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Abstract

Latent fingerprints are fingerprints unintentionally left

at a crime scene. Due to the poor quality and often com-

plex image background and overlapping patterns charac-

teristic of latent fingerprint images, separating the finger-

print region-of-interest from complex image background

and overlapping patterns is a very challenging problem. In

this paper, we propose a latent fingerprint segmentation al-

gorithm based on fractal dimension features and weighted

extreme learning machine. We build feature vectors from

the local fractal dimension features and use them as input

to a weighted extreme learning machine ensemble classi-

fier. The patches are classified into fingerprint and non-

fingerprint classes. We evaluated the proposed segmenta-

tion algorithm by comparing the results with the published

results from the state of the art latent fingerprint segmenta-

tion algorithms. The experimental results of our proposed

approach show significant improvement in both the false de-

tection rate (FDR) and overall segmentation accuracy com-

pared to the existing approaches.

1. Introduction

Latent fingerprint segmentation is of fundamental impor-

tance to the automation of latent fingerprint processing. Au-

tomatic latent fingerprint segmentation with a high degree

of accuracy can drastically reduce the time spent by latent

examiners in processing latent fingerprints. By more ac-

curately defining the region of interest (ROI), the number

of false minutiae (ridge endings and bifurcations) that are

extracted by automated systems can be reduced, leading to

better fingerprint matching results. In recent years, the ac-

curacy of latent fingerprint identification by latent finger-

print forensic examiners has been the subject of increased

study, scrutiny, and commentary in the legal system and

the forensic science literature. Errors in latent fingerprint

matching can be devastating, resulting in missed opportuni-

ties to apprehend criminals or wrongful convictions of inno-

cent people. Several high-profile cases in the United States

and abroad during the past 20 years have shown that foren-

sic examiners can sometimes make mistakes when analyz-

ing or comparing fingerprints [7]. Compared to rolled and

plain fingerprints, latent fingerprints have significantly poor

quality ridge structure and large non-linear distortions. As

shown in Figure 1, latent fingerprint images contain back-

ground structured noise such as speckles, stains, lines, arcs,

and sometimes text. Due to the poor quality and often com-

plex image background and overlapping patterns charac-

teristic of latent fingerprint images, separating the finger-

print region of interest from complex image background and

overlapping patterns is a very challenging problem [17].

To process latent fingerprints, latent experts manually

mark the region-of-interest (ROI) in latent fingerprints and

use the ROI to search large databases of reference full fin-

gerprints and identify a small number of potential matches

for manual examination. Given the large size of law en-

forcement databases containing rolled and plain finger-

prints, it is very desirable to perform latent fingerprint pro-

cessing in a fully automated way. As a step in this direction,

our paper proposes an efficient technique for separating la-

tent fingerprints from the complex image background using

fractal dimension features and weighted extreme learning

machine ensemble. To the best of our knowledge, no pre-

vious work has used this strategy to segment latent finger-

prints.

The rest of the paper is organized as follows: Section 2 re-

views recent works in latent fingerprint segmentation while

section 2.1 describes the contributions of this paper. Sec-

tion 3 highlights our technical approach and presents a dis-

cussion on fractal dimension features used in our approach.

Section 4 presents a brief review of extreme learning ma-

chine, weighted extreme learning machine (WELM), and

ensemble learning and segmentation using WELM. The ex-

perimental results and performance evaluation of our pro-

posed approach are discussed in section 5.3. Section 6 con-

tains the conclusion and future work.
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Figure 1. Sample latent fingerprints from NIST SD27 showing

three different quality levels (a) good, (b) bad, and (c) ugly.

2. Related work

The goal of fingerprint segmentation is to decompose the

input fingerprint image into fingerprint and non-fingerprint

parts. Reliable feature extraction and matching require ac-

curate segmentation [4].

