often

use metrics other than L2-distance. Our method can cal-

culate the quantized vectors in arbitrary metrics such as

Lp-distance (0 < p ≤ ∞) and the quantized subspace

basis. Furthermore, we also propose a fast algorithm cal-

culating Lp-distances between two quantized vectors with-

out decoding them. We evaluate the performance of our

method on FERET, LFW and large face datasets with LBP

(Lp-distance), Mutual Subspace Method and deep feature.

The results show that the recognition rate using the quan-

tized feature vectors is as accurate as that of the method

using the original vectors even though the memory size of

the vectors is reduced to 1/5 - 1/10. In particular, apply-

ing our method to the state-of-the-art feature, we are able

to obtain the high performance feature whose size is very

small.

1. Introduction

Reduction of the memory size of features is one of the

fundamental issues in biometric identification. Recently,

there is a compelling need for multi-biometrics or multi-

template authentication, because the concept of fusion in

biometrics helps to keep high security, and the identifica-

tion with several templates improves usability. While tem-

plates are increasing, it is desirable to minimize template

size since the memory size of IC-Card is limited. In the

case of face recognition, multiple templates are utilized for

verification in video surveillance system which takes multi-

ple faces from multiple cameras.

There is a face recognition method which uses a sub-

space as individual features. For example, in Mutual Sub-

space Method [30] a subspace which is generated from mul-

tiple feature vectors represents individual features. This

representation is suboptimal from a statistical point of view

because the subspace is generated by PCA [26]. Hence,

additional memory size reduction is a hard problem. In

addition, there is a recognition method whose similarity is

calculated by L1-distance instead of L2-distance. Local Bi-

nary Pattern [2] is a famous feature in face recognition com-

munity and, its feature vector consists of histograms. LBP

with L1-distance is often more effective than L2-distance.

Therefore, a compression method which is independent of

feature and distance is effective for face recognition.

In computer vision field, several small size features are

proposed; Compressed Histogram of Gradients [4], ellip-

tical regions with the gravity vector [20], learned binary

codes [7, 15, 25, 28], and Regions with feature points [29].

Furthermore, compressed descriptors [10, 14] and code-

book compression on the Bag of Features [6, 10, 17, 27]

are proposed. Memory size of features of these methods are

extremely small, but these features depend strongly on the

recognition methods.

As a method-independent compression, we usually use

statistical dimensionality reduction such as PCA [26],

LDA [3], LPP [9], LCD [5]. These methods extract

meaningful features from original high-dimensional vec-

tors, based on the spatial bias of the feature vectors and their

relationship. They are effective for compression of feature

vectors, and can be applied to several methods which use

feature vectors, but these method need training data. Fur-

thermore, their compression is more efficient by combina-

tion of a essentially different method.

In the view of signal processing, Quantization, Dis-

crete Cosine Transform (DCT) [21], and Vector Quantiza-

tion (VQ) [8] are commonly used for image compression.

DCT decomposes a signal into spatial frequency compo-

nents derived from weighted sums of cosine harmonics,
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Original PCA

Uniform Quantizer The Proposed Method
Figure 1. We applied PCA, uniform quantizer, and the proposed

method to three-dimensional vectors on a grid. The projection

dimension of PCA was two. The level of the uniform quantizer

was eight. The proposed method is different from other methods

and projects each vector to one of three subspaces.

and VQ constructs a codebook of representative vectors.

These methods have a good property of image compres-

sion. However, DCT and dimensionally reduction methods

have in common because DCT use a linear projection, and

VQ needs a set of vectors. On the other hand, Quantiza-

tion reduces the size of a vector by compressing a range

of the values. This method is based only on the bias of

values with ignoring the spatial structure. Therefore, Quan-

tization does not use a linear projection and does not need

training vectors. We compress feature vectors efficiently us-

ing non-uniform quantizer, when their values are distributed

non-uniformly. In each vector, bias of its values are usu-

ally different. Therefore, instead of a common quantizer,

we efficiently compress each vector with the non-uniform

quantizer optimized for the vector, although we have to add

another table to each quantized vector.

