
Efficient Deep Feature Learning and Extraction via StochasticNets

Mohammad Javad Shafiee†, Parthipan Siva‡, Paul Fieguth†, Alexander Wong†

†VIP Research Group, University of Waterloo, Waterloo, ON, Canada
‡Aimetis Corporation, Waterloo, ON, Canada

{mjshafiee, pfieguth, alexander.wong}@uwaterloo.ca
‡
parthipan.siva@aimetis.com

Abstract

Deep neural networks are a powerful tool for feature

learning and extraction. One area worth exploring in fea-

ture extraction using deep neural networks is efficient neu-

ral connectivity formation for faster feature learning and

extraction. Motivated by findings of stochastic synaptic

connectivity formation in the brain as well as the brain’s

uncanny ability to efficiently represent information, we pro-

pose the efficient learning and extraction of features via

StochasticNets, where sparsely-connected deep neural net-

works can be formed via stochastic connectivity between

neurons. Experimental results show that features learned

using deep convolutional StochasticNets, with fewer neu-

ral connections than conventional deep convolutional neu-

ral networks, can allow for better or comparable classifi-

cation accuracy than conventional deep neural networks.

Finally, it was also shown that significant gains in feature

extraction speed can be achieved in embedded applications

using StochasticNets.

1. Introduction

Deep neural networks are a powerful tool for feature

learning and extraction given their ability to represent

and model high-level abstractions in highly complex data.

Deep neural networks have shown considerable capabili-

ties in producing features that enable state-of-the-art perfor-

mance for handling complex tasks such as speech recogni-

tion [6, 13], object recognition [14, 21, 23, 26], and natural

language processing [1, 5]. Recent advances in improving

the performance of deep neural networks for feature learn-

ing and extraction have focused on areas such as network

regularization [30, 31], activation functions [10, 11, 15],

and deeper architectures [26, 28, 32], where the goal is to

learn more representative features with respect to increasing

task accuracy.

Despite the power capabilities of deep neural networks

for feature learning and extraction, they are very rarely em-

ployed on embedded devices such as video surveillance

cameras, smartphones, and wearable devices. This diffi-

cult migration of deep neural networks into embedded ap-

plications for feature extraction stems largely from the fact

that, unlike the highly powerful distributed computing sys-

tems and GPUs that are often leveraged for deep learning

networks, the low-power CPUs commonly used in embed-

ded systems simply do not have the computational power to

make deep neural networks a feasible solution for feature

extraction.

Much of the focus on migrating deep neural networks for

feature learning and extraction in embedded systems have

been to design custom embedded processing units dedicated

to accelerating deep neural networks [8, 18, 12] . However,

such an approach greatly limits the flexibility of the type

of deep neural network architectures that can be used. Fur-

thermore, such an approach requires additional hardware,

which adds to the cost and complexity of the embedded sys-

tem. On the other hand, improving the efficiency of deep

neural networks for feature learning and extraction is much

less explored, with considerably fewer strategies proposed

so far [3]. In particular, very little exploration has been con-

ducted on efficient neural connectivity formation for effi-

cient feature learning and extraction, which can hold con-

siderable promise in achieving highly efficient deep neural

network architectures that can be used in embedded appli-

cations.

One way to address this challenge is to draw inspiration

from the brain which has an uncanny ability to efficiently

represent information. In particular, we are inspired by the

brain’s procedure where develops synaptic connectivity be-

tween neurons. Recently, in a pivotal paper [16], data of

living brain tissue from Wistar rats was collected and used

to construct a partial map of a rat brain. Based on this map,

Hill et al. came to a very surprising conclusion. The synap-

tic formation, of specific functional connectivity in neocor-

tical neural microcircuits, was found to be stochastic in na-

ture. This is in sharp contrast to the way deep neural net-

works are formed, where connectivity is largely determinis-

tic and pre-defined.

28



Figure 1. An illustrative example of a random graph. All possi-

ble edge connectivity between the nodes in the graph may occur

independently with a probability of pij .

