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Abstract

Convolutional neural network (CNN) is becoming pop-

ular because of its great ability for accurate image recog-

nition. However, the computational cost is extremely high,

which increases power consumption of embedded CV sys-

tems. This paper proposes an efficient computing method,

LazyConvPool (LCP), and its hardware architecture to re-

duce power consumption of CNN-based image recognition.

The LCP exploits redundancy of operations in CNN and

only executes essential convolutions by an approximated

prediction technique. We also propose Sign Connect, which

is a low computational-cost approximated prediction with-

out any multiplications. The experimental evaluation us-

ing image classification dataset shows that the proposed

method reduces the power consumption by 17.8%–20.2%

and energy consumption by 11.4%–14.1% while retaining

recognition performance.

1. Introduction

Image recognition is a key technology in various fields

such as robotics, automotive, security, and medical applica-

tions. Realizing efficient embedded systems for such appli-

cations is nontrivial because we must co-design both algo-

rithm and hardware architecture. A large number of dedi-

cated vision processors have been proposed, which utilize

handcrafted features (Haar-like features [22], SIFT [20],

HOG [8], etc.) and learning algorithms (SVM [6], Boost-

ing [9], etc.). However, the design of the specialized proces-

sor is costly in terms of development efforts albeit it could

potentially achieve good performance.

In contrast to the traditional recognition algorithms that

utilize the handcrafted features, representation learning [1]

is becoming increasingly popular in the state-of-the-art

recognition methods. The key idea of the representation

learning is to let the system learn the feature by itself, in

addition to learning the classifier. Convolutional neural net-

work (CNN) is one of those representation learning meth-

ods and has achieved remarkable results in various image

recognition tasks [10, 15, 17]. CNN computes 2D convolu-

tions on images over and over again to extract the features.

The local features of images are acquired by adjusting the

weights of the convolution filters. This general framework

makes it possible for CNN to accurately recognize various

classes of images without giving the manually designed fea-

tures. In order to achieve even higher accuracy, the network

structure of the CNN tends to be made deeper and deeper,

requiring huge computational resources. An efficient com-

puting scheme to facilitate such a large number of convo-

lutions is desired to realize accurate image recognition on

energy-limited embedded systems.

Among the several kinds of approaches for realizing

energy-efficient CNN, recent researches focus on the in-

herent resilience of CNN [21, 23]. Calculation of pattern

recognition algorithms generally contains redundant calcu-

lation to ensure the robustness against noisy inputs. In other

words, the redundancy in most of the recognition algorithms

can be pursued to reduce computational resources. In this

work, we focus on the characteristic of the max pooling op-

eration, which is an integral component of CNN that selects

a representative feature in a small region. Specifically, we

propose LazyConvPool (LCP), a new computation method

for CNN’s convolution layers and pooling layers. In LCP,

only the essential convolutions that affect the final result are

executed on the basis of the prediction results by approxi-

mated computations. The key features of the proposed LCP

are as follows:

• LCP predicts a local region that will be selected later

in the pooing layer to limit the application of the accu-

rate and thus expensive convolutional operations to the

predicted region.

• The prediction is based on the newly proposed Sign

Connect, which gives a significantly lightweight ap-

proximation of the convolution with no multiplication

operation, while keeping prediction accuracy.
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• An efficient hardware architecture is also proposed to

implement a low power LCP-based CNN with a mini-

mal overhead.

The rest of the paper is organized as follows. Section 2

provides an overview of the related work. Section 3 de-

scribes the proposed methods, LCP and Sign Connect. Sec-

tion 4 presents the hardware architecture for the proposed

method and shows an implementation details to improve

performance. Section 5 shows the experimental results, and

finally, Section 6 concludes the paper.

2. Related works

2.1. Convolutional neural network

A typical CNN consists of convolution layers, pooling

layers, and a fully connected layer as shown in Figure 1.

First, in the convolution layers, 2D convolution is computed

as

W ∗ x(m,n) =
∑

u

∑

v

W (u, v)x(m+ u, n+ v), (1)

where x is an input image and W is a weight matrix of the

convolution filter. The operator ‘∗’ means 2D convolution.

