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Abstract

Discriminative deep learning approaches have shown

impressive results for problems where human-labeled

ground truth is plentiful, but what about tasks where labels

are difficult or impossible to obtain? This paper tackles one

such problem: establishing dense visual correspondence

across different object instances. For this task, although we

do not know what the ground-truth is, we know it should be

consistent across instances of that category. We exploit this

consistency as a supervisory signal to train a convolutional

neural network to predict cross-instance correspondences

between pairs of images depicting objects of the same cat-

egory. For each pair of training images we find an appro-

priate 3D CAD model and render two synthetic views to

link in with the pair, establishing a correspondence flow

4-cycle. We use ground-truth synthetic-to-synthetic corre-

spondences, provided by the rendering engine, to train a

ConvNet to predict synthetic-to-real, real-to-real and real-

to-synthetic correspondences that are cycle-consistent with

the ground-truth. At test time, no CAD models are re-

quired. We demonstrate that our end-to-end trained Con-

vNet supervised by cycle-consistency outperforms state-

of-the-art pairwise matching methods in correspondence-

related tasks.

1. Introduction

Consistency is all I ask!

TOM STOPPARD

In the past couple of years, deep learning has swept

though computer vision like wildfire. One needs only to

buy a GPU, arm oneself with enough training data, and turn

the crank to see head-spinning improvements on most com-

puter vision benchmarks. So it is all the more curious to

consider tasks for which deep learning has not made much

inroad, typically due to the lack of easily obtainable train-

ing data. One such task is dense visual correspondence –

the problem of estimating a pixel-wise correspondence field

between images depicting visually similar objects or scenes.

Not only is this a key ingredient for optical flow and stereo
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Figure 1. Estimating a dense correspondence flow field Fr1,r2 be-

tween two images r1 and r2 — essentially, where do pixels of

r1 need to go to bring them into correspondence with r2 — is

very difficult. There is a large viewpoint change and the physi-

cal differences between the cars are substantial. We propose to

learn to do this task by training a ConvNet using the concept of

cycle consistency in lieu of ground truth. At training time, we find

an appropriate 3D CAD model and establish a correspondence 4-

cycle, training to minimize the discrepancy between F̃s1,s2 and

Fs1,r1 ◦Fr1,r2 ◦Fr2,s2 , where F̃s1,s2 is known by construction. At

test time, no CAD models are used.

matching, but many other computer vision tasks, including

recognition, segmentation, depth estimation, etc. could be

posed as finding correspondences in a large visual database

followed by label transfer.

In cases where the images depict the same physical

object/scene across varying viewpoints, such as in stereo

matching, there is exciting new work that aims to use the

commonality of the scene structure as supervision to learn

deep features for correspondence [2, 12, 20, 15, 39]. But

for computing correspondence across different object/scene

instances, no learning method to date has managed to seri-

ously challenge SIFT flow [26], the dominant approach for

this task.

How can we get supervision for dense correspondence

between images depicting different object instances, such

as images r1 and r2 in Figure 1? Our strategy in this paper

is to learn the things we don’t know by linking them up to

the things we do know. In particular, at training time, we

use a large dataset of 3D CAD models [1] to find one that
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could link the two images, as shown in Figure 1. Here the

dense correspondence between the two views of the same

3D model s1 and s2 can serve as our ground truth super-

vision (as we know precisely where each shape point goes

when rendered in a different viewpoint), but the challenge

is to use this information to train a network that can produce

correspondence between two real images at test time.

A naive strategy is to train a network to estimate cor-

respondence between the rendered views of the same 3D

model, and then hope that the network could generalize to

real images as well. Unfortunately, this does not work in

practice (see Table 1), likely due to 1) the large visual dif-

ference between synthetic and real images and 2) the lack

of cross-instance ground truth correspondence for training.