Motivated by findings of random neural connectivity

formation and the efficient information representation ca-

pabilities of the brain, we proposed the learning of effi-

cient feature representations via StochasticNets [25], where

the key idea is to leverage random graph theory [7, 9] to

form sparsely-connected deep neural networks via stochas-

tic connectivity between neurons. The connection spar-

sity, in particular for deep convolutional networks, allows

for more efficient feature learning and extraction due to the

sparse nature of receptive fields which require less computa-

tion and memory access. We will show that these sparsely-

connected deep neural networks, while computationally ef-

ficient, can still maintain the same accuracies as traditional

deep neural networks. Furthermore, the StochasticNet ar-

chitecture for feature learning and extraction presented in

this work can also benefit from all of the same approaches

used for traditional deep neural networks such as data aug-

mentation and stochastic pooling to further improve perfor-

mance.

The paper is organized as follows. First, a review of

random graph theory is presented in Section 2. The the-

ory and design considerations behind forming Stochastic-

Net as a random graph realizations are discussed in Section

3. Experimental results where we train deep convolutional

StochasticNets to learn abstract features using the CIFAR-

10 dataset [20], and extract the learned features from images

to perform classification on the SVHN [24] and STL-10 [4]

datasets is presented in Section 5. Finally, conclusions are

drawn in Section 6.

2. Review of Random Graph Theory

The underlying idea of deep feature learning via

StochasticNets is to leverage random graph theory [7, 9]

to form the neural connectivity of deep neural networks in

a stochastic manner such that the resulting neural networks

are sparsely connected yet maintaining feature representa-

tion capabilities. As such, it is important to first provide a

general overview of random graph theory for context. In

random graph theory, a random graph can be defined as the

probability distribution over graphs [2]. A number of differ-

ent random graph models have been proposed in literature.

A commonly studied random graph model is that pro-

posed by [9], in which a random graph can be expressed by

G(n, p), where all possible edge connectivity are said to oc-

cur independently with a probability of p, where 0 < p < 1.

This random graph model was generalized by [19], in which

a random graph can be expressed by G(V , pij), where V
is a set of vertices and the edge connectivity between two

vertices {i, j} in the graph is said to occur with a prob-

ability of pij , where pij ∈ [0, 1]. Therefore, based on

this generalized random graph model, realizations of ran-

dom graphs can be obtained by starting with a set of n ver-

tices V = {vq|1 ≤ q ≤ n} and randomly adding a set

of edges between the vertices based on the set of possi-

ble edges E = {eij |1 ≤ i ≤ n, 1 ≤ j ≤ n , i 6= j} indepen-

dently with a probability of pij . A number of realizations

of a random graph are provided in Figure 2 for illustrative

purposes. It is worth noting that because of the underly-

ing probability distribution, the generated realizations of the

random graph often exhibit differing edge connectivity.

Given that deep neural networks can be fundamentally

expressed and represented as graphs G, where the neurons

are vertices V and the neural connections are edges E , one

intriguing idea for introducing stochastic connectivity for

the formation of deep neural networks is to treat the for-

mation of deep neural networks as particular realizations of

random graphs, which we will describe in greater detail in

the next section.

3. StochasticNets: Deep Neural Networks as

Random Graph Realizations

layer 1 layer 2 layer 3 layer 1 layer 2 layer 3

(a) RG Representation (b) A Realization of (a)
Figure 3. Example random graph representing a section of a deep

feed-forward neural network (a) and its realization (b). Every neu-

ron i may be connected to neuron j with probability p(i → j)
based on random graph theory. To enforce the properties of a gen-

eral deep feed-forward neural network, there is no neural connec-

tivity between nodes that are not in the adjacent layers. As shown

in (b), the neural connectivity of nodes in the realization are varied

since they are drawn based on a probability distribution.

Let us represent a deep neural network as a random

graph G
(

V , p(i → j)
)

, where V is the set of neurons

V = {vi|1 ≥ i ≥ n}, with vi denoting the ith neuron and

n denoting the total number of neurons, in the deep neural

network and p(i → j) is the probability that a neural con-

nection occurs between neurons vi and vj . It is worth noting

that since neural networks are directed graphs, to this end

the probability p(·) is represented in a directed way from

29



Figure 2. Realizations of a random graph with 7 nodes. The probability for edge connectivity between all nodes in the graph was set to

pi,j = 0.5 for all nodes i and j. Each diagram demonstrates a different realization of the random graph.

source node to the destination node. As such, one can then

form a deep neural network as a realization of the random

graph G
(

V , p(i → j)
)

by starting with a set of neurons V ,

and randomly adding neural connections between the set of

neurons independently with a probability of p(i → j) as de-

fined above.

