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Abstract

Vehicle tracking from a moving aerial platform poses a

number of unique challenges including the small number

of pixels representing a vehicle, large camera motion, and

parallax error. This paper considers a multi-modal sensor

to design a real-time persistent aerial tracking system. Wide

field of view (FOV) panchromatic imagery is used to remove

global camera motion whereas narrow FOV hyperspectral

image is used to detect the target of interest (TOI). Hyper-

spectral features provide distinctive information to reject

objects with different reflectance characteristics from the

TOI. This way the density of detected vehicles is reduced,

which increases tracking consistency. Finally, we use a

spatial data based classifier to remove spurious detections.

With such framework, parallax effect in non-planar scenes

is avoided. The proposed tracking system is evaluated in a

dense, synthetic scene and outperforms other state-of-the-

art traditional and aerial object trackers.

1. Introduction

Aerial vehicle detection and tracking has attracted con-

siderable interest in the computer vision community due

to its growing importance in various applications. Numer-

ous studies considering different sensor modalities such as

thermal, and electro-optical have been proposed in the past

to consistently track ground objects from aerial platforms

[3, 23, 29, 28, 19, 2]. However, most of them fail to achieve

persistent tracking in real-time due to unique challenges

posed by aerial detection and tracking. Aerial tracking

(wide-area tracking) is a more challenging task than tradi-

tional tracking since the aerial images are typically lower

in resolution and the amount of overlap in between subse-

quent frames is smaller. Low resolution imagery yields a

small number of pixels (100-200 pixels) representing a ve-

hicle that degrades the performance of appearance based de-

tection methods. In addition, the sampling rate in an aerial

surveillance platform (1-4 Hz) is small compared to com-

mon traditional tracking sampling rates (25-50 Hz). There-

fore, the displacement of a moving object in subsequent

frames is larger in number of pixels, resulting in larger reg-

istration errors due to less spatial overlap. Motion based

detection methods rely on compensating for global camera

motion such as panning, tilting, and rotation to achieve cam-

era stabilization. However, the low sampling rate together

with the parallax factor, occlusions and lighting changes are

barriers to their application in aerial tracking.

Full and adaptive hyperspectral sensors hold the poten-

tial to outperform state-of-the-art aerial trackers in the fu-

ture due to their ability to record extended target data.

[25, 4, 28, 24]. In this work, we consider an adaptive

hyperspectral sensor with two modalities: a panchromatic

full frame image and hyperspectral data at desired pixel lo-

cations determined by the tracker. The full panchromatic

frame of the scene can be used to align the images and gen-

erate a background subtraction mask in the detection pro-

cess if the tracking is done from a fixed platform or at high

altitude. The hyperspectral data in the visible to near in-

frared light range provide unique fingerprints for different

materials which can be incorporated into the detection pro-

cess to remove redundant pixels and identify target. An-

other major advantage of hyperspectral data is it can help

in removing hyperspectrally different moving objects in the

same category with the target. Such distinct hyperspectral

profiles can be visualized in fig. 1. This way, we can gain

huge benefits in dense traffic urban environments. Since

this type of sensor is not yet fully developed, we will rely

on realistic synthetic data to test the proposed approach.
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Figure 1: Spectral profiles of different objects. Car 1, 2, and

3 can be separated from the background objects. Central

pixel of each object are sampled and shown in the figure.

2. Related Work

Adaptive hyperspectral sensors are still being developed,

but there is a large volume of studies tackling aerial de-

tection and tracking with other sensor modalities such as

grayscale, thermal, panchromatic, and LIDAR. Reilly et al.