This layer extracts local features of images to generate fea-

ture maps by using a large number of different filters. Then

in the pooling layers, a representative feature value is se-

lected from a small region called a pooling window. The

pooling layer is useful for translation invariance and reduc-

tion of computational costs. As the representative value,

maximum (max) or average values are commonly used. In

this paper, we use max pooling, which selects the max value

from the pooling window. After the convolution and the

pooling, non-linearity is used as an activation function sim-

ilarly to the traditional neural networks. Here, piecewise

continuous functions are generally used as the activation

function. In practice, rectified linear unit (ReLU) is widely

used because it does not saturate gradients while requiring

a small amount of computation. ReLU is represented as

f(x) = max(0, x). (2)

In the fully connected layer, an output x(m) is computed

from the outputs of the previous layer x(m−1) as

x
(m) = f(WT

x
(m−1) + b), (3)

where W is a weight matrix, b is a bias vector in this layer,

and f(·) is an activation function. At the final stage of the

network, the softmax function is often used as the activation

function for multi-class classification:

f(xi) =
exp(xi)

∑n−1
j exp(xj)

(i = 0, · · · , n− 1). (4)

The softmax function has an advantage because it normal-

izes values in the final stage and facilitates error computa-

tion in the training phase. The number of the output units in

the final stage is equal to the number of the labels, and the

classification result y is given by

y = arg max
i

xi. (5)

2.2. Computationally efficient neural networks

CNN requires large computational costs as well as other

neural networks. It is because a huge number of multipli-

cations are executed to propagate signals in the networks.

Some recent works are trying to tackle this problem by re-

placing the multiplications with simpler operations. Net-

work pruning [14] and network compression [2, 3] reduce

the amount of weight parameters by compressing networks.

These methods try to compress networks by utilizing some

representative values to describe the whole weight matrix.

On the other hand, BinaryNet [7] and Ternary Connect [19]

are the methods that limit the weight values to {−1,+1}
or {−1, 0,+1} during the training phase in order to reduce

the memory usage and computation complexity. In the fol-

lowing paragraph, we describe the more details of Ternary

Connect, on which our proposed method Sign Connect is

based.

Ternary Connect Ternary Connect is a computation

method for neural networks that eliminates multiplications

in the propagation. Ternary Connect replaces the original

real weight w(u, v) ∈ [−1, 1] by an alternative weights

W (u, v) ∈ {−1, 0, 1}, which is stochastically determined

by w(u, v). If w(u, v) > 0, the probability of the W (u, v)
value is given by

{

P (W (u, v) = 1) = w(u, v)
P (W (u, v) = 0) = 1− w(u, v)

. (6)

Otherwise, if w(u, v) < 0, the probability is given by

{

P (W (u, v) = −1) = −w(u, v)
P (W (u, v) = 0) = 1 + w(u, v)

. (7)

By using W (u, v) in propagation computation in stead of

w(u, v), multiplications are completely omitted.

Although Ternary Connect is very useful to reduce com-

putation in the training phase, it can deteriorate recogni-

tion performance if it is simply applied to the classification

phase. In addition, a suitable hardware architecture should

be considered at the same time in order to receive the benefit

of reducing multiplications.

2.3. CNN processors

CNN in embedded systems has been actively researched

in several aspects. As application-specific processors, some
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Figure 1: A typical architecture of a convolutional neural network. It consists of multiple sets of convolution and pooling

layers and succeeding fully connected multi-layer perceptrons.
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Figure 2: Convolution and pooling operations of the conventional method and the proposed method, LazyConvPool (LCP).

(a) The conventional one executes exact convolutions (Conv) against all the windows. (b) LCP only executes an exact

convolution (Conv) against the specified window predicted by the approximate convolution (AppConv).

architectures that implement CNN are proposed in [4, 5, 11,

13]. nn-X [11] is a salable co-processor for CNN. It con-

sists of an array of possessing elements, which are dedi-

cated hardware to accelerate the main components of CNN

(convolution, pooling, and activation). HWCE [5] is also an

accelerator for CNN particularly focusing on 2D convolu-

tions, which are the most computationally intensive part in

CNN. Both of the architectures intend to speed up the calcu-

lation of convolutions in a highly parallel manner by adopt-

ing an array structure and pipelined streaming processing

units.