While one can form practically any type of deep neural

network as a realization of random graphs, an important de-

sign consideration for forming deep neural networks as ran-

dom graph realizations is that different types of deep neu-

ral networks have fundamental properties in their network

architecture that must be taken into account and preserved

in the random graph realization. Therefore, to ensure that

fundamental properties of the network architecture of a cer-

tain type of deep neural network is preserved, the proba-

bility p(i → j) must be designed in such a way that these

properties are enforced appropriately in the resultant ran-

dom graph realization. Let us consider a general deep feed-

forward neural network. First, in a deep feed-forward neu-

ral network, there can be no neural connections between

non-adjacent layers. Second, in a deep feed-forward neu-

ral network, there can be no neural connections between

neurons on the same layer. Therefore, to enforce these two

properties, p(i → j) = 0 when l(i) 6= l(j) + 1 where l(i)
encodes the layer number associated to the node i. An ex-

ample random graph based on this random graph model for

representing general deep feed-forward neural networks is

shown in Figure 3(a), with an example feed-forward neural

network graph realization is shown in Figure 3(b). Note that

the neural connectivity for each neuron may be different due

to the stochastic nature of neural connection formation.

Deep convolutioal neural networks (CNNs) are popu-

lar network structures which are mostly used for computer

vision applications. Here, the experiments are evaluated

based on CNNs. The neural connectivity formation for the

deep convolutional StochasticNet realizations is achieved

via acceptance-rejection sampling, and can be expressed by:

ei→j exists where
[

p(i → j) ≥ T
]

= 1 (1)

where ei→j is the neural connectivity from node i to node

j, [·] is the Iverson bracket [17], and T encodes the spar-

sity of neural connectivity in the StochasticNet. While it is

possible to take advantage of any arbitrary distribution to

construct deep convolutional StochasticNet realizations, for

the purpose of this paper two different spatial neural con-

nectivity models were explored for the convolutional layers:

i) uniform connectivity model:

p(i → j) =

{

U(0, 1) j ∈ Ri

0 otherwise.

and ii) a Gaussian connectivity model:

p(i → j) =

{

N (i, σ) j ∈ Ri

0 otherwise.

where the mean is at the center of the receptive field (i.e., i)

and the standard deviation σ is set to be a third of the recep-

tive field size. In this study, Ri is defined as a 5 × 5 spatial

region around node i in convolutional layers and it has the

size of next fully connected in the fully connected hidden

layers. The neural connectivity of 100% is equivalent to a

dense 5× 5 receptive field used for ConvNets.

4. Feature Learning via Deep Convolutional

StochasticNets

As one of the most commonly used types of deep neu-

ral networks for feature learning is deep convolutional neu-

ral networks [22], let us investigate the efficacy of efficient

feature learning can be achieved via deep convolutional

StochasticNets. Deep convolutional neural networks can

provide a general abstraction of the input data by applying

the sequential convolutional layers to the input data (e.g. in-

put image). The goal of convolutional layers in a deep neu-

ral network is to extract discriminative features to feed into

the classifier such that the fully connected layers play the

role of classification in deep neural networks. Therefore,

the combination of receptive fields in convolutional layers

can be considered as the feature extractor in these models.

The receptive fields’ parameters must be trained to find op-

timal parameters leading to most discriminative features.

However learning those parameters is not possible every

time due to the computational complexity or lake of enough

training data such that general receptive fields (i.e., convo-

lutional layers) without learning is desirable. On the other

30



hand, the computational complexity of extracting features

is another concern which should be addressed. Essentially,

extracting features in a deep convolutional neural network

is a sequence of convolutional processes which can be rep-

resented as multiplications and summations and the number

of operations is dependent on the number of parameters of

receptive fields. Motivated by those reasons, sparsifying the

receptive fields while maintaining the generality of them is

highly desirable.