[23] proposes detection and tracking of a large number of

targets with the Wide-Area Motion Imagery (WAMI) sen-

sor. With the help of six cameras mounted on it, WAMI can

provide high coverage and sufficient resolution single-band

imagery to accomplish consistent vehicle tracking in long

sequences. They detect motion with the well-known median

image background model and perform gradient suppression

to remove noise due to the parallax effect. Tracking is per-

formed by dividing the scene into equal size grid cells and

applying bipartite graph matching within each cell. A set

of local scene constraints, such as road orientation is inte-

grated into the graph to improve tracking. However, this

method is designed to work in highly planar scenes and as-

sumes minimum parallax error on the road pixels. Pala-

niappan et al. [18] considers the same platform to achieve

persistent tracking. Their method is based on an efficient

extraction of a set of rich feature descriptors to localize the

targets in a region of interest (ROI). They extract region,

edge, local shape, and texture based features for the pix-

els in the ROI. Each pixel in the ROI is classified with the

linear binary Support Vector Machines (SVM) and feature

likelihood maps are fused in a Bayesian framework. Al-

though they report promising tracking rates, they test the

proposed approach with only four vehicles and its feasibilty

in real-time tracking is questionable. In the work proposed

by Xiao et al. [29], a joint probabilistic relation graph with

vertex and pairwise edge matching is presented to detect

and track vehicles in aerial video sequences. Geographical

road structure information is incorporated into model vehi-

cle driving behavior including potential travel direction and

velocity. The vehicle driving behavior model is included in

the graph structure (vertices and edges) to solve the assign-

ment problem optimally. Motion detection is achieved by

the three-frame subtraction approach. As in [23], this mo-

tion detection approach might fail in an urban environment

where the registration and parallax error can be larger. In

addition, such detection methods can not be implemented

for an adaptive hyperspectral sensor platform since the de-

tection results lag the actual frame by one time step.

The contribution of this paper is two-fold. To the best of

our knowledge, it is the first paper performing an adaptive

multi-modal (panchromatic and hyperspectral) sensor based

single target tracking without using any of the background

subtraction techniques. Second, we will publish the aerial

panchromatic video set generated for this study in addition

to the full-frame hyperspectral video set (150GB).

3. Tracking System and Sensor Resource Man-

agement

A sensor capable of collecting spatial and hyperspec-

tral data is required to achieve high rate tracking of ob-

jects of interest. For this reason, the Rochester Institute

of Technology Multi-object Spectrometer (RITMOS) pro-

posed by Meyer et al. [16] is considered as an adaptive,

multi-modal sensor. RITMOS utilizes a Digital Micromir-

ror Array Device (DMD) to reflect the light to one of the

two sensors; a spectrograph or a panchromatic channel. The

switch from panchromatic to hyperspectral data mode for

a pixel can happen very fast due to the compactness and

speed of micromirror arrays. To capture a panchromatic im-

age of the scene, an array of micromirrors reflects the light

to a panchromatic imaging array. Individual micromirrors

imaging the object are then tilted to reflect the light towards

the spectrograph and collect the full spectrum of a specified

pixel.

A realistic tracking method needs to align well with the

RITMOS specifications. First, RITMOS requires about 0.1
s to capture a panchromatic image of a scene. On the other

hand, the full hyperspectral profile of a single pixel in the

visible to near infrared wavelength takes 1 ms. Spatial and

hyperspectral data can be collected simultaneously as long

as the micromirror array transfers the light to only one of the

two paths. One disadvantage of the hyperspectral imagery

is the possibility of spatial misregisteration when there is

relative motion between TOIs and surroundings. Some

methods have been proposed to precisely calibrate hyper-

spectral sensors onboard. We ignore this distortion since a
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Figure 2: The workflow of the proposed tracking system (a) and modules of the detection process in order (b). In (b), a ROI

is selected and sampled hyperspectrally for target detection. HoG features are computed in the final step to minimize false

alarms. Grayscale imagery for the ROI is computed by summing the bands in visible wavelength.

vehicle does not occupy a large number of pixels in width

(≈ 15 pixels). With hyperspectral sensors, it is inevitable

to make a trade-off between either high spatial resolution

imagery with lower hyperspectral resolution or low spa-

tial resolution imagery with higher hyperspectral resolution.

We opt for higher spatial resolution imagery, as the vehicle

confirmation module relies on an appearance based method.

This way, intermixing issues on the subpixel level are mit-

igated. On the other hand, panchromatic aerial sensors are

capable of providing higher resolution imagery. However,

in this study we keep the spatial resolution of the hyperspec-

tral and panchromatic modalities the same, as panchromatic

images are only used to compute the homography matrices.