Among many quantization methods were proposed, Otsu

proposed a quantization method [22], which uses non-

uniform quantizer minimizing the quantization error in the

least square sense for each gray scale image. This method

does not need training data, and can be applied to sev-

eral recognition methods using feature vectors. While L2-

distance is a reasonable choice for image compression, it is

not always the case in face recognition, where metrics other

than L2-distance are also commonly used [1]. Furthermore,

the relation between recognition performance and quantiza-

tion error is not clear.

We propose a feature vector compression method from a

viewpoint of recognition. We prove that minimizing quan-

tization error is most effective to control the recognition

performance, and generalize Otsu’s quantization method

to handle arbitrary distance metrics, such as Lp-distance

(0 < p ≤ ∞). Since our method enables to choose the

appropriate distance metric with respect to a problem we

address, better recognition performance is expected in com-

parison with that of Otsu’s quantization method. Figure 1

illustrates PCA, uniform quantizer and the proposed method

applied to grid points on three-dimensional space. Further-

more, we also propose a fast algorithm for calculating dis-

tances without decoding the quantized vectors because dis-

tance calculation is not necessary in image compression,

but necessary in patten recognition. Finally, we show the

effectiveness of the proposed method through experiments

on FERET database [24], LFW [12] and a large scale face

database. Our method gives equivalent recognition perfor-

mance in comparison with that of the method using the orig-

inal vectors even though the memory size is reduced to 1/5-

1/10.

2. Relation between Quantization Error and

Recognition Accuracy

We prove that minimizing quantization error of each fea-

ture vector is most effective to control the recognition accu-

racy of the method using quantized vectors. In this section,

we analyze within-class and between-class scatter of com-

pressed feature vectors, and apply this analysis to quantiza-

tion.

2.1. WithinClass and BetweenClass Scatter of
compressed vectors

We describe, in section 2.1, the variance of compres-

sion error is the main factor to degrade recognition accuracy

caused by generic feature vector compression.

We assume, in this paper, that original and compressed

vectors are in the same space, and that a compression er-

ror ϵ which is the difference between an original vector v
and its compressed vector v′, is normally distributed with a

mean vector m and a covariance matrix σ2
I, where I is the

identity matrix;

ϵ = v − v′ ∼ N(m,σ2
I), (1)

We compare the difference between original vectors and

that between their compressed vectors;

(v′ − w′)− (v − w) = (v′ − v)− (w′ − w)

= ϵv − ϵw ∼ N(0, 2σ2
I), (2)

where v and w are original vectors, v′ and w′ are their com-

pressed vectors, and ϵv and ϵw are their compression er-

rors. From equation (2), the differences between these dif-

ferences are normally distributed, and their mean and co-

variance matrix are 0 and 2σ2
I, respectively. Therefore,

their distances is normally distributed, and their mean and

variance are 0 and 2dσ2, where d is the dimension of vec-

tors;

||ϵv − ϵw|| ∼ N(0, 2dσ2), (3)
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Figure 2. Distributions of the distances between original vectors

and compressed vectors. The means of distributions of original

vectors and that of compressed vectors are same, and only their

variances are different.

We derive the distribution of distances between com-

pressed vectors, its mean and variance. From equation (2),

the distribution of distances between two compressed vec-

tors ρ′(s) is the convolution of these two functions;

ρ′(s) = (ρ ∗ ϵ)(s) =

∫ ∞

−∞

ρ(s)ϵ(t− s)dt, (4)

where ρ(s) is the distribution of distances between original

vectors and ϵ(s) is the distribution of the difference between

compression errors defined by equation (3). From equations

(4) and (3), the mean and the variance of ρ′(t) are the fol-

lowing;

m(ρ′) = m(ρ) +m(ϵ) = m(ρ), (5)

σ2(ρ′) = σ2(ρ) + σ2(ϵ) = σ2(ρ) + g(σ2), (6)

where m(f) and σ2(f) are the mean and the variance of

function f , respectively, and g(σ2) is a monotone increas-

ing function with respect to σ2. From these equations, the

distribuion of distances between compressed vectors is de-

pend only on the variance of compression errors and, their

variance is a monotone increasing function with respect to

the variance of compression errors.