To this end, we want to sparsify the receptive field moti-

vated by the StochasticNet framework to provide efficient

deep feature learning. As explained in previous section,

in addition to the design considerations for p(i → j) pre-

sented in the previous section to enforce the properties of

deep feed-forward neural networks, additional considera-

tions must be taken to preserve the properties of deep con-

volutional neural networks, which is a type of deep feed-

forward neural network.

Specifically, the neural connectivity for each randomly

realized receptive field K (i.e., K is the stochastic real-

ization of R in a convolutional layer) in the deep convolu-

tional StochasticNet is based on a probability distribution,

with the neural connectivity configuration thus being shared

amongst different small neural collections for a given ran-

domly realized receptive field. An example of a realized

deep convolutional StochasticNet is shown in Figure 4. As

seen, the neural connectivity for randomly realized recep-

tive field Kl,1 is completely different from randomly real-

ized receptive field Kl,2. The response of each randomly

realized receptive field leads to an output in new channel in

layer l + 1.

A realized deep convolutional StochasticNet can then be

trained to learn efficient feature representations via super-

vised learning using labeled data. One can then use the

trained StochasticNet for extracting a set of abstract features

from input data.

4.1. Relationship to Other Methods

While a number of stochastic strategies for improving

deep neural network performance have been previously in-

troduced [30], [3] and [27], it is very important to note

that the proposed StochasticNets is fundamentally different

from these existing stochastic strategies in that Stochastic-

Nets main significant contributions deals primarily with the

formation of neural connectivity of individual neurons to

construct efficient deep neural networks that are inherently

sparse prior to training, while previous stochastic strategies

deal with either the grouping of existing neural connections

to explicitly enforce sparsity [3], or removal/introduction of

neural connectivity for regularization during training. More

specifically, StochasticNets is a realization of a random

graph formed prior to training and as such the connectivity

in the network are inherently sparse, and are permanent and

Figure 4. Forming a deep convolutional StochasticNet. The neu-

ral connectivity for each randomly realized receptive field (in this

case, {Kl,1,Kl,2}) are determined based on a probability distri-

bution, and as such the configuration of each randomly realized

receptive field may differ. It can be seen that the shape and neural

connectivity for receptive field Kl,1 is completely different from

receptive field Kl,2. The response of each randomly realized re-

ceptive field in layer l leads to an output in layer l + 1. Only one

layer of the formed deep convolutional StochasticNet is shown for

illustrative purposes.

do not change during training. This is very different from

Dropout [27] and DropConnect [30] where the activations

and connections are temporarily removed during training

and put back during test for regularization purposes only,

and as such the resulting neural connectivity of the network

remains dense. There is no notion of dropping in Stochas-

ticNets as only a subset of possible neural connections are

formed in the first place prior to training, and the resulting

network connectivity of the network is sparse.

StochasticNets are also very different from Hash-

Nets [3], where connection weights are randomly grouped

into hash buckets, with each bucket sharing the same

weights, to explicitly sparsifying into the network, since

there is no notion of grouping/merging in StochasticNets;

the formed StochasticNets are naturally sparse due to the

formation process. In fact, stochastic strategies such as

HashNets, Dropout, and DropConnect can be used in con-

junction with StochasticNets. Figure 5 demonstrates the

difference of StochasticNet compared to other methods in

network model, network formation, training and testing sit-

uations.

5. Experimental Results

To investigate the efficacy of efficient feature learning

via StochasticNets, we form deep convolutional Stochas-

ticNets and train the constructed StochasticNets using the

CIFAR-10 [20] image dataset for generating generic fea-

tures. The StochasticNet formation in this study is im-

plemented via MatConvNet framework [29] and all experi-

31



1) Network Model 2) Network Formation 3) Training 4) Testing

D
ro

p
o
u
t

D
ro

p
-C

o
n
n
ec

t
H

as
h
N

et
S

to
ch

as
ti

cN
et

Figure 5. Visual comparison among different related methods to StochasticNet. Constructing a deep neural network can be divided into 4

steps. 1) Network Model: dropout, drop-connect and Hashnet methods start with the conventional convNet where as stochastic starts with

a random graph. 2) Network Formation: droput and drop-connect approaches utilize the formed network from previous step while Hashent

groups edges to have same weight (shown in same color) and stochastic net samples the constructed random graph. 3)Training: dropout and

drop-connect methods drop actiavation function results or the weight connectivities randomly to regularize the training network while the