They are not exploited in moving object detection due to

parallax effect and the time lag between the panchromatic

image and hyperspectral data acquisition, as seen in fig. 2a.

4. Scenario Generation

The Digital Imaging and Remote Sensing Image Gener-

ation (DIRSIG) model is used to generate a synthetic aerial

video [11]. The scenario used in this paper comes from

the DIRSIG Megascene I, which is built to simulate part

of Rochester, NY, USA. The simulation uses hyperspectral

imaging from an aerial platform orbiting around a specified

center in Megascene 1 area. The platform moves with 90

m/s constant velocity at an altitude of 3000 m. The hyper-

spectral range is 400 to 1000 nm with a hyperspectral reso-

lution of 10 nm, so that generated synthetic images have 61

rectangular wavelength bands. The sensor parameters are

also defined to meet the real-world phenomenology. The

focal length is set to 225 mm whereas the detector area is

17×17µ2, matching the Texas Instruments DMD specifica-

tions. Pixel pitch is tuned to agree with detector dimen-

sions so that there is minimum gap between the adjacent

pixels. The average ground sampling distance is 0.30 m

which yields low resolution imagery with 1500×1500 pix-

els. With these settings, vehicles in both panchromatic and

hyperspectral images cover around 150 pixels and this en-

ables us to use appearance based methods. On the other

hand, in [27] pixel-to-pixel based matching is used as vehi-

cles occupy fewer number of pixels as seen in fig. 3. More

detail in scenario generation is documented in [27].

5. Image Alignment

Since the aerial platform is non-stationary, we need to

remove global camera motion. As in most aerial track-
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Figure 3: Two cars are shown in a DIRSIG generated

grayscale image in this study (a) and in [27] (b), whereas

(c) displays two cars from a WAMI (CLIF 2007) dataset

[1]. Vehicles in (a,b) cover 100 - 150 pixels whereas in (c)

they are represented by about 50 pixels.

ing studies we employ a keypoint based feature extraction

method on two subsequent frames and find the correspon-

dences between extracted points. The Scale Invariant Ro-

bust Features (SIFT) is used to compute the descriptor for

each keypoint as it is robust to illumination changes, view-

point difference, and rotation [15]. In the final step, the

RANSAC algorithm is employed to robustly fit the homog-

raphy matrix. The homograpy between the first and follow-

ing frames (k) is computed by accumulating the homogra-

phies (H) for subsequent frames as

Hk,1 = Hk,k−1 ∗Hk−1,k−2 ∗Hk−2,k−3, ..., H2,1. (1)

To propagate the Hk,1 (tk+0.1s) to the hyperspectral data

domain (tk+0.3s), we factor out the translation and rota-

tion matrices and scale rotation angle and translation com-

ponents by 0.9/0.7.

6. Target Detection

Target detection is a major step in persistent tracking. To

achieve it, a narrow FOV ROI (200×200 pixels) is deter-

mined based on the prior mixture probability density func-

tion mean estimated by the prediction stage of the filter fol-

lowing Uzkent et al.’s work [27]. Once the ROI is sam-

pled hyperspectrally, the tracking algorithm searches the

ROI to detect the target of interest to update the track statis-

tics. Background modeling in a moving platform is a dif-

ficult task as the scene constantly changes in addition to

frequent stop-then-go motion. However, background sub-

traction have been extensively used in the aerial tracking

studies with additional modules to handle its drawbacks[26,

12, 22, 13, 3, 6]. 3-D stabilization [5] is another way to

improve background subtraction prone to parallax effect.

The proposed approach stands out from most of the aerial

tracking literature by excluding the computationally simple

but severely limited methods in the detection process. The

modules of the proposed detection approach and workflow

can be visualized in fig. 4.