A few recent studies have been done on latent fingerprint

segmentation [4], [17], [16], [6], [2]. In [4], the authors

used orientation tensor approach to extract the symmetric

patterns of a fingerprint and removed the structured noise

in background. They used local Fourier analysis method to

estimate the local frequency in the latent fingerprint image

and locate fingerprint region by considering valid frequency

regions. They obtain candidate fingerprint (foreground) re-

gions for each feature (orientation and frequency) and then

localize the latent fingerprint regions using the intersection

of those candidate fingerprint regions. Karimi et al. [6]

estimated local frequency of the ridge/valley pattern based

on ridge projection with varying orientations. They used

the variance of frequency and amplitude of the ridge signal

as features for the segmentation algorithm. They reported

segmentation results for only two latent fingerprint images

and provided no performance evaluation. Short et al. [16]

proposed ridge template correlation method for latent seg-

mentation. They generated an ideal ridge template and com-

puted cross-correlation values to define the local fingerprint

quality. They manually selected 6 different threshold values

to assign a quality value to each fingerprint block. They nei-

ther provided the size and number for the ideal ridge tem-

plate nor reported and evaluation criteria for the segmenta-

tion results. Zhang et al. [17] proposed an adaptive total

variation (TV) model for latent segmentation. They adap-

tively determined the weight assigned to the fidelity term

in the model based on the background noise level. They

used this to remove the background noise in the latent fin-

gerprint images. Arshad et al. [2] used K-means clustering

to divide the latent fingerprint image into non-overlapping

blocks and compute the standard deviation of each block. If

the standard deviation of a block is greater than a predefined

threshold, they consider it a foreground block otherwise, its

is a background block. They perform morphological opera-

tions and apply mask to segment the latent fingerprint.

2.1. Contributions

Our approach differs significantly from the existing ap-

proaches because we perform the segmentation by extract-

ing patches from the latent fingerprint image and classifying

them into fingerprint and non-fingerprint patches. We as-

semble the fingerprint patches to build the fingerprint por-

tion (segmented ROI) of the original image, without any

post processing. Existing approaches for latent fingerprint

segmentation rely on the analysis of the ridge frequency and

orientation properties of the ridge valley patterns to deter-

mine the area within a latent fingerprint image that con-

tains the fingerprint. Our approach performs classification

of image patches extracted from the fingerprint image using

fractal dimension features which are persistent geometric

quantities. Moreover, as can be seen from Figure 18 which

shows the results of training our model on NIST SD27 and

testing on NIST SD27, WVU, and IIITD latent databases,

the performance of our approach is invariant to the choice

of database used for training the weighted extreme learning

machine model.

3. Technical approach

Our approach involves partitioning a latent fingerprint

image into 8× 8 non overlapping blocks called patches and

compute fractal dimension features from the patches. We

use the features to train and test weighted extreme learn-

ing machine ensemble (WELME) classifier. The WELME

classifies the patches into fingerprint and non-fingerprint

classes. We use the fingerprint patches to reconstruct the

latent fingerprint image and discard the non-fingerprint

patches which contain the structured noise in the original

latent fingerprint. The block diagram of our proposed ap-

proach is shown in Figure 2.

3.1. Fractal dimension

Fractal dimension is an index used to characterize tex-

ture patterns by quantifying their complexity as a ratio of

the change in detail to the change in the scale used. It was

defined by Mandelbrot [12] and was first used in texture

analysis by Keller et al. [8]. Fractal dimension offers a

quantitative way to describe and characterize the complex-

ity of image texture composition [9].

We compute the fractal dimension of an image patch P

using a variant of differential box-counting (DBC) algo-

rithm [1, 15]. We consider P as a 3-D spatial surface with

(x,y) axis as the spatial coordinates and z axis for the gray

level of the pixels. Using the same strategy as in DBC,

we partition the N × N matrix representing P into non-

overlapping d × d blocks where d ∈ [1, N ]. Each block

has a column of boxes of size d × d × h, where h is the

height defined by the relationship h = T d
N

, where T is the

total gray levels in P, and d is an integer. Let Tmin and
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Figure 2. Proposed approach

Tmax be the minimum and maximum gray levels in grid (i,

j), respectively. The number of boxes covering block (i, j)

is given by:

nd(i, j) = floor[
Tmax − Tmin

r
] + 1, (1)

where r = 2, . . . , N − 1, is the scaling factor and for each

block r=d. The number of boxes covering all d × d blocks

is:

Nd =
∑

i,j

nd(i, j) (2)

We compute the values Nd for all d ∈ [1, N ]. The fractal

dimension of each pixel in P is by given by the slope of

a plot of the logarithm of the minimum box number as a

function of the logarithm of the box size. We obtain a fractal

dimension image patch P ′ represented by an M×N matrix

whose entry (i,j) is the fractal dimension FDij of the pixel

at (i,j) in P.