Hashnet and StochasticNet obtain the same configuration as previous step (i.e., Network Formation). 4) Testing: in this step dropout, drop-

connect and Hashnet approximate all network parameters and get the output based on the complete network structure while StochasticNet

outputs by the sparse trained network.

ments were done via MatConvNet framework. Based on the

trained StochasticNets, features are then extracted for the

SVHN [24] and STL-10 [4] image datasets and image clas-

sification performance using these extracted deep features

within a neural network classifier framework are then eval-

uated in a number of different ways. It is important to note

that the main goal is to investigate the efficacy of feature

learning via StochasticNets and the influence of stochas-

tic connectivity parameters on feature representation perfor-

mance, and not to obtain maximum absolute classification

performance; therefore, the performance of StochasticNets

can be further optimized through additional techniques such

as data augmentation and network regularization methods.

Datasets

The CIFAR-10 image dataset [20] consists of 50,000 train-

ing images categorized into 10 different classes (5,000 im-

ages per class) of natural scenes. Each image is an RGB im-

age that is 32×32 in size. The MNIST image dataset [22]

consists of 60,000 training images and 10,000 test images

of handwritten digits. Each image is a binary image that is

28×28 in size, with the handwritten digits are normalized

with respect to size and centered in each image. The SVHN

image dataset [24] consists of 604,388 training images and

26,032 test images of digits in natural scenes. Each image

is an RGB image that is 32×32 in size. Finally, the STL-10

image dataset [4] consists of 5,000 labeled training images

and 8,000 labeled test images categorized into 10 different

classes (500 training images and 800 training images per

class) of natural scenes. Each image is an RGB image that

is 96×96 in size. The images were resized to 32 × 32 to

have the same network configuration for all experimented

datasets for consistency purposes. Note that the 100,000 un-

labeled images in the STL-10 image dataset were not used

in this paper.

StochasticNet Configuration

The deep convolutional StochasticNets used in this paper

are realized based on the LeNet-5 deep convolutional neu-

ral network [22] architecture, and consists of three convo-

32



Neural Connectivity Percentage

0 20 40 60 80 100

E
rr

o
r

0.3

0.4

0.5

0.6

0.7

Training Error

Test Error

Neural Connectivity Percentage

0 20 40 60 80 100

E
rr

o
r

0.3

0.4

0.5

0.6

0.7

Training Error

Test Error

(a) Gaussian Connectivity Model (b) Uniform Connectivity Model

Figure 6. Training and test error versus the number of neural connections for the STL-10 dataset. Both Gaussian and uniform neural

connectivity models were evaluated. Note that neural connectivity percentage of 100 is equivalent to ConvNet, since all connections are

made. As seen a StochasticNet with fewer neural connectivity compared to the ConvNet provides better than or similar accuracy to the

ConvNet.

lutional layers with 32, 32, and 64 receptive fields for the

first, second, and third convolutional layers, respectively,

and one hidden layer of 64 neurons, with all neural connec-

tions being randomly realized based on probability distribu-

tions. For comparison purposes, the conventional ConvNet

used as a baseline is configured with the same network ar-

chitecture as explained above using 5× 5 receptive fields.

5.1. Number of Neural Connections

An experiment was conducted to illustrate the impact of

the number of neural connections on the feature representa-

tion capabilities of StochasticNets. Figure 6 demonstrates

the training and test error versus the number of neural con-

nections in the network for the STL-10 dataset. The neural

connection probability is varied to achieve the desired num-

ber of neural connections for testing its effect on feature

representation capabilities.