6.1. Vegetation Detection

In the first two steps, the pure spectrum of the individ-

ual pixels are considered to filter out as many background

pixels as possible to optimize the search space. First, the

Normalized Difference Vegetation Index (NDVI) is applied

[7]. Its uniqueness stems from the fact that vegetation ab-

sorbs light extensively in the red wavelengths and reflects

most light in the near infrared spectrum, causing a rela-

tively large intensity difference in these bands. Therefore,

the NDVI can be formulated as

INIR − IRED

INIR + IRED

≥ TNDV I (2)

where I and TNDV I are the pure spectrum of a pixel and

empirical threshold, respectively. At each step, TNDV I is

selected randomly from an interval bounded by TNDV I +
TNDV I ∗0.2 and TNDV I−TNDV I ∗0.2. That is because the

performance of NDVI can be sensitive to external factors.

6.2. Road Detection

In the second module, non-vegetation labeled pixels are

classified as road or non-road. This is achieved with the

pure hyperspectral information of individual pixels as the

road pixels show a consistent hyperspectral signature under

different conditions [10]. However, asphalt dominated pix-

els mostly have flat spectrum and they can not be as easily

distinguished as the vegetation pixels. For this reason, we

train a non-linear SVM to avoid misclassification of target

pixels. The goal of this step is to detect as many road pix-

els as possible without losing any target pixel. In order to
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Figure 4: The proposed target detection approach workflow.
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train the SVM, the same scene is generated at four differ-

ent time settings. The road and non-road pixels are sampled

from the synthetic scene generated about 30 minutes (11:30

am) before the scene generated for tracking (12:00 am). In

total, 300 road and 1200 non-road training samples are col-

lected to train the SVM. The radial basis function (RBF)

kernel is applied to perform a transformation to a higher di-

mensional space as the dimensionality of the input space is

the number of hyperspectral bands (61), to prevent underfit-

ting. The RBF kernel parameter is tuned on the validation

data collected from the tracking scene where the vehicles of

interest do not travel. The final classifier achieves an 87.4%
accuracy rate on the 2000 validation samples.

6.3. Local Hyperspectral Histograms Matching

In the third step, local hyperspectral histograms are used

on the remaining pixels with a sliding window technique

to generate a hyperspectral distance map. The target hy-

perspectral histogram model is built when the user selects

a vehicle initially. For each hyperspectral band, n-bin his-

tograms are built, resulting in a feature vector, p, with n×61

dimensions. Assume xi ∈ R2 represents the location of

one of the pixels in the detection window with intensity Iλi
(λ = 400, 410, 420, ....990, 1000 nm). A mapping func-

tion, b, is designed for xi to output the bins with intensity

values neighboring Iλi . Then, a hyperspectral pdf located at

y in the ROI for λ is formulated as

p(uj−1, λ) =

N
∑

i=1

|Iλi − uj−1|

|uj − uj−1|
δ[b(xi, 1)− uj−1], (3)

p(uj , λ) =

N
∑

i=1

|Iλi − uj |

|uj − uj−1|
δ[b(xi, 2)− uj ], (4)

where N and δ denote the total number of pixels in the

detection window and dirac delta function. Once the feature

vector is computed, each channel histogram is normalized

to improve robustness against lighting changes. Compari-

son between each pixel’s hyperspectral pdf and the target

model hyperspectral pdf is done with the Chi-Square dis-

tance metric and a hyperspectral distance map (Dmap) for

the ROI is computed. To avoid outlier contributions in his-

togram computation, vegetation and asphalt dominated pix-

els are eliminated in the manner described in sections 6.1

and 6.2. The computation of hyperspectral pdfs is expensive

due to the large number of hyperspectral bands. To optimize

the computation process, we subsample by using the only

odd numbered bands, resulting in a n×31 dimension fea-

ture vector as shown in fig. 5. This improves the algorithm

speed without degrading detection rates dramatically as the

neighboring bands correlate largely. Additionally, the inte-

gral image theorem is utilized [21]. Integral hyperspectral

pdfs are computed for the ROI, resulting in an n×31 hyper-

spectral histogram integral image. Integrating the mapping

kernel into histogram computation with the integral image

concept is problematic, however, the benefit of computing a

hyperspectral band’s pdf in O(3× n) outweighs the impor-

tance of a kernel function.

band 1 band 2 band 31 

- - -  - - -  - - -  - - -  

1 2 10 11 12 20 301 302 310 bin x 
band 

p
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b
a

b
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Figure 5: Stacked hyperspectral feature vector with 10 bins

in each band.