Instead, in this paper we utilize the concept of cycle consis-

tency of correspondence flows [18, 40, 41] – the notion that

the composition of flow fields for any circular path through

the image set should have a zero combined flow. Here, cy-

cle consistency serves as a way to link the correspondence

between real images and the rendered views into a single 4-

cycle chain. We can then train our correspondence network

using cycle consistency as the supervisory signal. The idea

is to take advantage of the known synthetic-to-synthetic

correspondence as ground-truth anchors that allow cycle

consistency to propagate the correct correspondence infor-

mation from synthetic to real images, without diverging

or falling into a trivial solution. Here we could interpret

the cycle consistency as a kind of “meta-supervision” that

operates not on the data directly, but rather on how the

data should behave. As we show later, such 3D-guided

consistency supervision allows the network to learn cross-

instance correspondence that potentially overcomes some

of the major difficulties (e.g. significant viewpoint and ap-

pearance variations) of previous pairwise matching methods

like SIFT flow [26]. Our approach could also be thought of

as an extension and a reformulation of FlowWeb [40] as a

learning problem, where the image collection is stored im-

plicitly in the network representation.

The main contributions of this paper are: 1) We pro-

pose a general learning framework for tasks without direct

labels through cycle consistency as an example of “meta-

supervision”; 2) We present the first end-to-end trained deep

network for dense cross-instance correspondence; 3) We

demonstrate that the widely available 3D CAD models can

be used for learning correspondence between 2D images of

different object instances.

2. Related work

Cross-instance pairwise correspondence The classic

SIFT Flow approach [26] proposes an energy minimization

framework that computes dense correspondence between

different scenes by matching SIFT features [28] regularized

by smoothness and small displacement priors. Deformable

Spatial Pyramid (DSP) Matching [22], a recent follow-up

to SIFT Flow, greatly speeds up the inference while

modestly improving the matching accuracy. Barnes et

al. [5] extend the original PatchMatch [4] algorithm to

allow more general-purpose (including cross-instance)

matching. Bristow et al. [6] build an exemplar-LDA

classifier around each pixel, and aggregate the matching

responses over all classifiers with additional smoothness

priors to obtain dense correspondence estimation. In these

same proceedings, Ham et al. [14] take advantage of recent

developments in object proposals, and utilize local and

geometric consistency constraints among object proposals

to establish dense semantic correspondence.

Collection correspondence Traditionally, correspon-

dence has been defined in a pairwise manner, but recent

works have tried to pose correspondence as the problem

of joint image-set alignment. The classic like on work

on Congealing [25, 16] uses sequential optimization to

gradually lower the entropy of the intensity distribution of

the entire image set by continuously warping each image

via a parametric transformation (e.g. affine). RASL [31],

Collection Flow [21] and Mobahi et al. [29] first estimate

a low-rank subspace of the image collection, and then

perform joint alignment among images projected onto the

subspace. FlowWeb [40] builds a fully-connected graph

for the image collection with images as nodes and pairwise

flow fields as edges, and establishes globally-consistent

dense correspondences by maximizing the cycle consis-

tency among all edges. While achieving state-of-the-art

performance, FlowWeb is overly dependent on the initial-

ization quality, and scales poorly with the size of the image

collection. Similar to a recent work on joint 3D shape

alignment [18], Zhou et al. [41] tackle the problem by

jointly optimizing feature matching and cycle consistency,

but formulate it as a low-rank matrix recovery which they

solve with a fast alternating minimization method. Virtual

View Networks [7] leverage annotated keypoints to infer

dense correspondence between images connected in a

viewpoint graph, and use this graph to align a query image

to all the reference images in order to perform single-view

3D reconstruction. Cho et al. [9] uses correspondence

consistency among selective search windows in a diverse

image collection to perform unsupervised object discovery.

Deep learning for correspondence Recently, several

works have applied convolutional neural networks to learn

same-instance dense correspondence. FlowNet [11] learns

an optical flow CNN with a synthetic Flying Chairs dataset

that generalizes well to existing benchmark datasets, yet

still falls a bit short of state-of-the-art optical methods

like DeepFlow [36] and EpicFlow [32]. Several recent

works have also used supervision from reconstructed 3D
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scene and stereo pairs [15, 39, 2]. However all these

approaches are inherently limited to matching images of

the same physical object/scene. Long et al. [27] used deep

features learned from large-scale object classification tasks

to perform intra-class image alignment, but found it to

perform similarly to SIFT flow.