Another approach for low-power CNN processors is

based on approximate computing, which is a computing

method that aggressively uses approximation for the com-

putation that does not require exact results. This is useful

for the applications such as image processing and recog-

nition tasks that tolerate some errors in the output. Ap-

proxANN [23] and AxNN [21] are examples of using the

approximate computing with neural networks. However, it

is difficult to simply apply the approximate computing to

CNN without spoiling recognition accuracy because of the

deep structure of the CNN, where the approximation errors

are accumulated and inflated during the propagation.

In this work, we propose a novel method to enhance the

energy efficiency of the existing CNN processor like nn-X

and HWCE by utilizing an approximation technique. In or-

der to suppress the degradation of recognition performance,

we adopt the approximation only to predict the region to be

selected in the max pooling. With this approach, we can ef-

fectively eliminate redundant computation according to the

prediction results calculated with a small overhead.

3. Proposed method

In this section, we propose LazyConvPool (LCP), an ap-

proximate computational method that combines convolu-

tion and max pooling for reducing power consumption of

CNN processors. We also propose Sign Connect, a simpli-

fied arithmetic unit that can be effectively used with LCP.

3.1. LazyConvPool

The objective of LCP is to eliminate the convolutional

computation that will not affect the output of the succeeding

pooling layer. Figure 2a illustrates the conventional convo-

lution and pooling operations. In this example, four convo-

lutions are first executed on an input image to calculate ad-

jacent four feature values in a 2× 2 pooling window. Then
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the max pooling is operated to pick up one representative

feature that has a maximum value (shown as a red pixel).

Worthy of attention here is that only one convolution result

is passed to the next stage and all the other convolution re-

sults are discarded by the pooling operation. This means

that the non-representative feature values do not affect the

feature map after pooling as long as the feature selection in

the pooling is correct.

On the basis of this observation, we construct LCP

framework with two main parts: (1) approximated convolu-

tion units (AppConv) to predict the feature selection in the

pooling layer, and (2) a single regular (and exact) convo-

lution unit (Conv) to perform convolution only on the pre-

dicted window. Figure 2b illustrates the LCP-based con-

volution and pooling operations. The computation flow of

LCP is summarized as follows:

Step 1 Compute AppConv using the lightweight and ap-

proximate computation.

Step 2 Operate max pooling to the results of AppConv to

specify the convolution index of which the convolution

result is propagated.

Step 3 Compute Conv only to the input corresponding to

the specified index in Step 2.

LCP can reduce the number of the exact convolutions by

1/NP, where NP is the number of the features in a pool-

ing window. On the other hand, the prediction by App-

Conv introduces additional hardware. To minimize addi-

tional power consumption associated with the prediction,

we utilize lightweight and approximate computation called

Sign Connect, which is described in the next subsection.

3.2. Sign Connect

LCP executed only the necessary convolution by com-

puting AppConv before Conv. Computational cost of App-

Conv must be low to realize power reduction through LCP.

Here, for this purpose, we propose Sign Connect as an ap-

proximate computation unit of reduced computation com-

plexity.

Sign Connect is equivalent to “sign function” used in Bi-

naryNet [7]. Sign Connect computes product terms by the

following equations:

{

P (W (k, l) = 1) = 1
P (W (k, l) = 0) = 0

, (8)

{

P (W (k, l) = −1) = 1
P (W (k, l) = 0) = 0

. (9)

Contrary to Ternary Connect [19], the proposed equations

are deterministic, thus random number generators are not

necessary. Sign Connect can be implemented so that gen-

eral multipliers are replaced by the multiplications of the

Input

Memory
Line

Buffer

Weight

Memory

Output

Memory

Processing

Element

Output

Memory

Output

Memory

Weight

Memory

Weight

Memory

Processing

Element

Processing

Element

Feat.