We apply the the equations (5) and (6) to within-class

and between-class scatter of original and compressed fea-

ture vectors (Figure 2). This shows that means of within-

class and between-class distribution are same and their vari-

ances are increased by the variance of compression error.

As a results, the variance of compression error is the main

factor to degrade recognition accuracy caused by feature

vector compression.

2.2. Quantization Error

We apply the arguments in section 2.1 to quantization,

and describe that minimizing quantization error of each fea-

ture vector is most effective.

Figure 3. N -level non-uniform quantizer whose thresholds are

T = {t1, . . . , tN−1} and values A = {a1, . . . aN}

In this paper, a d-dimensional quantized vector X ′ =
(x′

1, . . . , x
′
d) of a original vector X = (x1, . . . , xd) with

N -level non-uniform quantizer QT,A whose thresholds are

T = {t1, . . . , tN−1} and values A = {a1, . . . aN} (Figure

3) is defined as follows;

(x′
1, . . . , x

′
d) = (QT,A(x1), . . . , QT,A(xd)), (7)

QT,A(x) =







a1 if x < t1,
ai if ti−1 ≤ x < ti (1 < i < N − 1),
aN if tN−1 ≤ x.

(8)

Quantization error is divided into two non-negative parts;

the minimum part and the rest part. First, quantization error

ϵ(X,QT,A) is defined as follows;

ϵ(X,QT,A) = ||QT,A(X)−X||. (9)

This is a non negative function with respect to thresholds T
and values A. Therefore, it has the minimum value ϵmin(X)
and quantization error is divided into the minimum value

and its rest ϵrest(X,QT,A);

ϵmin(X) = min
T,A

(ϵ(X,QT,A)). (10)

ϵ(X,QT,A) = ϵmin(X) + ϵrest(X,QT,A). (11)

The minimum ϵmin(X) is depend only on a vector X and

independent of thresholds T and values A. On the other

hand, the rest ϵrest(X,QT,A) is a non-negative function with

respect to thresholds T , values A and a vector X .

We consider those three distributions; Quantization error

ρ(ϵquant), its minimum ρmin(ϵ) and rest ρrest(ϵ). From the

equation (11), the distribution of quantization error is the

convolution of the others;

ϵquant(s) =

∫ ∞

−∞

ϵmin(s)ϵrest(t− s)dt. (12)

From this equation, the variances of these distributions have

the following relation;

σ2(ϵquant) = σ2(ϵmin) + σ2(ϵrest). (13)
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Therefore, the variance of quantization errors is the sum of

that of minimum quantization errors and that of the rests.

As a results, minimizing quantization error of each vector

obtain the least variance of quantization errors.

3. Quantization with L2-distance

We explain the quantization with L2-distance based on

Otsu’s quantization method [22]. This quantization is non-

uniform quantizer which minimizes the quantization error

in the least square sense for each vector. This minimization

problem is solved by dynamic programing algorithm.

3.1. Problem Formulation

We prove that the minimum quantization of a vector is

equivalent to the minimum clustering of the set which con-

sists of vector values. We solve the equation (14).

argmin
T,A

||QT,A(X)−X||22. (14)

where || · ||2 is L2-norm. First, we can assume x1 ≤ · · · ≤
xD without loss of generality because the quantization er-

rors of X and its permutation vector Xperm are same values

from the equation (15):

||QT,A(X)−X||22 =
d

∑

i=1

|xi −QT,A(xi)|
2

=

d
∑

j=1

|xj −QT,A(xj)|
2

= ||QT,A(Xperm)−Xperm||
2
2.(15)

Let Ci = {xj |ti−1 ≤ xj < ti} be i-th cluster divided

by thresholds ti−1 and ti, where t0 is below x0 and td is

above xd. The quantizer QT,A translates each element of i-
th cluster Ci to ai for i = 1, . . . , N . The quantization error

(14) is described by Ci and ai:

||QT,A(X)−X||22 =
N
∑

i=1

∑

x∈Ci

(ai − x)2, (16)

=
N
∑

i=1

Ni((ai −mi)
2 + σ2

i ),(17)

where Ni, mi, and σ2
i are the number, mean, and vari-

ance of Ci, respectively. The right hand side of the equa-

tion (16) is equal to the clustering error, where the set

X̃ = {x1, . . . , xd} is divided by Ci whose average is ai
(i = 1, . . . , N) (Figure 4). The equation (17) shows that

the clustering error of Ci is minimum when each average ai
is the mean of Ci. From these results, we solve the mini-

mum clustering problem as follows:

argmin
X̃=C1⊔...⊔CN

N
∑

i=1

∑

x∈Ci

(mi − x)2. (18)

Figure 4. Clustering of the set {x1, . . . xd} by thresholds

t1, . . . , tN−1, where the set consists of values of a vector X .