Image-shape correspondence Our work is partially

motivated by recent progress in image-shape alignment

that allows establishing correspondence between images

through intermediate 3D shapes. Aubry et al. [3] learns

discriminative patches for matching 2D images to their cor-

responding 3D CAD models, while Peng et al. [30] utilizes

CAD models to train object detectors with few shots of

labeled real images. In cases where depth data is available,

deep learning methods have recently been applied to 3D

object recognition and alignment between CAD models and

RGB-D images [13, 33, 37]. Other works [17, 34] leverage

image and shape collections for joint pose estimation and

refining image-shape alignment, which are further applied

to single-view object reconstruction and depth estimation.

Although our approach requires 3D CAD models for

constructing the training set, the image-shape alignment is

jointly learned with image-image alignment, and no CAD

models are required at test time.

3. Approach

Our goal is to predict a dense flow (or correspondence)

field Fa,b : R
2 → R

2 between pairs of images a and b. The

flow field Fa,b(p) = (px−qx, py−qy) computes the relative

offset from each point p in image a to a corresponding point

q in image b. Given that pairwise correspondence might not

always be well-defined (e.g. a side-view car and a frontal-

view car do not have many visible parts in common), we ad-

ditionally compute a matchability map Ma,b : R2 → [0, 1]
predicting if a correspondence exists Ma,b(p) = 1 or not

Ma,b(p) = 0.

We learn both the flow field and the matchability predic-

tion with a convolutional neural network. Both functions

are differentiable with respect to the network parameters,

which could be directly learned if we had dense annotations

for Fa,b and Ma,b on a large set of real image pairs. How-

ever, in practice it is infeasible to obtain those annotations

at scale as they are either too time-consuming or ambiguous

to annotate.

We instead choose a different route, and learn both func-

tions by placing the supervision on the desired properties

of the ground-truth, i.e. while we do not know what the

ground-truth is, we know how it should behave. In this pa-

per, we use cycle consistency with 3D CAD models as the

desired property that will be our supervisory signal. Specif-

ically, for each pair of real training images r1 and r2, we

find a 3D CAD model of the same category, and render

two synthetic views s1 and s2 in similar viewpoint as r1
and r2, respectively (see Section 4.1 for more details). For

each training quartet < s1, s2, r1, r2 > we learn to predict

flows from s1 to r1 (Fs1,r1 ) to r2 (Fr1,r2 ) to s2 (Fr2,s2 )

that are cycle-consistent with the ground-truth flow from s1
to s2 (F̃s1,s2 ) provided by the rendering engine (similarly

for the matchability prediction). By constructing consis-

tency supervision through 3D CAD models, we aim to learn

2D image correspondences that potentially captures the 3D

semantic appearance of the query objects. Furthermore,

making F̃s1,s2 be ground-truth by construction prevents the

cycle-consistency optimization from producing trivial solu-

tions, such as identity flows.

Sections 3.1 and 3.2 formally define our training objec-

tive for learning correspondence F and matchability M , re-

spectively. Section 3.3 demonstrates how to obtain continu-

ous approximation of discrete maps that allows end-to-end

training. Section 3.4 describes our network architecture.

3.1. Learning dense correspondence

Given a set of training quartets {< s1, s2, r1, r2 >}, we

train the CNN to minimize the following objective:

∑

<s1,s2,r1,r2>

Lflow

(

F̃s1,s2 , Fs1,r1 ◦Fr1,r2 ◦Fr2,s2

)

, (1)

where F̃s1,s2 refers to the ground-truth flow between two

synthetic views, Fs1,r1 , Fr1,r2 and Fr2,s2 are predictions

made by the CNN along the transitive path. The transitive

flow composition F̄a,c = Fa,b ◦ Fb,c is defined as

F̄a,c(p) = Fa,b(p) + Fb,c(p+ Fa,b(p)) , (2)

which is differentiable as long as Fa,b and Fb,c are differ-

entiable. Lflow(F̃s1,s2 , F̄s1,s2) denotes the truncated Eu-

clidean loss defined as

Lflow(F̃s1,s2 , F̄s1,s2) =
∑

p|M̃s1,s2
(p)=1

min(‖F̃s1,s2(p)− F̄s1,s2(p)‖
2, T 2) ,

where M̃s1,s2(p) is the ground-truth matchability map pro-

vided by the rendering engine (M̃s1,s2(p) = 0 when p is

either a background pixel or not visible in s2), and T = 15
(pixels) for all our experiments. In practice, we found the

truncated loss to be more robust to spurious outliers for

training, especially during the early stage when the network

output tends to be highly noisy.