Memory

Conv Pool
Line

Buffer

Figure 3: Base architecture for CNN processor.

sign of weights, which can be typically realized by multi-

plexers. With Sign Connect, multiplication could be drasti-

cally simplified, and the total performance becomes deter-

ministic.

4. Hardware architecture

4.1. Base architecture

Figure 3 shows a block diagram of the base architecture

of CNN processor. This is similar to those of nn-X [11] and

HWCE [5], employing a parallel architecture with a shared

memory and multiple processing elements. Each processing

element, connected to the shared memory, executes convo-

lution, pooling, and activation. In this hardware architec-

ture, each element computes individual feature maps on the

basis of a common input image (or feature map). The in-

put image is supplied to each element via a line buffer. The

line buffer enables a continuous and efficient data feed for

convolutions on a sliding windows. Weights of the convo-

lution layers are supplied from a local memory and kept in

registers in convolution circuits during computation. At the

following stage of convolution circuits, the memory and ac-

cumulators are connected to accumulate the value of feature

maps. Convolution results are accumulated on the memory

that has the size of the feature map.

4.2. LCP architecture

Figure 4 shows the proposed processing element archi-

tecture in which LCP is applied to the base architecture.

Buffered inputs are supplied to AppConv and Conv with

weights used for convolution. A processing element first

computes AppConv and pooling. The results are temporar-

ily stored in the index memory connected to the pooling cir-

cuit and utilized as the signal that control inputs to the Conv
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Figure 4: The proposed architecture for LCP-based CNN

processor.
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Figure 5: Timing chart of CNN calculation by (a) the con-

ventional and (b) the proposed LCP methods.

circuit. Conv results are accumulated only for the size of

the pooled feature map.

Figure 5 shows the timing charts of CNN computation

with and without LCP. As shown in Figure 5a, the con-

ventional CNN on the base architecture repeatedly executes

sets of convolutions. Each set consists of weight loading (L)

and convolution (C). In the final set, pooling is executed just

after the convolutions (CP). As for LCP, the two kinds of

convolutions (AppConv and Conv) must be processed and

this may extend the execution time. In order to minimize

the additional execution time caused by LCP, the proposed

architecture conducts the two kinds of convolutions in a

pipelined way as shown in Figure 5b. Thus, the overhead

of execution time is reduced to just one computing routine

time.

5. Experiments

5.1. Classification accuracy

Datasets We evaluated the classification accuracy of LCP

with image recognition datasets. We used two datasets:

the handwritten digits dataset MNIST [18] and the object

recognition dataset CIFAR-10 [16]. For MNIST, we pre-

processed the images by the normalization to limit the range

of data values to 0–1. For CIFAR-10, we preprocessed im-

ages by a) global contrast normalization, b) ZCA whiten-

ing [16], and c) horizontal flips. a) and b) are preprocessing

Layer name Parameter

Input image size: 28x28, channel: 1

Convolution kernel: 5x5, channel: 20

Max pooling kernel: 2x2, stride: 2

ReLU

Convolution kernel: 5x5, channel: 50

Max pooling kernel: 2x2, stride: 2

ReLU

Fully connected channel: 500

ReLU

Fully connected channel: 10

Softmax

Table 1: Network parameters of CNN for MNIST dataset.

Layer name Parameter

Input image size: 32x32, channel: 3

Convolution kernel: 5x5, channel: 64, padding: 2

Max pooling kernel: 2x2, stride: 2

ReLU

Convolution kernel: 5x5, channel: 128, padding: 2

Max pooling kernel: 2x2, stride: 2

ReLU

Convolution kernel: 5x5, channel: 256, padding: 2

Max pooling kernel: 2x2, stride: 2

ReLU

Convolution kernel: 5x5, channel: 512, padding: 2

Max pooling kernel: 2x2, stride: 2

ReLU

Convolution kernel: 5x5, channel: 512, padding: 2

Max pooling kernel: 2x2, stride: 2

ReLU

Fully connected channel: 512

ReLU

Fully connected channel: 10

Softmax

Table 2: Network parameters of CNN for CIFAR-10

dataset.

techniques for normalization. c) is applied for data aug-

mentation without changing the image size. We trained net-

works by all data given in the training set and evaluated

target methods by 100 data in the test set none of which ex-

ists in the training set. Network parameters are shown in

Tables 1 and 2.

