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Abstract

We propose a human pose representation model that

transfers human poses acquired from different unknown

views to a view-invariant high-level space. The model is

a deep convolutional neural network and requires a large

corpus of multiview training data which is very expensive

to acquire. Therefore, we propose a method to generate this

data by fitting synthetic 3D human models to real motion

capture data and rendering the human poses from numer-

ous viewpoints. While learning the CNN model, we do not

use action labels but only the pose labels after clustering all

training poses into k clusters. The proposed model is able

to generalize to real depth images of unseen poses without

the need for re-training or fine-tuning. Real depth videos

are passed through the model frame-wise to extract view-

invariant features. For spatio-temporal representation, we

propose group sparse Fourier Temporal Pyramid which ro-

bustly encodes the action specific most discriminative out-

put features of the proposed human pose model. Experi-

ments on two multiview and three single-view benchmark

datasets show that the proposed method dramatically out-

performs existing state-of-the-art in action recognition.

1. Introduction

Video based human action recognition is challenging be-

cause significant intra-action variations exist due to changes

in viewpoint, illumination, visual appearance (such as color

and texture of clothing), scale (due to different human body

sizes or distances from the camera), background and speed

of performing an action. Some challenges have been sim-

plified by the use of real-time depth cameras (e.g. Kinect)

that capture the texture and illumination invariant human

body shape and simplify human segmentation. However,

variations due to viewpoint remains a major challenge and

is explicitly addressed in this paper.

Many methods [23, 31, 34, 36–38, 44, 47, 48, 55–57, 63,

67, 68, 74] have been proposed which achieve impressive

action recognition results when videos are acquired from a

common viewpoint. However, their performance degrades

sharply under viewpoint changes [38, 39, 60]. This is be-

cause the same human pose appears quite different when

observed from different viewpoints. To cope with this prob-

lem, view-invariant approaches [17, 39–42, 54, 59, 60] have

been recently proposed for action recognition in videos ac-

quired from novel views. Most of these methods operate

on RGB videos [17, 20, 41, 42, 60] or skeleton data [54, 59].

Joints extraction methods are inaccurate and sometimes fail

when subject is not in the upright or frontal view posi-

tion [39, 64]. Moreover, view-invariant information can be

more reliably extracted from depth videos [39]. For in-

stance, [39, 40] have achieved higher accuracy by extract-

ing view-invariant local spatio-temporal features from depth

videos. However, their performance is limited by the dis-

criminative power of the local features [60].

To overcome these drawbacks, we propose a depth video

based cross-view action recognition method that consists

of two main steps: (1) learning a general view-invariant

human pose model from synthetic depth images, and (2)

modeling the temporal action variations. The former is a

deep CNN which represents different human body shapes

and poses observed from numerous viewpoints in a view-

invariant high-level space. However, learning such a model

requires a large corpus of training data containing a large

number of human body poses observed from many view-

points. Such data is not publicly available and is very ex-

pensive to acquire and label. Our solution is to generate

the training data synthetically but in the most realistically

possible way. To achieve this, we fit realistic synthetic 3D

human models to real mocap data [2] and then render each

pose from a large number of viewpoints as shown in Fig. 1.

We learn a single model for all poses and views with-

out using action labels and show that our model generalizes

to real depth images of unseen human poses acquired from

novel views without re-training or fine-tuning. Our learned

model operates on a frame by frame basis transferring hu-

man pose in each frame to a high-level view-invariant rep-

resentation. Our motivation for using a frame based CNN

model comes from the findings [21] that a single frame

model performs equally well as the multiframe CNN model.

Since actions are performed over a period of time, model-

ing the temporal structure of videos is performed in the next

stage. Many methods [15, 41, 51, 60] model the temporal
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variations of videos using optical flow. However, optical

flow is not reliable in the presence of noise and lack of tex-

ture [34] which is especially the case for depth videos [39].

Moreover, in spatio-temporal matching, temporal misalign-

ments can also become a source of errors. We propose a

representation which is robust to depth noise and tempo-

ral misalignments. Our representation is a group sparse

Fourier Temporal Pyramid that extracts features from the

view-invariant high-level representation layer of the pro-

posed CNN model. We capitalize on the fact that the output

of different neurons in the CNN representation layer con-

tributes differently to each human pose and hence each ac-

tion. Thus, we learn action specific sparse neurons-sets for

accurate classification. New action classes can be efficiently

added to our framework as it requires retraining the action

classifier only while using the same learned CNN model.