3.2. Learning dense matchability

Our training objective for matchability prediction also

utilizes the cycle consistency signal:

∑

<s1,s2,r1,r2>

Lmat

(

M̃s1,s2 , Ms1,r1 ◦Mr1,r2 ◦Mr2,s2

)

, (3)
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Figure 2. Overview of our network architecture, which consists of three major components: 1) feature encoder on both input images, 2)

flow decoder predicting the dense flow field from the source to the target image and 3) matchability decoder that outputs a probability

map indicating whether each pixel in the source image has a correspondence in the target. See Section 3.4 for more details.

where M̃s1,s2 refers to the ground-truth matchability map

between the two synthetic views, Ms1,r1 , Mr1,r2 and

Mr2,s2 are CNN predictions along the transitive path, and

Lmat denotes per-pixel cross-entropy loss. The matchabil-

ity map composition is defined as

M̄a,c(p) = Ma,b(p)Mb,c(p+ Fa,b(p)) , (4)

where the composition depends on both the matchability as

well as the flow field.

Due to the multiplicative nature in matchability composi-

tion (as opposed to additive in flow composition), we found

that training with objective 3 directly results in the network

exploiting the clean background in synthetic images, which

helps predict a perfect segmentation of the synthetic object

in Ms1,r1 . Once Ms1,r1 predicts zero values for background

points, the network has no incentive to correctly predict the

matchability for background points in Mr1,r2 , as the multi-

plicative composition has zero values regardless of the tran-

sitive predictions along Mr1,r2 and Mr2,s2 . To address this,

we fix Ms1,r1 = 1 and Mr2,s2 = 1, and only train the CNN

to infer Mr1,r2 . This assumes that every pixel in s1(s2) is

matchable in r1(r2), and allows the matchability learning

to happen between real images. Note that this is still differ-

ent from directly using M̃s1,s2 as supervision for Mr1,r2 as

the matchability composition depends on the predicted flow

field along the transitive path.

The matchability objective 3 is jointly optimized with the

flow objective 1 during training, and our final objective can

be written as
∑

<s1,s2,r1,r2>
Lflow + λLmat with λ = 100.

3.3. Continuous approximation of discrete maps

An implicit assumption made in our derivation of the

transitive composition (Eq. 2 and 4) is that F and M are dif-

ferentiable functions over continuous input, while images

inherently consist of discrete pixel grids. To allow end-to-

end training with stochastic gradient descent (SGD), we ob-

tain continuous approximation of the full flow field and the

matchability map with bilinear interpolation over the CNN

predictions on discrete pixel locations. Specifically, for

each discrete pixel location p̂ ∈ {1, . . . ,W} × {1, . . . , H},

the network predicts a flow vector Fa,b(p̂) as well as a

matchability score Ma,b(p̂), and the approximation over all

continuous points p ∈ [1,W ]× [1, H] is obtained by:

Fa,b(p) =
∑

p̂∈Np

(1− |px − p̂x|)(1− |py − p̂y|)Fa,b(p̂)

Ma,b(p) =
∑

p̂∈Np

(1− |px − p̂x|)(1− |py − p̂y|)Ma,b(p̂) ,

where Np denotes the four-neighbor pixels (top-left, top-

right, bottom-left, bottom-right) of point p, or just p if it

is one of the discrete pixels. This is equivalent to the dif-

ferentiable image sampling with a bilinear kernel proposed

in [19].