FDP =

MN
∑

i=1,j=1

FDij , (3)

Figure 3 shows FD for sample fingerprint and non-

fingerprint image patches and highlights the discrimina-

Figure 3. Fractal dimension for sample image patches : (a) finger-

print , (b) non-fingerprint

tive potential of FD for separating fingerprint from non-

fingerprint image patches.

3.2. Fractal Dimension Features

We implemented a variant of the DBC algorithm to com-

pute the following statistical features from the fractal di-

mension image P ′.

3.3. Average Fractal Dimension

FDavg =
1

MN

MN
∑

i=1,j=1

FDij , (4)

3.4. Standard Deviation Fractal Dimension

The standard deviation of the gray levels in an image pro-

vides a degree of image dispersion and offers a quantitative

description of variation in the intensity of the image plane.

Therefore

FDstd =
1

MN

MN
∑

i=1,j=1

(FDij − FDavg), (5)

3.5. Fractal Dimension Spatial Frequency

This refers to the frequency of change per unit distance

across an fractal dimension (FD) processed image. We

compute it using the formula for (spatial domain) spatial

frequency as in [11]. Given an N ×N FD processed image

patch P ′, let G(x,y) be the FD value of the pixel at location

(x,y) in P ′. The row frequency Rf and column frequency

Cf are given by

Rf =

√

√

√

√

1

MN

M−1
∑

x=0

N−1
∑

y=1

[G(x, y)−G(x, y − 1)]2, (6)

Cf =

√

√

√

√

1

MN

M−1
∑

y=0

N−1
∑

x=1

[G(x, y)−G(x− 1, y)]2, (7)
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Figure 4. Average fractal dimension for some fingerprint and non-

fingerprint 8× 8 patches

The FD spatial frequency FDsf of P ′ is defined as

FDsf =
√

R2

f + C2

f , (8)

From signal processing perspective, equations 6 and 7

favour high frequencies and yield values indicative of

patches with fingerprint.

3.6. Lacunarity

Lacunarity is a second-order statistic that provides a

measure of how patterns fill space. Patterns that have more

or larger gaps have higher lacunarity. It also quantifies ro-

tational invariance and heterogeneity. A spatial pattern that

has a high lacunarity has a high variability of gaps in the

pattern, and indicates a more heterogeneous texture [3]. La-

cunarity (FDlac) is defined in terms of the ratio of variance

over mean value[1].

FDlac =

1

MN
(
M−1
∑

i=1

N−1
∑

j=1

P (i, j)2)

{ 1

MN

M−1
∑

i=1

N−1
∑

j=1

P (i, j)}2
− 1, (9)

where M and N are the sizes of the fractal dimension image

patch P. As can be seen from Figures 4, 5, 6, the FD fea-

tures we used have the required discriminative potential for

separating fingerprint from non-fingerprint patches.

4. Extreme learning machine

Extreme Learning Machine (ELM) is a machine learning

algorithm for single-hidden layer feed-forward neural net-

works (SLFNs). ELM randomly chooses hidden nodes and

analytically determines the output weights of SLFNs. The

algorithm tends to provide good generalization performance

at extremely fast learning speed. It can learn thousands of

times faster than conventional popular learning algorithms

for feed-forward neural networks, such as back-propagation

(BP) algorithm [5]. The ELM theory states that contrary to

conventional learning methods, the hidden node parameters

Figure 5. FD spatial frequency for sample fingerprint and non-

fingerprint image patches

Figure 6. Lacunarity: FP1, FP2, FP2 are fingerprint patches;