Figure 6 demonstrates the training and testing error vs.

the neural connectivity percentage relative to the baseline

ConvNet, for two different spatial neural connectivity mod-

els: i) uniform connectivity model, and ii) Gaussian con-

nectivity model. It can be observed that classification us-

ing the features from the StochasticNet is able to achieve

the better or similar test error as using the features from

the ConvNet when the number of neural connections in the

StochasticNet is fewer than the ConvNet. In particular, clas-

sification using the features from the StochasticNet is able

to achieve the same test error as using the features from

the ConvNet when the number of neural connections in the

StochasticNet is half that of the ConvNet. It can be also ob-

served that, although increasing the number of neural con-

nections resulted in lower training error, it does not exhibit

reductions in test error, and as such it can be observed that

the proposed StochasticNets can improve the handling of

over-fitting associated with deep neural networks while de-

creasing the number of neural connections, which in effect

greatly reduces the number of computations and thus result-

ing in more efficient feature learning and feature extraction.

Finally, it is also observed that there is a noticeable differ-

ence in the training and test errors when using the Gaussian

connectivity model when compared to the uniform connec-

tivity model, which indicates that the choice of neural con-

nectivity probability distributions can have a noticeable im-

pact on feature representation capabilities.

5.2. Comparisons with ConvNet for Feature Learn-
ing

Motivated by the results shown in Figure 6, a compre-

hensive experiment were done to investigate the efficacy of

feature learning via StochasticNets on CIFAR-10 and uti-

lize them to classify the SVHN and STL-10 image datasets.

Deep convolutional StochasticNet realizations were formed

with 75% neural connectivity using the Gaussian connectiv-

ity model as well as the uniform connectivity model when

compared to a conventional ConvNet. The performance of

the StochasticNets and the ConvNets was evaluated based

on 25 trials and the reported results are based on the best

of the 25 trials in terms of training error. Figure 7 and Fig-

ure 8 shows the training and test error results of classifi-

cation of models realized based on the uniform connectiv-

ity and the Gaussian connectivity models which use learned

deep features from CIFAR-10 using the StochasticNets and

ConvNets on the SVHN and STL-10 datasets. It can be

observed that, in the case where the uniform connectivity

33



Epoch

0 10 20 30 40 50

E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6 StochasticNet Training Error

StochasticNet Test Error

ConvNet Training Error

ConvNet Test Error

Epoch

0 10 20 30 40 50

E
rr

o
r

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

StochasticNet Training Error

StochasticNet Test Error

ConvNet Training Error

ConvNet Test Error

(a) SVHN (b) STL-10
Figure 7. Uniform distribution realization: Comparison of classification performance between deep features extracted with a standard

ConvNet and that extracted with a StochasticNet containing 75% neural connectivity as the ConvNet. The StochasticNet is realized based

on a uniform connectivity model. The StochasticNet results in a 0.5% improvement in relative test error for the STL-10 dataset, as well as

provides a smaller gap between the training error and test error. The StochasticNet using a uniform connectivity model achieved the same

performance as the ConvNet for the SVHN dataset. The results are reposted based on 25 trials.

Epoch

0 10 20 30 40 50

E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6 StochasticNet Training Error

StochasticNet Test Error

ConvNet Training Error

ConvNet Test Error

Epoch

0 10 20 30 40 50

E
rr

o
r

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

StochasticNet Training Error

StochasticNet Test Error

ConvNet Training Error

ConvNet Test Error

(a) SVHN (b) STL-10
Figure 8. Gaussian distribution realization: Comparison of classification performance between deep features extracted with a standard

ConvNet and that extracted with a StochasticNet containing 75% neural connectivity as the ConvNet. The StochasticNet is realized based

on a Gaussian connectivity model. The StochasticNet results in a 4.5% improvement in relative test error for the STL-10 dataset, as well

as provides a smaller gap between the training error and test error. A 1% relative improvement is also observed for the SVHN dataset. The

reported performance were computed based on 25 trials.

model is used, the test error for classification using features

learned using StochasticNets, with just 75% of neural con-

nections as ConvNets, is approximately the same as Con-

vNets for both the SVHN and STL-10 datasets (with ∼0.5%

test error reduction for STL-10). It can also be observed

that, in the case where the Gaussian connectivity model is

used, the test error for classification using features learned

using StochasticNets, with just 75% of neural connections

as ConvNets, is approximately the same (∼1% relative test

error reduction) as ConvNets for the SVHN dataset. More

interestingly, it can also be observed that the test error for

classification using features learned using StochasticNets,

with just 75% of neural connections as ConvNets, is re-

duced by ∼4.5% compared to ConvNets for the STL-10

dataset. Furthermore, the gap between the training and

test errors of classification using features extracted using

the StochasticNets is less than that of the ConvNets, which

would indicate reduced overfitting in the StochasticNets.