Figure 5. Overlapping subproblem of minimum error clustering.

3.2. Search algorithm

We find the global minimum of clustering problem (18)

with dynamic programing algorithm among all combina-

tions of thresholds, whose number is (d−1)C(N−1). Otsu’s

algorithm is based on the following overlapping problem:

If the thresholds t1 ≤ · · · ≤ tn−1 minimizes the clustering

error of {x1, . . . , xδ}, then their subset t1 ≤ · · · ≤ tn−2

minimizes the clustering error of {x1, . . . , xtn−1
} (Figure

5). We define E2(n, δ) as the minimum clustering error of

the set {x1, . . . , xδ}, where its clustering number is n. The

solution of the original clustering problem is represented

as E2(N, d). E2(n, δ) satisfy the following equations for

δ = 1, . . . , d and n = 1, . . . , N ;

E2(n, δ) = min
n−1≤t≤δ−1

{E2(n−1, t)+e2(t+1, δ)}. (19)

E2(1, δ) = e2(1, δ). (20)

e2(δ, δ′) = min
µ

δ′
∑

i=δ

(µ− xi)
2. (21)

The equation (21) is minimum when µ is equal to the mean

of the cluster {xδ, . . . , xδ′}.
Algorithm 1 denotes the global minimum search algo-

rithm based on equation (19) and (20). t(n, δ) is the n-th

threshold of {x1, . . . , xδ}. Each threshold ti of the solution

are calculated by the equation (22) for i = 1, . . . , N − 1.

ti = (xt(i−1,d)−1 + xt(i−1,d))/2. (22)

This is a O(Nd2)-time algorithm.
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Algorithm 1 Search algorithm of minimum clustering

1: for all t = 1 to d do

2: E2(1, t)← e2(1, t).
3: end for

4: for all n = 2 to N do

5: for all δ = n− 1 to d do

6: for all t = n− 1 to δ do

7: if E2(n− 1, t) + e2(t+ 1, δ) < E2(n, δ) then

8: E2(n, δ)← E2(n− 1, t) + e2(t+ 1, δ)
9: t(n, δ)← t

10: end if

11: end for

12: end for

13: end for

4. Proposed Method

In this section, we describe three contributions. First, we

extend Otsu’s quantization method to deal with any met-

rics. Second, we describe data structure of a quantized vec-

tor. Last, we propose a method for calculating the distance

without decoding the quantized feature vectors.

4.1. Minimum LpQuantization Error

We extend the problem (18) to deal with Lp-distance:

argmin
T,A

||QT,A(X)−X||pp. (23)

We find the global minimum of clustering problem (23), us-

ing the algorithm in section 3.2 with the following ep(δ, δ′)
instead of e2(δ, δ′):

ep(δ, δ′) =

{

minµ
∑δ′

i=δ |µ− xi|
p (0 < p <∞),

minµ maxd≤i≤d′{|µ− xi|} (p =∞),
(24)

For example, e1(δ, δ′) and e∞(δ, δ′) are minimum when µ
is the median of a cluster {xδ, . . . , xδ′} and (xδ + xδ′)/2,

respectively. Moreover, we can apply an arbitrary metric to

the quantization using this extension.