Experiments on two benchmark multiview human action

datasets i.e. Northwestern-UCLA Multiview Action3D [60]

and UWA3D Multiview Activity II [40], and comparison

with state-of-the-art show that our method achieves 12%

and 13% higher accuracies respectively than the nearest

competitor (Section 6). To show that our method performs

equally good in the single/known view case, we provide

comparative results on three single-view benchmark hu-

man action datasets, MSR Gesture3D [57], MSR Action

Pairs3D [34] and MSR Daily Activity3D [58] in the sup-

plementary material.

2. Related Work

Action recognition methods can be divided into three

categories based on the type of video data i.e. RGB, skele-

ton or depth. This section discusses related work in each

category as well as deep learning based methods.

RGB Videos: Some methods use view-invariant spatio-

temporal features [5,35,43,62] and others infer the 3D scene

structure through geometric transformations to achieve

view invariance in RGB videos [13, 52, 69]. Recently,

knowledge transfer based methods [11, 12, 17, 27–29, 41,

60, 61, 66, 72, 73] have become popular that find a set of

transformations in feature space such that the features ex-

tracted from different views are comparable. For example,

Wang et al. [60] proposed a cross-view video action rep-

resentation by discovering the compositional structure in

spatio-temporal patterns and geometrical relations among

different views. They trained a spatio-temporal AND-OR

graph structure by learning a separate linear transformation

for each body part between different views. Thus, for action

recognition from a novel view, all learned transformations

are used for exhaustive matching and the results are com-

bined with an AND-OR Graph.

Skeleton Videos: Skeleton-based methods [10, 45, 54, 59,

65] generally use the human joint positions, extracted by

the OpenNI tracking framework [50], as interest points. For

example, Wang et al. [59] proposed the histogram of occu-

pancy pattern of a fixed region around each joint in each

frame. They also proposed a data mining technique to dis-

cover the most discriminative joints for each action class.

Vemulapalli et al. [54] proposed a body part-based skeleton

representation to model their relative geometry and mod-

eled human actions as curves in the Lie group. For robust-

ness to viewpoint variations, they rotate the skeletons such

that the ground plane projection of the vector from left hip

to right hip is parallel to the global x-axis. It is important to

note that the human joints extraction methods (such as [50])

are not accurate and sometimes fail when the human is not

in the upright or frontal view position [39, 40, 64].

Depth Videos: Action recognition from depth videos has

recently become more popular due to the availability of

real-time cost-effective sensors. For instance, Oreifej and

Liu [34] proposed a histogram of oriented 4D normals

(HON4D) for action recognition. Yang and Tian [67] ex-

tended HON4D by concatenating the 4D normals in the lo-

cal neighbourhood of each pixel as its descriptor. However,

these descriptors must be extracted from interest points,

e.g. joint positions, when the subjects significantly change

their locations. To overcome this problem, Xia and Aggar-

wal [64] proposed a method to filter the depth sensor noise

and extract more reliable spatio-temporal interest points.

However, their approach is sensitive to the speed of per-

forming actions [39]. Although, these methods achieve im-

pressive accuracies for action recognition from a fixed view

(mostly frontal), their performance drops sharply when

recognition is performed on videos acquired from novel

views [39]. More recently, Rahmani et al. [39,40] proposed

Histogram of Oriented Principal Components (HOPC) to

first detect and then describe spatio-temporal interest points

which are repeatable and robust to viewpoint variations.

This method directly processes the 3D pointclouds and cal-

culates the HOPC descriptor at every point.