Results Classification results are shown in Table 3. We

evaluated the four types of CNN: (a) the conventional CNN,

(b) CNN with LCP that computes AppConv by the exact

convolution, (c) AppConv by Ternary Connect, and (d) Ap-

pConv by Sign Connect. The results of LCP with Ternary
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Method MNIST CIFAR-10

(a) Conventional 0.986 0.860

(b) LCP 0.986 0.860

(c) LCP + TC 0.984 0.825

(d) LCP + SC 0.988 0.849

Table 3: Classification accuracy on datasets.

Connect are the average of 10 independent runs because of

the probabilistic nature of the Ternary Connect.

The results for LCP with exact convolution is completely

equal to the conventional one because this is equivalent to

the addition of redundant operation. For LCP with Ternary

Connect, the accuracy is almost the same in the experiment

of MNIST. However, the accuracy degrades about 3.5% in

CIFAR-10. The difference shows the performance degra-

dation due to the prediction inaccuracy using Ternary Con-

nect for the complex data such as color images. For LCP

with Sign Connect, the accuracy is almost equal to the con-

ventional result in MNIST data set. Regarding to CIFAR-

10, the accuracy degradation has been reduced compared to

LCP with Ternary Connect.

5.2. Power consumption

Experimental setup To evaluate power consumption, we

implemented both of the base architecture and the pro-

posed LCP architecture with hardware description lan-

guage (HDL). The dynamic power consumption is evalu-

ated by using the netlists synthesized from the HDL and the

logic simulation results that annotate the switching activity

in the netlists. We used two commercial logic cell libraries

of 65 nm process at 0.55 V and 28 nm process at 0.92 V.

In the power estimation, we focused on a mid-level layer

when recognizing 10 MNIST samples. The numbers of in-

put and output feature maps for this layer are 20 and 50,

respectively. CNN processor implements P = 4 processing

elements operating at a 100 MHz clock frequency.

Results Figures 6 and 7 show the average power con-

sumption for each digit in the base and the proposed LCP

architecture. We can see that the power consumption of the

LCP architecture decreases for all digits.

Figures 8 and 9 show the average power consumption

for all digits in the base and the proposed LCP architec-

tures. The breakdowns of power consumption for major

modules are also presented. It can be seen that the power

consumption in Conv modules is greatly reduced by using

LCP. Although the power consumption in AppConv and

the other modules is increased, the total power decreases by

20.2% and 17.8% for 65 nm and 28 nm process libraries, re-

spectively. Considering the increase of the execution time

discussed in 4.2, which is 7.7% in this experiment, the en-

Figure 6: Power consumption for classifying each digit in

the CNN architectures with 65 nm process library.

Figure 7: Power consumption for classifying each digit in

the CNN architectures with 28 nm process library.

Figure 8: Average power consumption and breakdowns for

the major modules in the CNN architectures with 65 nm

process library.

ergy reduction by LCP is 14.1% and 11.4% for 65 nm and

28 nm process libraries, respectively.

6. Conclusion

In this paper, a new approach to reduce the number of

multiplications in CNN based on an approximated predic-

tion is proposed. Through the experimental evaluation, the

proposed LazyConvPool algorithm and its hardware archi-

tecture successfully reduce the energy consumption for im-

age recognition by 11.4%–14.1% while keeping the recog-

nition accuracy. The reduction rate is limited in this pa-
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Figure 9: Average power consumption and breakdowns for

the major modules in the CNN architectures with 28 nm

process library.

per because we only focused on the pooling operations.

For a future work, we will apply the proposed approach to

other kinds of selective operations in neural networks such

as Maxout techniques [12] and network compression tech-

niques [3, 14] to realize more energy-efficient CNN proces-

sors.
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