4.2. Data Structure of A Quantized Vector

We propose data structure of a non-uniform quantized

vector which minimizes the quantization error of each vec-

tor. Because this quantizer is optimized for each vector,

each quantized vector needs to have its values. A N -level

non-uniform quantized vector consists of not only a discrete

sequence but also a value table:

(x1, . . . xd)→

{

(a1, . . . , aN ) value table,

(n1, . . . , nd) discrete sequence.
(25)

Since this discrete sequence consists of a bit sequence,

memory size of a quantized vector is as follows;

f ×N + ⌈log2(N)⌉ ×D (bit), (26)

Figure 6. Memory size of a original vector and a quantized vector

(level = 2, 4, 8, 16). f in equation (26) is 4 bit. The compression

by non-uniform quantizer for each vector is efficient, although a

quantized vector has not only its discrete sequences but also its

value table.

where f is the memory size of a continuous value, and ⌈n⌉
is the minimum integer that is not less than n. Figure 6 is

the graph of memory sizes of quantized and original vec-

tors. This figure shows that the memory size of a quantized

vector is much smaller than that of an original vector al-

though it has its value table.

4.3. Distance Calculation

We propose calculation of the distance between quan-

tized vectors without decoding.

The Lp-distance between quantized vectors v′ and w′ is

calculated:

||v′ − w′||pp =
d

∑

i=1

|ani
− ãñi

|p, (27)

where {(ai), (nj)} and {(ãi), (ñj)} are the data structure

of v′ and w′, respectively (i = 1 . . . N, j = 1 . . . d). This

calculation spend more time than the calculation of the dis-

tance between original vectors because conversion from a

bit sequence to discrete values is added.

We propose calculation which consists of following two

steps: We generate the table {Aij}i,j=1...n which is all

combinations of values on value tables, and add the cor-

responding values on the table (Equation (28), (29)).

Ap
ij = |ai − ãj |

p (i, j = 1 . . . n), (28)

||v′ − w′||pp =

d
∑

i=1

Ap
niñi

(29)

In the second step, our calculation consists of only conver-

sion to discrete values and addition of values of the table.

This calculation is as fast as the calculation of Lp-distance

between original vectors.

To evaluate the process time of the proposed calculation,

we measured L2-distance calculation time of 1000 pairs of

quantized vectors using this method and that of 1000 pairs
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Figure 7. Evaluation of processing time of the proposed distance

calculation. The proposed calculation was as fast as calculation

of the distance between original vectors regardless of their dimen-

sion.

of original vectors in the environment of Intel Core 2 Ex-

treme PC with 3GHz CPU. Figure 7 shows the total time of

calculation of each 1000 pairs. From this figure, the pro-

posed calculation was as fast as calculation of the distance

between original vectors regardless of their dimension.

5. Experiments

We applied the proposed method to Local Binary Pat-

tern [2] with several metrics, Nearest Neighbor, Subspace

Method on a large face database and a deep feature of VGG-

Face CNN descriptor [23].

5.1. Evaluation of Distances

We evaluate the proposed method applied to a method

using Lp-distance (p ̸= 2).

We used fa, fb, fc, dup I and dup II in FERET [24]

database. ”fa” set, used as a gallery set, contains frontal

images of 1,196 people. ”fb” set contains 1,195 images and

their subjects were asked for an alternative facial expression

than in the fa photograph. ”fc” set contains 194 images and

their photos were taken under different lighting conditions.

”dup I” set contains 722 images and their photos were taken

later in time. ”dup II” set contains 234 images is a subset

of the dup I set containing those images that were taken at

least a year after the corresponding gallery image. The eval-

uation index is Correct Match Rate.

We describe the generation of LBP feature vector in this

evalutation. The faces and the feature points were manually

located. To extract robust features for head pose, we applied

3D normalization [16]. We cropped a face whose size is

96 × 96 pixels from the normalized image, and translate

the cropped face to Local Binary Pattern (LBP) [2]. We

divided the LBP pattern face to 8 × 8 rectangular regions,

and concatenated histograms which count each pattern on

each region, to generate a feature vector. The dimension of

the feature vector is 16384 = 256× 8× 8.

First, we show L1-distance is better for the LBP feature

than L2-distances. The results for the LBP feature vec-

Table 1. Correct Match Rate(%) of LBP with L1, L2, and L∞-

distance.