Deep Learning Methods: Due to the impressive results of

deep learning on image classification [25] and object de-

tection [14], several attempts have been recently made to

train deep networks for action recognition [9, 15, 19, 21,

41, 46, 51]. Ji et al. [19] proposed a deep 3D convolu-

tional neural network (CNN) where convolutions are per-

formed in 3D feature maps from spatial and temporal di-

mensions. However, Karapathy et al. [21] show that the

single-frame model performs equally well as the multi-

frames model. Simonyan and Zisserman [51] trained two

CNNs, one for RGB images and one for optical flow, to

learn spatio-temporal features. Gkioxari and Malik [15] ex-

tended this approach for action localization. Donahue et

al. [9] proposed an end-to-end trainable recurrent convolu-

tional network which processes video frames with a CNN,

whose outputs are passed through a recurrent neural net-

work. These methods are not designed for cross-view action
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Figure 1: Proposed pipeline for generating synthetic depth images. (a)-(b) A 3D human body is fitted to each mocap skeleton, (c) rendered

from 180 different viewing directions (see Fig. 2), (d) processed for hidden point removal, (e) fitted with smooth surfaces [8] and finally

(f) processed for removal of extrapolated points and normalized in the 0✁ 255 range to generate depth images.

recognition in videos acquired from novel views. For cross-

view action recognition, Rahmani and Mian [41] proposed

a deep network which learns a set of non-linear transfor-

mations from multiple source views to a single canonical

view. However, this method uses a fixed canonical view

(frontal) as target view and learns the transfer model from

hand-crafted features i.e. motion trajectories.

All the above deep models are designed for RGB videos

and learning these models requires a large corpus of action

video training data which is unavailable in the case of depth

videos. Furthermore, motion trajectory and optical flow

features, besides being hand crafted, are unreliable in the

case of depth videos [34]. These limitations motivate us to

propose methods for learning a view-invariant human pose

model and for reliable encoding of the temporal structure of

depth videos for cross-view action recognition.

3. Generating synthetic training data

We propose a pipeline (see Fig. 1) for generating syn-

thetic depth images of different human body shapes in a

large number of poses rendered from numerous viewing di-

rections. Details of each step are given below.

3.1. Building a pose dictionary

The set of all possible human body poses is extremely

large. Therefore, we build a dictionary that contains the

most representative ones. We use the CMU Motion Capture

database [2] which contains over 2600 mocap sequences

(over 200K poses) of subjects performing a variety of ac-

tions. The 3D joint positions in the dataset are quite ac-

curate as they were captured using a high-precision camera

array and body joint markers. However, many poses look

similar. Using the skeletal distance function [49], we apply

k-means clustering to 50K randomly selected mocap poses

and select 339 representative ones to form a pose dictionary

which is later used to generate synthetic depth images and

train the CNN. Note that we do not use the action labels

provided with the CMU mocap data [2].

3.2. Full 3D human body models

Bogo et al. [6] developed the FAUST dataset containing

full 3D human body scans of 10 individuals in 30 poses.

However, skeleton data is not provided for the scans. An-

other way to generate 3D human model is to use the open

source MakeHuman software [3] which can generate differ-

ent synthetic human shapes in a predefined pose and pro-

vide the joint positions which can be used for changing the

human pose. We use this technique for generating the 3D

human body models in our work.

3.3. Fitting 3D human models to mocap data

Several methods [4, 30] have been proposed to fit a hu-

man model to motion capture skeleton data of a person.

For instance, the SCAPE method [4] learns pose and body-

shape deformation models from scans of different human

bodies in a few poses. Given a set of markers, SCAPE

constructs a full mesh which is consistent with the SCAPE

models and best matches with the given markers. These

methods aim to generate fine-grain human bodies in a va-

riety of poses. However, real-time depth cameras gener-

ally have low resolution. Therefore, we use the open source

Blender package [1] to fit 3D human models to mocap data.

Given a 3D human model generated by the MakeHuman

software and a mocap frame, Blender normalizes the mo-
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cap skeleton with respect to the skeleton data of the human

model and then fits the model to the normalized mocap data.

This process results in a synthetic full 3D human body pose

corresponding to the given mocap skeleton (Fig. 1-(b)).

3.4. Rendering from multiple viewpoints

We deploy a total of 180 synthetic cameras (at distinct

latitudes and longitudes) on a hemisphere surrounding the

subject as shown in Fig. 2. For each camera, we remove

self-occluded points. First, we perform back-face culling by

removing points whose normals face away from the camera

and then perform hidden point removal [22] on the remain-

ing points. Figure 1-(c) shows the full human model from

two different views and Fig. 1-(d) shows the corresponding

3D pointclouds after removing the hidden points.