3.4. Network architecture

Our network architecture (see Figure 2) follows the

encoder-decoder design principle with three major com-

ponents: 1) feature encoder of 8 convolution layers that

extracts relevant features from both input images with

shared network weights; 2) flow decoder of 9 fractionally-

strided/up-sampling convolution (uconv) layers that assem-

bles features from both input images, and outputs a dense

flow field; 3) matchability decoder of 9 uconv layers that

assembles features from both input images, and outputs a

probability map indicating whether each pixel in the source

image has a correspondence in the target.

All conv/uconv layers are followed by rectified linear

units (ReLUs) except for the last uconv layer of either de-

coder, and the filter size is fixed to 3 × 3 throughout the

whole network. No pooling layer is used, and the stride is

2 when increasing/decreasing the spatial dimension of the
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feature maps. The output of the matchability decoder is fur-

ther passed to a sigmoid layer for normalization.

During training, we apply the same network to three dif-

ferent input pairs along the cycle (s1 → r1, r1,→ r2, and

r2 → s2), and composite the output to optimize the consis-

tency objectives 1 and 3.

4. Experimental Evaluation

In this section, we describe the details of our network

training procedure, and evaluate the performance of our net-

work on correspondence and matchability tasks.

4.1. Training set construction

The 3D CAD models we used for constructing training

quartets come from the ShapeNet database [1], while the

real images are from the PASCAL3D+ dataset [38]. For

each object instance (cropped from the bounding box and

rescaled to 128 × 128) in the train split of PASCAL3D+,

we render all 3D models under the same camera viewpoint

(provided by PASCAL3D+), and only use K = 20 near-

est models as matches to the object instance based on the

HOG [10] Euclidean distance. We then construct train-

ing quartets each consisting of two real images (r1 and r2)

matched to the same 3D model and their corresponding ren-

dered views (s1 and s2). On average, the number of valid

training quartets for each category is about 80, 000.

4.2. Network training

We train the network in a category-agnostic manner (i.e.

a single network for all categories). We first initialize

the network (feature encoder + flow decoder pathway) to

mimic SIFT flow by randomly sampling image pairs from

the training quartets and training the network to minimize

the Euclidean loss between the network prediction and the

SIFT flow output on the sampled pair1. Then we fine-tune

the whole network end-to-end to minimize the consistency

loss defined in Eq. 1 and 3. We use the ADAM solver [23]

with β1 = 0.9, β2 = 0.999, initial learning rate of 0.001,

step size of 50, 000, step multiplier of 0.5 for 200, 000 iter-

ations. We train with mini-batches of 40 image pairs during

initialization and 10 quartets during fine-tuning.

We visualize the effect of our cycle-consistency train-

ing in Figure 3, where we sample some random points in

the synthetic image s1, and plot their predicted correspon-

dences along the cycle s1 → r1 → r2 → s2 to compare

with the ground-truth in s2. One can see that the tran-

sitive trajectories become more and more cycle-consistent

with more iterations of training, while individual correspon-

dences along each edge of the cycle also tend to become

more semantically plausible.

1We also experimented with other initialization strategies (e.g. predict-

ing ground-truth flows between synthetic images), and found that initializ-

ing with SIFT flow output works the best.

4.3. Feature visualization

We visualize the features learned by the network using

the t-SNE algorithm [35]. Specifically, we extract conv-9

features (i.e. the output of the last encoder layer) from the

entire set of car instances in the PASCAL3D+ dataset, and

embed them in 2-D with the t-SNE algorithm. Figure 4 vi-

sualizes the embedding. Interestingly, while our network is

not explicitly trained to perform viewpoint estimation, the

embedding layout appears to be viewpoint-sensitive, which

implies that the network might implicitly learn that view-

point is an important cue for correspondence/matchability

tasks through our consistency training.

4.4. Keypoint transfer

We evaluate the quality of our correspondence output

using the keypoint transfer task on the 12 categories from

PASCAL3D+ [38]. For each category, we exhaustively

sample all image pairs from the val split (not seen during

training), and determine if a keypoint in the source image is

transferred correctly by measuring the Euclidean distance

between our correspondence prediction and the annotated

ground-truth (if exists) in the target image. A correct trans-

fer means the prediction falls within α ·max(H,W ) pixels

of the ground-truth with H and H being the image height

and width, respectively (both are 128 pixels in our case). We

compute the percentage of correct keypoint transfer (PCK)

over all image pairs as the metric, and provide performance

comparison for the following methods in Table 1:

• SIFT flow [26] – A classic method for dense corre-

spondence using SIFT feature descriptors and hand-

designed smoothness and large-displacement priors.