NFP1, NFP2, NFP3 are non-fingerprint patches

can be generated before seeing the training data. Given N

distinct samples (xi, yi), where xi = [xi1, · · · , xin]
T ∈ R

n

and yi = [yi1, · · · , yim]T ∈ R
m, the output of ELM with L

hidden nodes is given by

L
∑

i=1

βi(wixj + bi), j ∈ [1, N ], (10)

where wi = [wi1, · · · , wim]T is the weight vector con-

necting the ith hidden node and the input nodes, βi =
[βi1, · · · , βim]T is the weight vector that connects the ith

hidden node and the output nodes, and bi is the threshold

(bias) of the ith hidden node.

ELM can solve the following learning problem

Hβ = T, (11)

where T = [y1, · · · , yN ]T are target labels, and H

is the hidden layer output matrix defined as H =
[hT (x1), · · · , h

T (xN )]T . The output weight matrix β is

calculated as

β = H†T, (12)

where H† is the Moore-Penrose generalized inverse of ma-

trix H [5].
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4.1. Weighted extreme learning machine

Weighted ELM provides a solution to the classification

accuracy paradox associated with imbalance class distribu-

tion while maintaining the advantages of the unweighted

ELM. It allows for weights to be assigned to each train-

ing sample and generalizes to cost sensitive learning [18].

Specifically, we define an N×N diagonal weight W and as-

sociate it with every training sample xi. The W assigned to

a training sample xi from a minority class is larger than that

assigned to an xk from a majority class. The weight assign-

ment scheme assigns larger weight to the minority samples

thereby strengthening the impact of the minority class and

weakening the relative impact of the majority class. Gener-

ally, the goal of ELM is to minimize the training errors and

maximize the marginal distance between the classes [18]:

Minimize : ‖Hβ − T‖2 and ‖β‖ (13)

This is written mathematically as:

LpELM
=

1

2
‖β‖2 + C

1

2

N
∑

i=1

‖ξi‖
2, (14)

Subject to : h(xi)β = tTi − ξTi , i = 1, . . . , N (15)

where ξi = [ξi,1, · · · , ξi,m]T is the training error vector of

m output nodes with respect to the training sample xi, C

is the regularization parameter that indicates the trade-off

between the minimization of the training errors and maxi-

mization of the marginal distance between classes, h(xi) if

the feature mapping vector in the hidden layer with respect

to sample xi, and β is the output weight vector connecting

the hidden layer and the output layer.

For the WELM, the optimization problem becomes [18]:

LpELM
=

1

2
‖β‖2 + CW

1

2

N
∑

i=1

‖ξi‖
2, (16)

Subject to : h(xi)β = tTi − ξTi , i = 1, . . . , N (17)

4.2. Weighted extreme learning machine ensemble
(WELME) learning

The random initialization of both the bias and input

weights of the weighted extreme learning machine causes

fluctuations in model performance between runs. By us-

ing WELME, we are able to handle large patch image data

sets and minimize the model’s empirical risk. Inspired by

[10] and [13], we implemented the WELME for fixed size

block-by-block learning and segmentation. We analytically

determined the optimal block size, which is also the number

of neurons L in the hidden layer of the WELM to be 720 as

shown in Figure 12.

We learn a set of hypothesis:

H = {f(xi, wk), wk ∈ WELME} (18)

where xi is the i-th training sample and wk is the k-th

WELM in the WELME. We use a non-negative real-valued

loss function L(ŷ, y) to measure how different the predic-

tion ŷ of a wk in the ensemble is from the true outcome y.

We compute the empirical risk associated with each hypoth-

esis h(x) by averaging the loss function on the training and

validation sets :

El(h) =
1

m

m
∑

i=1

L(h(xi), yi) (19)

We select optimal set H∗ of hypotheses that minimizes the

total empirical risk (TER). In our experiments we let H∗

be the top 5% hypotheses that have minimal risk El(h) for

final prediction.