3.5. Surface fitting

So far, we have generated 3D pointclouds of different 3D

human models in different poses. To generate their corre-

sponding depth images, we fit a surface of the form z♣x, yq
to each 3D pointcloud using gridfit [8] which approximates

the 3D pointcloud as closely as possible. Figure 1-(e) shows

two surfaces constructed using gridfit for two views of a hu-

man pose. The extrapolated points that do not belong to the

human body are set to zero using a neighborhood test with

the pointcloud that was used for surface fitting. The z val-

ues are normalized in the 0✁255 range to get the final depth

image. Figure 1-(f) shows two depth images corresponding

to the surfaces in Fig. 1-(e). It is worth mentioning that sur-

face fitting is not required for real data at test time as real

data is already in the form of depth images.

4. View-invariant human pose representation

Realistic action videos lie on non-linear manifolds, es-

pecially when actions are captured from different views.

However, most cross-view action recognition methods [17,

27, 39, 40, 60, 72] represent the connection between action

videos captured from two different views as a sequence

of linear transformations of action descriptors. Moreover,

such methods do not scale well to new action classes

because they must repeat the computationally expensive

model learning process. To overcome these problems, we

propose a general view-invariant human pose representation

model that learns to transfer human poses from any view to

a shared view-invariant high-level space.

4.1. Model architecture and learning

Our proposed model is a deep convolutional neural net-

work (CNN) whose architecture is similar to [18] except

that we replace the last fully-connected layer with a 339-

neurons layer. Let C♣k, n, sq denote a convolutional layer

with kernel size k ✂ k, n filters and a stride of s, P ♣k, sq
a max pooling layer of kernel size k ✂ k and stride s, N

a normalization layer, RL a rectified linear unit, FC♣nq a

Figure 2: Each point on the hemisphere corresponds to a virtual

camera looking towards the center of the sphere.

fully connected layer with n filters and D♣rq a dropout layer

with dropout ratio r. The architecture of our CNN follows:

C♣11, 96, 4q Ñ RL Ñ P ♣3, 2q Ñ N Ñ C♣5, 256, 1q Ñ
RL Ñ P ♣3, 2q Ñ N Ñ C♣3, 384, 1q Ñ RL Ñ
C♣3, 384, 1q Ñ RL Ñ C♣3, 256, 1q Ñ RL Ñ P ♣3, 2q Ñ
FC♣4096q Ñ RL Ñ D♣0.5q Ñ FC♣4096q Ñ RL Ñ
D♣0.5q Ñ FC♣339q. We refer to the fully-connected lay-

ers as fc6, fc7, and fc8, respectively. During learning, a

softmax loss layer is added at the end of the network.

For each pose i ✏ 1, ☎ ☎ ☎ , 339 in the dictionary, the cor-

responding synthetic depth images from all 180 synthetic

cameras are generated using our proposed pipeline and as-

signed the same class label i. Thus, our training dataset

consists of 339 human pose classes. We use the synthetic

depth images from 162 randomly selected cameras as the

training set and those from the remaining 18 cameras as the

validation set. Proper initialization is a key for successful

training of CNNs and for avoiding over-fitting. We initialize

the CNN with a model that was trained on approximately

1.2 million RGB images from the 2012 ImageNet challenge

and then fine-tuned on depth images from NYUD2 [18].

We train our CNN with back-propagation and use an initial

learning rate of 0.01 for the convolution layers and 0.01 for

the fully-connected layers. We use a momentum of 0.9 and

a weight decay of 0.0005. We train the network for 21K

iterations. During training, the input images are flipped hor-

izontally with a probability of 0.5.

4.2. Inference

So far, we have learned a deep CNN model whose input

is a human pose depth image and output is the correspond-

ing pose class. The proposed CNN is able to classify only

339 pose classes which do not cover all possible human

poses. However, the fully-connected layers (e.g. fc6 and

fc7) of the learned model encode the view-invariant high-

level representation of human poses. To use this model for

extracting view-invariant features from real depth videos,

we perform the following two steps.