We also ran preliminary evaluation on a more recent

follow-up based on deformable spatial pyramids [22],

and found it to perform similarly to SIFT flow.

• Long et al. [27] – Similar MRF energy minimization

framework as SIFT flow but with deep features learned

from the ImageNet classification task.

• CNNI2S – Our network trained on real image pairs

with correspondence inferred by compositing the out-

put of an off-the-shelf image-to-shape alignment algo-

rithm [17] and the ground-truth synthetic correspon-

dence (i.e. obtaining direct supervision for Fr1,r2

through Fr1,s1◦F̃s1,s2◦Fs2,r2 , where Fr1,s1 and Fs2,r2

are inferred from [17]).

• CNNinit – Our network trained to mimic SIFT flow.

• CNNinit+ Synthetic ft. – fine-tuning on synthetic im-

age pairs with ground-truth correspondence after ini-

tialization with SIFT flow.
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Training iterations 

Figure 3. Visualizing the effects of consistency training on the network output. The randomly sampled ground-truth correspondences

between synthetic images are marked in solid lines, and the correspondence predictions along the cycle (synthetic to real, real to real and

real to synthetic) made by our network are marked in dashed lines. One can see that the transitive composition of our network output

becomes more and more consistent with the ground-truth as training progresses, while individual correspondences along each edge of the

cycle also tend to become more semantically plausible.

Figure 4. Conv-9 feature embedding for cars visualized by t-SNE [35]. Interestingly, the overall layout seems to be mainly clustered based

on the camera viewpoint, while the network is not explicitly trained to perform viewpoint estimation. This suggests that the network might

implicitly learn that viewpoint is an important cue for the correspondence/matchability tasks through our consistency training.

• CNNinit+ Consistency ft. – fine-tuning with our ob-

jectives 1 and 3 after initialization with SIFT flow.

Overall, our consistency-supervised network signifi-

cantly outperforms all other methods (except on “bicycle”

and “motorbike” where SIFT flow has a slight advantage).

Notice the significant improvement over the initial network

after consistency fine-tuning. The performance gap be-

tween the last two rows of Table 1 suggests that consis-

tency supervision is much more effective in adapting to the

real image domain than direct supervision from synthetic
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Figure 5. Comparison of keypoint transfer performance for different methods on example test image pairs. Overall, our consistency-

supervised network (second-to-last row) is able to produce more accurate keypoint transfer results than the baselines. The last column

shows a case when SIFT flow performs better than ours.

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [26] 9.8 23.3 8.9 28.3 28.6 22.4 10.8 13.2 17.9 14.2 14.4 42.9 19.6
Long et al. [27] 10.4 22.8 7.6 30.8 28.4 21.1 10.2 12.7 13.5 12.9 12.6 38.5 18.5

CNNI2S 9.1 14.7 5.2 25.9 25.4 23.7 11.9 11.3 13.4 16.8 11.3 45.2 17.8
CNNinit. 8.6 20.3 8.5 29.4 24.3 20.1 9.9 11.6 15.4 11.6 12.5 40.2 17.7

CNNinit+ Synthetic ft. 10.2 22.2 8.7 30.4 24.5 21.3 10.2 12.1 15.7 12.0 12.8 40.5 18.4
CNNinit+ Consistency ft. 11.3 22.3 10.1 40.3 40.3 33.3 15.0 13.2 17.2 17.4 16.7 51.1 24.0

Table 1. Keypoint transfer accuracy measured in PCK (α = 0.1) on the PASCAL3D+ categories. Overall, our final network (last row)

outperforms all baselines (except on “bicycle” and “motorbike”). Notice the performance gap between our initialization (CNNinit) and the

final network, which highlights the improvement made by cycle-consistency training.

ground-truth.

Figure 5 compares sample keypoint transfer results using

different methods. In general, our final prediction tends to

match the ground-truth much better than the other baselines,

and could sometimes overcome substantial viewpoint and

appearance variation where previous methods, like SIFT

flow, are notoriously error-prone.