The size of the sliding detection window is kept fixed

since we already know a priori the size of a typical vehi-

cle assuming the platform altitude is fixed. Additionally,

pixels classified as road or vegetation are not considered in

the ROI integral hyperspectral pdfs. The resultant Dmap is

then applied a threshold determined by the multilevel Otsu’s

method [17, 14]. With a fixed hyperspectral threshold, ST ,

in different scenarios, outliers are allowed in the final mask

as the level of hyperspectral distinctness of different ve-

hicles shows strong deviation. This adaptive thresholding

concept becomes key in removing most of the outliers be-

fore the final vehicle verification step. In other words, the

idea with multilevel Otsu’s threshold method is to incorpo-

rate the fact that a TOI matches to itself best hyperspectrally

under different conditions. Multilevel Otsu’s thresholds are

computed by minimizing the intra-class variances as

T 1

f = T 1

1
, T 1

2
, ..., T 1

n , (5)

T k−1

f = T k−1

1
, T k−1

2
, ..., T k−1

m (6)

where n and m stand for the number of ROI segmentation

levels used in the first and previous time step k-1 and T
denotes the thresolds at corresponding levels. The hyper-

spectral threshold update framework is then designed as

ST1 = T 1

1
, (7)

STk = α∗STk−1 + (1− α) ∗ T k−1

1
. (8)

If the target is lost l number of previous frames, the hyper-

spectral threshold becomes

STk = STk−l−1. (9)

This way, we avoid relaxing it in the occlusions, as Otsu’s

method attempts to allow some outliers. Finally, we get the

ROI binary mask for the TOI as

TOImap(i, j) =

{

1 Dmap(i, j) < STk

0 otherwise
. (10)
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Figure 6: The influence of number of levels (m and n) used in multilevel Otsu’s threshold method in ROI segmentation.

NDVI and road detection modules are excluded in the first row figures and included in the second row figures.

Morphological opening is then performed to get the blobs

and IDs are assigned with the connected component label-

ing algorithm.

The effect of m and n in detection performance is quan-

tified in fig. 6. As seen in fig. 6, without the NDVI and road

detection modules, low m and n values tend to oversmooth

the target segmentation which results in more background

inclusion. However, with the inclusion of NDVI and road

detection steps, we locate the target and have no false alarm

in all the cases. Therefore, the NDVI and road detection

modules not only minimize the false alarms but also reduce

the sensitivity to m and n.

Local hyperspectral pdfs can contribute greatly to TOI

detection. For instance, in fig. 7a there is a vehicle near the

target with much lower similarity values due to differences

in the hyperspectral domain. In fig. 7b we are interested in

a white truck, and again, hyperspectral pdf matching elimi-

nates the background pixels in addition to all the other mov-

ing vehicles. However, vehicles with multiple color mate-

rials show relatively weak matching. This non-uniform ve-

hicle structure might result in the inclusion of more outliers

into the final mask. In the fourth case, the yellow vehicle

shows the strongest discrimination as all the other pixels are

assigned low similarity values. However, in the third case,

the TOI has blue paint model with a similar hyperspectral

profile to some of the building pixels. We can conclude that

the local hyperspectral pdf matching shows promising re-

sults in adverse scenes.