Distance fb fc dup I dup II Mean

L1 95.3 50.0 62.6 42.7 62.7

L2 92.8 51.6 58.3 43.2 61.5

L∞ 51.4 13.4 16.1 6.0 21.7

Table 2. Correct Match Rate(%) of L1, L2 and L∞-compressed

LBP with L1-distance (level = 16)

Compression fb fc dup I dup II Mean

original 95.3 50.0 62.6 42.7 62.7

L1 95.0 51.0 63.0 44.0 63.3

L2 95.1 51.6 52.6 42.7 62.9

L∞ 75.1 37.1 49.0 36.8 49.5

tor with L1, L2, and L∞-distance are shown in Table 1.

The LBP feature vector with L1-distance is better than that

with L2-distance with respect to “Mean“. In particular, L1-

distance is more better than L2-distance in the case “fb”

and “dup I”. On the other hand, L1-distance is worse than

L2-distance in the case “fc” and “dup II”, however the dif-

ferences are small. Therefore, L1-distance is better for the

LBP feature than L2 and L∞-distances.

We applied the propsoed method to the LBP feature vec-

tor with L1-distance. The results for the LBP feature vec-

tor Lp-compressed (p = 1, 2,∞) with level 16 shown in

Table 2. The L1-compression is better than that with L2-

compression with respect to “dup I”, “dup II” and “Mean“.

In the case “fb” and “fc”, L2-compression is better than

L1-compression, however the differences are small. There-

fore, L1-compression is better for the LBP feature with L1-

distance than L2 and L∞-compression.

The size of an original LBP feature vector is 64 KByte

and that of the compression feature vector (level 16) is 8

KByte. Our method reduces size of a feature vector to 1/8.

5.2. Evaluation of Compressing Vectors with PCA
and Compressing Subspaces

We evaluated the proposed method applied to a feature

vector with other dimensional reduction scheme, and a com-

plex feature, such as a basis of subspace.

We prepared the face database consisted of 21771 indi-

viduals, which consisted of public face databases and orig-

inally collected images. We used 21771 gallery images and

908 probe images in the face recognition experiments. The

faces and the feature points were manually located. To ex-

tract robust features for head pose and illumination vari-

ation, we applied 3D normalization [16] and preprocess-

ing [19] to these face images. The dimension of feature

vectors was 256.
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L1-NN L2-NN

L1-NN with PCA (dim=80) L2-NN with PCA (dim=130)
Figure 8. Evaluation of Nearest Neighbor using Lp-distance (p = 1, 2) and PCA with the 8-level proposed method. A number in this

graph denotes its memory size of a feature vector and EER. Red points are EERs of NN with the proposed method using the corresponding

distance. Each red EER was the least and was almost equal to the EER of original vectors. The memory size of the proposed method

was one-fifth of that of original vectors. The memory size of a feature vector of uniform quantization was smaller than those of proposed

methods, but its EER was much larger than those of proposed methods.

We evaluated the proposed method with Lp-distance

(p = 1, 2) with respect to memory size of a feature vec-

tor and recognition accuracy. We applied the 8-level pro-

posed method with Lp-distance (p = 1, 2) and 8-level uni-

form quantization to Nearest Neighbor method (NN) and

NN with PCA using these distances.

The projections of PCA were generated from the gallery

images and their dimensions were 80 on L1-NN and 130 on

L2-NN, which were the best dimension for this database.

Figure 8 shows the results of Lp-NN and those of Lp-NN

with PCA (p = 1, 2), respectively. The left and right

horizontal axes of these figures indicate memory size of a

feature vector and Equal Error Rate (EER), respectively.

This rate is the probability that false acceptance rate (FAR)

equals the false rejection rate (FRR).

From Figure 8, the proposed method reduced memory

size of a feature vector without sacrificing the recognition

accuracy. The memory size of a feature vector of uniform

quantization was smaller than those of proposed methods,

but its EER was much larger than those of proposed meth-

ods. In particular, when the distance of proposed method

and that of NN were same, its EER was the least. As a re-

sults, our method was more efficient than Otsu’s quantiza-

tion, which uses only L2-distance. In addition, using PCA

and our method, we were able to reduce more memory size

of a feature vector than using only PCA.