4.5. Matchability prediction

We evaluate the performance of matchability prediction

using the PASCAL-Part dataset [8], which provides human-

annotated part segment labeling2. For each test image pair,

a pixel in the source image is deemed matchable if there ex-

ists another pixel in the target image that shares the same

part label, and all background pixels are unmatchable. We

measure the performance by computing the percentage of

pixels being classified correctly. For our method, we clas-

sify a pixel as matchable if its probability is > 0.5 according

to the network prediction. To obtain matchability prediction

2For categories without part labels, including boat, chair, table and sofa,

we use the foreground segmentation mask instead.

for SIFT flow, we compute the L1 norm of the SIFT feature

matching error for each source pixel after the alignment,

and a pixel is predicted to be matchable if the error is below

a certain threshold (we did grid search on the training set

to determine the threshold, and found 1, 000 to perform the

best). Table 2 compares the classification accuracy between

our method and SIFT flow prediction (chance performance

is 50%). Our method significantly outperforms SIFT flow

on all categories except “bicycle” and “motorbike” (67.8%
vs. 57.1% mean accuracy).

We visualize some examples of our matchability predic-

tion in Figure 6. Notice how the prediction varies when the

target image changes with the source image being the same.

4.6. Shapetoimage segmentation transfer

Although in this paper we are mostly interested in find-

ing correspondence between real images, a nice byproduct

of our consistency training is that the network also implic-

itly learns cross-domain, shape-to-image correspondence,

which allows us to transfer per-pixel labels (e.g. surface

normals, segmentation masks, etc.) from shapes to real im-

ages. As a proof of concept, we ran a toy experiment on the
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Source 

Our  

prediction 

Ground-truth 

Target 

Figure 6. Sample visualization of our matchability prediction. Notice how the prediction varies for the same source image when changing

only the target image. The last two columns demonstrate a typical failure mode of our network having trouble localizing the fine boundaries

of the matchable regions.

aero bike boat bottle bus car chair table mbike sofa train tv mean

SIFT flow [26] 66.2 62.7 49.5 50.5 52.0 64.5 50.7 50.5 80.6 49.6 58.5 50.2 57.1
Ours 75.8 61.0 66.7 67.1 67.3 72.0 66.1 68.4 68.0 71.2 64.4 65.1 67.8

Table 2. Performance comparison of matchability prediction between SIFT flow and our method (higher is better). See Section 4.5 for

more details on the experiment setup.

Query Dense CRF SIFTflow Ours Ret. Shape 

Figure 7. Visual comparison among different segmentation meth-

ods. From left to right: input query image, segmentation by [24],

segmentation transferred using SIFT flow, segmentation trans-

ferred using our flow and the retrieved shape whose segmentation

is used for transferring. See Section 4.6 for more details.

task of segmentation transfer. Specifically, we construct a

shape database of about 200 shapes per category, with each

shape being rendered in 8 canonical viewpoints. Given a

query real image, we apply our network to predict the corre-

spondence between the query and each rendered view of the

same category, and warp the query image according to the

predicted flow field. Then we compare the HOG Euclidean

distance between the warped query and the rendered views,

and retrieve the rendered view with minimum error whose

correspondence to the query image on the foreground re-

gion is used for segmentation transfer. Figure 7 shows sam-

ple segmentation using different methods. We can see that

our learned flows tend to produce more accurate segmen-

tation transfer than SIFT flow using the same pipeline. In

some cases our output can even segment challenging parts

such as the bars and wheels of the chairs.

5. Discussion

In this paper, we used cycle-consistency as a supervi-

sory signal to learn dense cross-instance correspondences.

Not only did we find that this kind of supervision is sur-

prisingly effective, but also that the idea of learning with

cycle-consistency could potentially be fairly general. One

could apply the same idea to construct other training scenar-

ios, as long as the ground-truth of one or more edges along

the cycle is known. We hope that this work will inspire

more efforts to tackle tasks with little or no direct labels

by exploiting cycle consistency or other types of indirect or

“meta-supervision”.
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