6.4. NonVehicle Blob Removal

In the final step, grayscale and panchromatic images are

utilized to extract local, spatial, gradient-based features and

detect non-vehicle blobs. The Histogram of Oriented Gra-

dients (HoG) is widely used in the vehicle and human de-

tection literature [9]. It relies on the gradient information

of a detection window to compute features highlighting the

object contour. It has been very successful in aerial vehicle

detection due to their rigid shape. Traditional HoG splits

the detection window into a number of blocks and each

block is divided into a number of cells. Then, each cell

produces a gradient histogram and, as a result, each block

outputs a number of gradient histograms. These histograms

are stacked and normalization is performed to increase ro-

bustness against illumination changes. Finally, the feature

vector of each block is stacked to get the final HoG fea-

tures. Linear SVM is cascaded with the HoG features, as

they provide large number of features. Employing a HoG-

SVM vehicle detector with a sliding window technique is

computationally expensive and not feasible in high frame

rate real-time tracking systems. In this study, however, we

do not compute HoG features of every pixel in the ROI with

a sliding window technique. Instead, it is applied on the

candidate blobs to verify if they belong to a vehicle. For

this reason, we opt to perform l-2 normalization to normal-

ize block features unlike the traditional HoG implementa-

tion where l-1 normalization is performed due to its com-

putational efficiency. HoG is computed on panchromatic

image chips by summing all the bands in the visible wave-

length since it provides the highest contrast in this region.

We apply a linear kernel as it is commonly prefered with the

HoG features since a non-linear kernel implementation can

be costly. In order to train the SVM, we collect 2500 vehi-

cle and non-vehicle chips at five different time settings from

the areas of the Megascene 1 where the TOIs do not travel.

To find the optimal values for HoG parameters, we collect

1000 positive and negative test samples from the areas of
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(a) (b) (c) (d)

Figure 7: First row displays the zoomed images of the TOIs

in the RGB images of the ROIs (second row). Hyperspec-

tral similarity distance maps after vegetation and road seg-

mentation are shown in the third row. Fourth and fifth rows

show extracted masks after thresholding as in eq. 10 and

generated final masks after vehicle blob confirmation step.

(Red circles represent the targets.)

Figure 8: Some of the positive and negative samples in the

HoG-SVM based vehicle detection training dataset.

interest. This way, we can tune the HoG parameters such

as the size of the cells, number of the cells in a block, and

overlap percentage in the neighboring blocks. We resize the

image chips to 64×64 pixels as this setting outputs the high-

est accuracy together with 8×8 cells in a 16×16 block and

50% overlap in adjacent blocks. In total, 1754 HoG features

are extracted from the panchromatic image chips. The de-

signed HoG-SVM detector classifies the test samples with

92.75% accuracy.

7. Data Association

The multi-dimensional assignment (MDA) algorithm,

first proposed by [20], considers S number of past scans

to formulate the data association problem. It is also known

as the practical MHT algorithm. A number of target fea-

tures including kinematic, feature-based similarities, and

shape can be integrated into the practical MHT algorithm

in different manners. In this study, we insert the kinematic

and hyperspectral features-based likelihoods in a weighted

sum Bayesian fashion. Kinematic likelihoods can be es-

timated via a parametric probabilistic modeling approach

using the filter. Kinematic likelihoods are assigned lower

weight due to low frame rate and hyperspectral likelihoods

are given higher weight due to distinctive nature of hyper-

spectral data. In the detection step, the hyperspectral score

f for each blob i is computed. The hyperspectral likelihood

F is then formulated as

Fi =
ST − fi

ΣM
m=1

(ST − fi)
(11)

where M and ST are the number of validated blobs and

threshold, determined in sect. 6.3. The hyperspectral likeli-

hood aided MDA algorithm is covered comprehensively in

Uzkent et al.’s work [27]. In the final step, the track’s state

space matrix are updated with the assigned measurement.

In the filtering stage, we implement the Gaussian Mixture

Filter (GMF) to estimate state space matrix parameters as

detailed in [27].

8. Results

The experiments were executed on a personal computer

with a 2.9 GHz, i7 processor. Table 1 displays the run

times of the detection modules. SIFT implementation on a

1500×1500 image can be costly. However, it can be quickly

computed on a GPU or we can downsample the image to

make the algorithm real-time. Another way to reduce Im-

age Alignment execution time can be to use Harris-Corner

detector to find keypoints. We compute the Homographies

offline since the primary contribution of this paper is on ro-

bust target detection.

We consider the Track Purity (TrP) and Target Purity

(TgP) metrics to measure tracking performance as shown

below.