We applied the proposed method to another face recog-

nition method the Whitened Mutual Subspace Method

(WMSM) [13]. This method uses a subspace as an indi-

vidual feature, and calculate a similarity between two sub-

spaces using inner products of their orthonormal basis. A

inner product of normal vectors is related to L2-distance:

||x− y||22 = ||x||22 + ||y||
2
2 − (x, y) = 2− (x, y). (30)

where, x, y are normal vectors and (x, y) is their inner prod-

uct. Therefore, we applied the proposed method with L2-

distance to orthonormal bases of WMSM. The parameters

of WMSM were same in [13]. Figure 9 shows the re-

sults of experiments on the large face database with orig-

inal WMSM and WMSM to which we applied the proposed

methods whose levels were 2, 4, 8, and 16.

The results of this experiment was that EER of original

WMSM was 4.4 % and that of WMSM with the 16-level

proposed method were 4.5 %. Hence, the proposed method

gave equivalent recognition accuracy in comparison with

that of the method using the original bases even though the

memory size is reduced to 1/5. As a result, the proposed

method reduced memory size of complex features, such as

a basis of subspace without degrading the recognition per-

formance.

5.3. Evaluation of Compressing Deep Features

We applied this method to a deep feature of VGG-Face

CNN descripter [23]. This is one of state-of-the-arts face
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Figure 9. Evaluation of WMSM with proposed methods whose

level were 2, 4, 8, 16, on the large scale face database. The right

horizontal axis A number in this graph denotes memory size of a

basis of each method and its EER. EER of original WMSM was

4.4 %. That of WMSM with 16-level quantization were 4.5 %, and

its memory size was reduced to 1/5.

Table 3. Correct Match Rate(%) of VGG-Face CNN descripter (us-

ing L2-distance) with L2-compression (level = 2, 4, 8, 16).

Feature fb fc dup I dup II

SLBFLE (R=4) [18] 99.9 100.0 95.2 92.7

VGG-Face fc6 [23] 99.9 100.0 98.2 97.0

Compressed fc6 (level=2) 99.9 100.0 97.4 94.9

Compressed fc6 (level=4) 99.9 100.0 97.9 96.6

Compressed fc6 (level=8) 99.9 100.0 98.2 97.0

Compressed fc6 (level=16) 99.9 100.0 98.2 97.0

recognition method. We evaluated “fc6” feature which was

learnt by CNN and the feature with L2-compression (level=

2,4,8,16) on FERET. Table 3 shows these results. SLBFLE

[18] is one of the state-of-the-art feature descripters. fc6

feature and fc6 with our compression (level= 2,4,8,16) are

better than SLBFLE. The dimension of fc6 feature is 4096

and its size is 16.4 KByte. The size of the compression

feature with level 2 is 520 Byte. Applying our method to

a deep feature, we obtain a high performance face feature

whose size is very small.

We also evaluated “fc6” feature with L2-compression on

the “deep funneled” images [11] in the LFW dataset [12].

Table 4 shows these results. The average verification rate of

the original fc6 feature is equal to that of fc6 with level 16

compression. Applying our compression with level 16, we

obtain the state-of-the-art feature whose size is 2.1 KByte.

6. Conclusion

We have analyzed the relation between recognition per-

formance and quantization error, and have proposed a dis-

tinctive feature vector compression method using least er-

ror quantization calculated with arbitrary distance metrics

Table 4. Mean verification rate and standard error(%) on deep fun-

neled images on LFW.

Feature level Accuracy Size (KByte)

VGG-Face fc6 96.62 ± 3.1 16.4

Compressed fc6 2 93.08 ± 3.7 0.5

Compressed fc6 4 96.00 ± 3.5 1.0

Compressed fc6 8 96.52 ± 3.1 1.6

Compressed fc6 16 96.62 ± 3.1 2.1

such as Lp-distance (0 < p ≤ ∞). Furthermore, we

have proposed effective algorithms for distance calculation

of quantized vectors without decoding. To evaluate this

method, we applied this method to LBP, NN, NN with PCA,

WMSM and deep feature learnt by CNN and experimented

on FERET, LFW and a large face database. These results

show that the proposed method can be applied to several

recognition methods and significantly reduces the mem-

ory size of feature vectors without degrading the recogni-

tion performance. In particular, applying our method to the

state-of-the-art feature, we are able to obtain the high per-

formance face feature whose size is very small.
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