These results illustrate the efficacy of feature learning via

StochasticNets in providing efficient feature learning and

34



extraction while preserving feature representation capabili-

ties, which is particularly important for real-world applica-

tions where efficient feature extraction performance is nec-

essary.

5.3. Relative Feature Extraction Speed vs. Number
of Neural Connections

Previous sections showed that StochasticNets can

achieve good feature learning performance relative to con-

ventional ConvNets, while having significantly fewer neu-

ral connections. We now investigate the feature extraction

speed of StochasticNets, relative to the feature extraction

speed of ConvNets, with respect to the number of neural

connections formed in the constructed StochasticNets. To

this end, the convolutions in the StochasticNets are imple-

mented as a sparse matrix dot product, while the convolu-

tions in the ConvNets are implemented as a matrix dot prod-

uct. For fair comparison, both implementations do not make

use of any hardware-specific optimizations such as Stream-

ing SIMD Extensions (SSE) because many industrial em-

bedded architectures used in applications such as embedded

video surveillance systems do not support hardware opti-

mization such as SSE.

As with Section 5.1, the neural connection probability

is varied in both the convolutional layers and the hidden

layer to achieve the desired number of neural connections

for testing its effect on the feature extraction speed of the

formed StochasticNets. Figure 9 demonstrates the relative

feature extraction time vs. the neural connectivity percent-

age, where relative time is defined as the time required dur-

ing the feature extraction process relative to that of the Con-

vNet. It can be observed that the relative feature extrac-

tion time decreases as the number of neural connections de-

crease, which illustrates the potential for StochasticNets to

enable more efficient feature extraction.

Interestingly, it can be observed that speed improve-

ments are seen immediately, even at 90% connectivity,

which may appear quite surprising given that sparse repre-

sentation of matrices often suffer from high computational

overhead when representing dense matrices. However, in

this case, the number of connections in the randomly real-

ized receptive field is very small relative to the typical input

image size. As a result, the overhead associated with using

sparse representations is largely negligible when compared

to the speed improvements from the reduced computations

gained by eliminating even one connection in the receptive

field. Therefore, these results show that StochasticNets can

have significant merit for enabling the feature representa-

tion power of deep neural networks to be leveraged for a

large number of industrial embedded applications.

Neural Connectivity Percentage 

10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e 

T
im

e

0

0.2

0.4

0.6

0.8

1

Figure 9. Relative feature extraction time versus the number of

neural connections. Note that neural connectivity percentage of

100 is equivalent to ConvNet, since all connections are made.

6. Conclusions

In this paper, we proposed the learning of efficient fea-

ture representations via StochasticNets, where sparsely-

connected deep neural networks are constructed by way of

stochastic connectivity between neurons. Such an approach

facilitates for more efficient neural utilization, resulting in

reduced computational complexity for feature learning and

extraction while preserving feature representation capabil-

ities. The effectiveness of feature learning via Stochastic-

Net was investigated by training StochasticNets using the

CIFAR-10 dataset and using the learned features for classi-

fication of images in the SVHN and STL-10 image datasets.

The StochasticNet features were then compared to the fea-

tures extracted using a conventional convolutional neural

network (ConvNet). Experimental results demonstrate that

classification using features extracted via StochasticNets

provided better or comparable accuracy than features ex-

tracted via ConvNets, even when the number of neural con-

nections is significantly fewer. Furthermore, Stochastic-

Nets, with fewer neural connections than the conventional

ConvNet, can reduce the over fitting issue associating with

the conventional ConvNet. As a result, deep feature learn-

ing and extraction via StochasticNets can allow for more ef-

ficient feature extraction while facilitating for better or sim-

ilar accuracy performances.