4.3. Voting

The final prediction from the ensemble is obtained

through voting. To obtain near optimal prediction from the

ensemble, we require that Each h(x) ∈ H∗ meet the en-

semble analytically determined confidence threshold ξ by

satisfying:

c =

FN
∑

i=1

Wp +

FP
∑

i=1

Wn ≤ ξ. (20)

ξ = min{Rv}, v = 1, . . . ,K (21)

where Rv is the total empirical risk of WELM v, K is the

number of WELMs in the ensemble, c is the total misclassi-

fication penalty for each ensemble, FN and FP are the num-

ber of false negative and false positive predictions, respec-

tively and the sum is over all the misclassification on the test

data set by a given member of the ensemble. Wp and Wn

are the weights assigned to fingerprint and non-fingerprint

patches, respectively. The weights Wp and Wn account for

the imbalance in the data set class distribution and were de-

termined analytically. In our experiments, we set ξ to the

value 0.16 which was obtained from experiments.

5. Experimental Results

We implemented our algorithms in Matlab R2014a run-

ning on Intel Core i7 CPU with 8GB RAM and 750GB hard

drive.

5.1. Latent fingerprint databases

We tested our model on the following databases.

NIST SD27: This database was published by the National

Institute of Standards and Technology in collaboration with
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Figure 7. Building and validating the ground truth patch dataset

the FBI. It contains images of 258 latent crime scene fin-

gerprints and their matching rolled tenprints. The images in

the database are classified as good, bad or ugly based on the

quality of the image. The latent prints and rolled prints are

at 500 ppi.

WVU database: This database is jointly owned by West

Virginia University and the FBI. It has 449 latent fingerprint

images and matching 449 rolled fingerprints. All images in

this database are at 1000 ppi.

IIITD database: The IIIT-D was published by the Image

Analysis and Biometrics lab at the Indraprastha Institute of

Information Technology, Delhi, India [14]. There are 150

latent fingerprints and 1,046 exemplar fingerprints. Some

of the fingerprint images are at 500 ppi while others are at

1000 ppi.

5.2. Building the latent fingerprint patch dataset

Since there is no existing patch based latent fingerprint

Ground-truth dataset, we created one and made it available

on our website for others to use. (The reader can obtain

the datasets by sending a request to bhanu@cris.ucr.edu

or jezeobie@cs.ucr.edu). We built ground-truth dataset by

extracting 8 × 8 image patches from GOOD, BAD, and

UGLY latent fingerprint images from NIST SD27 database.

For each latent fingerprint, we manually mark the region

containing the fingerprint using a bounding ROI polygon.

Our algorithm splits the latent fingerprint into 8 × 8 non-

overlapping patches (blocks). A patch is labeled a fin-

gerprint patch if it overlaps with the polygon and non-

fingerprint otherwise. We say that a patch overlaps with

the ROI polygon if it lies within the polygon or 25% of its

pixels are inside the polygon or at the edge of the polygon.

Figure 7(a) shows a latent fingerprint image with a bound-

ing ROI polygon, while 7(b) shows the latent fingerprint

constructed with the patches labeled as fingerprint.

5.3. Performance evaluation and metrics

We used the following metrics to evaluate the perfor-

mance of our model.

Figure 8. WELME performance: MDR

• Missed Detection Rate (MDR): This is the percent-

age of fingerprint patches classified as non-fingerprint

patches. It is defined as.

MDR =
FN

TP + FN
, (22)

where FN is the number of false negatives and TP is

the number of true positives.

• False Detection Rate (FDR): This is the percent-

age of non-fingerprint patches classified as fingerprint

patches.It is defined as

FDR =
FP

TN + FP
(23)

where FP is the number of false positives and TN is

the number of true negatives.

• Total Empirical Error (TER): The TER is defined as:

TER =

FN
∑

i=1

Wp +

FP
∑

i=1

Wn. (24)

where Wp and Wn are as defined in section 4.3. The

TER conveys the balance between MDR and FDR.

• G-mean: The square root of the positive class accu-

racy × negative class accuracy [18].

Gmean =

√

TP

TP + FN
×

TN

TN + FP
(25)

It gives a good indication of the effectiveness of the

model.