TrP [tj ] =

max
1≤i≤b

Aji

∑b

i=0
Aji

, T gP [gi] =

max
1≤j≤c

Aji

# frames in gi
(12)

where b and c denote the number of ground truth platforms

g and tracks t and Aji stores the number of times gi is as-

signed to tj . Since we track a single target at separate runs

c at most can be one and i=0 represents dummy target as-

signment. TrP evaluates how many frames tj is assigned
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Module

Veg.

Detection
Road

Classifier

Spectral

Histograms
HoG
SVM

Run time 0.002 s. 0.008 s. 0.15 s. 0.05 s.

Table 1: Run time performances of the detection modules.

dominant gi during the track life whereas TgP measures the

ratio of the number of times gi is associated to dominant tj
to the duration of gi. The TrP metric favors short tracks and

it might be misleading in cases where track terminations oc-

cur frequently. On the other hand, the TgP metric considers

the life of the ground truth so that potential misleading in-

formation due to the TrP is avoided.

We compare the proposed Hyperspectral Feature based

Tracker (HFT) to several popular tracking algorithms.

Three trackers are considered in the category of the kine-

matic data based trackers. They are Nearest Neigh-

bor Tracker (NN), Probabilistic Data Association Filter

(PDAF), and Multiple Hyphothesis Tracker (MHT). Ad-

ditionally, two traditionally known object trackers, Mean-

shift [8] and a real-time object tracker via an online discrim-

inative feature selection learning (OFDS) [30], are consid-

ered. Finally, a recent state-of-the-art aerial vehicle tracker,

wide-area aerial tracker via likelihood of features tracking

(LoFT) [19], is considered. It should be highlighted that

LoFT source code is not available online and we use the re-

sults published in the paper since the resolution of the CLIF

dataset used in [19] is similar to the generated dataset in this

study.

Tracks are initiated interactively with the user selection.

As we are interested in a single target tracking, the user is

asked to click roughly on the center of the vehicle. Then, a

20×20 pixels size window is used to extract 3-D hyperspec-

tral pdfs. Overall, 43 vehicles are extracted. In fig. 9, initial

ROIs for some of the tracks and binary masks produced af-

ter vegetation and road detection modules are shown. The

proposed track initiation approach is less prone to user er-

ror since we do not necessarily need a strict target bounding

box.

Figure 9: Initiation of the some of the tracked vehicles and

vegetation and road pixels removed binary masks.

As seen in table 2, the proposed HFT outpeforms the

other trackers by a large margin in terms of both TrP and

TgP. We note that when the tracker fails it is due to the com-

Trackers Track Purity Target Purity

NN 39.25 34.65

PDAF 26.07 14.19

MHT 39.20 35.07

Mean-shift[8] 8.88 8.88

OFDS[30] 12.66 12.66

*LoFT[19] 60.30 40.50

HFT 69.78 60.30

Table 2: Comparison of the proposed hyperspectral tracker

with other trackers. LoFT has not been tested on the gen-

erated scenario since its source code is not available. How-

ever, it has been tested on a similar CLIF aerial video set

(see fig. 3) in Pelapur et al.’s work [19] and the results are

copied from that work. NN, PDAF, and MHT are provided

true measurements from the vehicles in the ROI.

bination of a large density of occlusions and multiple object

with similar hyperspectral profiles. This is supported by the

fact that on average 20% of the time a vehicle is partially or

fully occluded.

9. Conclusion

We investigated the unique challenges posed by wide-

area surveillance from a moving platform and proposed a

real-time detection and tracking framework based on an

adaptive sensor capable of producing a wide FOV panchro-

matic image and narrow FOV hyperspectral image. The

proposed framework focuses on tracking a single target with

higher persistency in complex environments, as the hyper-

spectral data acquisition and processing are costly. The use

of hyperspectral information introduced high false alarm

rates for the vehicles with less distinctive hyperspectral pro-

files. By exploiting the spatial domain in addition to the hy-

perspectral domain, we reduced the false alarm rates with-

out degrading the recall rates dramatically. In the future, we

plan on fusing the likelihoods maps from each band with

adapting weights. This way, dependency on the road clas-

sifier can be minimized. Also, we will work on testing the

proposed approach on a scenario generated from a real plat-

form by using a state-of-the-art hyperspectral camera.
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