References

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neu-

ral probabilistic language model. The Journal of Machine

Learning Research (JMLR), 3, 2003. 1

[2] B. Bollobás and F. R. Chung. Probabilistic combinatorics

and its applications, volume 44. American Mathematical

Soc., 1991. 2

[3] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing neural networks with the hashing

trick. arXiv preprint arXiv:1504.04788, 2015. 1, 4

[4] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-

layer networks in unsupervised feature learning. In Inter-

35



national conference on artificial intelligence and statistics,

pages 215–223, 2011. 2, 5

[5] R. Collobert and J. Weston. A unified architecture for natural

language processing: Deep neural networks with multitask

learning. In International conference on Machine learning

(ICML). ACM, 2008. 1

[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-

dependent pre-trained deep neural networks for large-

vocabulary speech recognition. IEEE Transactions on Audio,

Speech, and Language Processing, 20(1), 2012. 1

[7] P. Erdos and A. Renyi. On random graphs i. Publ. Math.

Debrecen, 6:290–297, 1959. 2

[8] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and

E. Culurciello. Hardware accelerated convolutional neural

networks for synthetic vision systems. In International Sym-

posium on Circuits and Systems (ISCAS),. IEEE, 2010. 1

[9] E. N. Gilbert. Random graphs. The Annals of Mathematical

Statistics, pages 1141–1144, 1959. 2

[10] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In International

conference on artificial intelligence and statistics, 2010. 1

[11] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier

neural networks. In International Conference on Artificial

Intelligence and Statistics, 2011. 1

[12] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culur-

ciello. A 240 g-ops/s mobile coprocessor for deep neural net-

works. In Computer Vision and Pattern Recognition Work-

shops (CVPRW),. IEEE, 2014. 1

[13] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,

E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates,

et al. Deepspeech: Scaling up end-to-end speech recognition.

arXiv preprint arXiv:1412.5567, 2014. 1

[14] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In Eu-

ropean Conference on Computer Vision (ECCV). Springer,

2014. 1

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. arXiv preprint arXiv:1502.01852, 2015. 1

[16] S. L. Hill, Y. Wang, I. Riachi, F. Schürmann, and

H. Markram. Statistical connectivity provides a sufficient

foundation for specific functional connectivity in neocortical

neural microcircuits. Proceedings of the National Academy

of Sciences, 109(42), 2012. 1

[17] K. Iverson. A programming language. In Proceedings of

the May 1-3, 1962, spring joint computer conference. ACM,

1962. 3

[18] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Mar-

tini, and E. Culurciello. An efficient implementation of deep

convolutional neural networks on a mobile coprocessor. In

International Midwest Symposium on Circuits and Systems

(MWSCAS). IEEE, 2014. 1

[19] I. Kovalenko. The structure of a random directed graph.

Theory of Probability and Mathematical Statistics, 6:83–92,

1975. 2

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images, 2009. 2, 4, 5

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems (NIPS),

2012. 1

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11), 1998. 3, 5

[23] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for

generic object recognition with invariance to pose and light-

ing. In Computer Vision and Pattern Recognition (CVPR),

volume 2. IEEE, 2004. 1

[24] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS workshop on deep learning and unsu-

pervised feature learning, volume 2011, 2011. 2, 5

[25] M. J. Shafiee, P. Siva, and A. Wong. Stochasticnet: Form-

ing deep neural networks via stochastic connectivity. IEEE

Access, (99), 2016. 2

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1), 2014. 4

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-

novich. Going deeper with convolutions. arXiv preprint

arXiv:1409.4842, 2014. 1

[29] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. 4

[30] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Reg-

ularization of neural networks using dropconnect. In Inter-

national Conference on Machine Learning (ICML), pages

1058–1066, 2013. 1, 4

[31] M. D. Zeiler and R. Fergus. Stochastic pooling for regular-

ization of deep convolutional neural networks. arXiv preprint

arXiv:1301.3557, 2013. 1

[32] X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

arXiv preprint arXiv:1505.06798, 2015. 1

36