5.4. Model parameter selection

We ran experiments to select optimal weight vector (W)

for the classes, L2 penalty constant C, and number of nodes

(L) in the hidden layer of the WELM network. The results

of the experiments are depicted in Figures 12, and 13. The
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Figure 9. WELME performance: FDR

Figure 10. WELME performance: Empirical risk

Figure 11. WELME performance: Segmentation accuracy

optimal values are C = 105.5, L = 720, Wn = 3.75 and

Wp = 7.15 for good and bad quality images. For ugly qual-

ity images, Wn = 0.001 and Wp = 0.093. Figures 8,

9, 10, and 11 show the performance of the 134 WELMs

in the WELME in terms of MDR, FDR, empirical risk and

segmentation accuracy, respectively.

5.5. Confusion matrix

Training was done with 96,000 patches from images

from the NIST SD27 database. The test dataset consists

of 9,600 patches from the NIST SD27, WVU and IIITD la-

tent databases. The confusion matric in Figure 14 shows

Figure 12. Hyper parameter selection: accuracy in the (L) sub-

space

Figure 13. Hyper parameter selection: accuracy in the (C) sub-

space

Predicted Patch Class

Fingerprint Non-Fingerprint

Actual Patch Class
Fingerprint 2061 643

Non-Fingerprint 180 6716

Figure 14. Confusion matrix

the TP, TN, FP, and FN results and a segmentation accuracy

91.43%

5.6. Segmentation results

Figures 15, 16, 17 show the segmentation results of

our proposed method on sample good, bad and ugly quality

images from the NIST SD27 database. The original latent

fingerprint images are (a), (c), (e), while (b), (d), (f) are the

segmented fingerprints constructed using patches classified

as fingerprint, without any post classification processing.
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Figure 15. Good Latent fingerprint image and segmentation result

Figure 16. Bad Latent Fingerprint Image and segmentation result.

Figure 17. Ugly Latent Fingerprint Image and segmentation result.

Figure 18 shows the performance of our approach on dif-

ferent latent fingerprint databases.

5.7. Performance comparison with other algorithms

Figure 19 highlights the superior performance of our seg-

mentation approach on the good, bad and ugly quality la-

tent fingerprints from NIST SD27 compared to the results

in [2], while Figure 20 shows that our approach performs

better than existing approaches with respect to total empir-

ical risk minimization and segmentation accuracy. Taking

both MDR and FDR into consideration, our approach is

43.72% better than that of Zhang et al. [17] on the NIST

SD27 database and 10.46% better that that of Arshad et al.

[2] on the NIST SD27 database. On the WVU database, our

approach is about 2 times better than that of Choi et al. [4].

Figure 18. Segmentation reliability in different databases for good

quality images

Figure 19. NIST SD27: Segmentation results in terms of MDR

and FDR: Good, Bad, Ugly

Author Approach Database MDR % FDR % AVERAGE

Choi et al. Ridge orientation NIST SD27 14.78 47.99 31.38

and frequency

computation WVU LDB 40.88 5.63 23.26

Zhang et al. Adaptive Total NIST SD27 14.10 26.13 20.12

Variation model

Arshad et al. K-means NIST SD27 4.77 26.06 15.42

clustering

Our approach Fractal Dimension NIST SD27 9.22 18.7 13.96

& Weighted ELM (Good, Bad, Ugly)

WVU LDB 15.54 9.65 12.60

(Good,Bad,Ugly)

IIITD LDB 6.38 10.07 8.23

(Good)

Figure 20. Performance comparison of segmentation approaches

6. Conclusions and future work

We have proposed a new technique based on fractal di-

mension and weighted extreme learning machine (WELM)

for latent fingerprint segmentation using image patches. Ex-

perimental results using latent fingerprint images from the

NIST SD27, WVU and IIITD latent fingerprint databases

showed the promise of our method. Our future work in-

volves incorporating additional features to improve classifi-

cation accuracy of the fingerprint patches from bad and ugly

latent fingerprints.
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