Pre-processing: The synthetic depth dataset used for train-

ing the proposed CNN model contains depth images of only

human body poses. Therefore, for extracting features from

a real depth image, we pass the segmented human body

image through our learned model. Fortunately, the Kinect

camera is able to discern the human body from the rest of

the scene and provide a segmented image (i.e. human body)
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in real-time (see Fig. 4). The segmented depth image is

then cropped to the bounds of the region of interest i.e. hu-

man body, and converted to a form that is compatible with

the learned CNN model. More precisely, the depth values

of the region of interest are normalized in the range 0✁ 255

and the image is resized to 227✂227. The average depth im-

age calculated from training images is then subtracted from

it. In case human body segmentations are not available, our

method still achieves state-of-the-art recognition accuracy

e.g. see our result on the MSR Action Pairs3D [34] dataset

in the supplementary material.

Feature extraction: For each depth video frame, view-

invariant features are computed by forward propagating the

mean-subtracted 227 ✂ 227 depth image through the CNN

and the outputs of the fc7 layer are used as the view-

invariant frame descriptor. Our experiments show that using

the outputs of this layer achieves better recognition accu-

racy than fc6 (see supplementary material for results).

5. Temporal modeling and classification

To represent an action sequence with our CNN model,

we feed forward the depth images sequentially through the

network and temporally align the fc7 layer features. Re-

call that no surface fitting is required for real depth im-

ages. Depth images captured by low cost real-time cam-

eras have high levels of noise [64]. Moreover, the correct

region of interest, containing only the human, extracted in

real-time by Kinect cameras is not always accurate and may

contain some parts of the background as shown in Fig. 4.

Finally, to match two video segments, they must be tempo-

rally aligned. Therefore, we need a representation that is

robust to noisy depth images, inaccurate segmentations and

temporal misalignments between different video segments.

The Fourier Temporal Pyramid (FTP) [59] is shown to be

successful for encoding temporal variations of noisy data.

We employ the FTP representation since it is robust to

noise and temporal misalignments. In addition to the global

Fourier coefficients, we recursively partition the actions into

a pyramid, and use the short time Fourier transform for all

the segments to better capture the temporal structure of the

action videos. The final action video descriptor is the con-

catenation of the Fourier coefficients from all the segments.

Let f denote the number of frames in a given action

video and m ✏ 4096 the number of neurons in the fully-

connected fc7 layer of the proposed model. Let us denote

each neuron output of the i-th video sample by Bi
j,t, where

j ✏ 1 . . .m is the neuron number and t ✏ 1 . . . f is the

frame number. We apply the Short Fourier Transform [33]

to Bi
j ✏ rBi

j,1 Bi
j,2 ☎ ☎ ☎ Bi

j,f s and keep the first q low fre-

quency coefficients. Next, we divide Bi
j into two segments

and apply the Short Fourier Transform again to each indi-

vidual segment to obtain its low frequency coefficients. We

repeat this process l times and compute a Fourier Temporal

Pyramid descriptor, Ai
j , for each neuron j by concatenating

the low-frequency coefficients at all levels of the pyramid.

Thus Aj P Rγ where γ ✏ 2l ✂ q. We refer to the con-

catenated descriptor Ai ✏ rAi
1
Ai

2
☎ ☎ ☎Ai

j ☎ ☎ ☎ Ai
ms❏ as the

spatio-temporal features for the i-th video sample.

Each neuron in the fully-connected fc7 layer contributes

differently to different pose classes and hence, different ac-

tions. This is because each neuron in the fc7 layer is con-

nected to the penultimate layer, fc8, with different weights.

We define a neurons-set as a conjunction of neurons whose

outputs are more discriminative for a particular action. If

a neuron is considered for a particular action, then all its

output FTP features must be selected and if a neuron is

not selected then all its output features must be discarded.

We discover the discriminative neurons-sets by solving an

ℓ1④ℓ2-norm regularized least squares problem [70]:

min
X

1

2
⑤⑤AX ✁ Y ⑤⑤2

2
� λ

m➳

j✏1

⑤⑤XGj
⑤⑤2, (1)

where A ✏ rA1 A2 ☎ ☎ ☎ Ans❏ P R
n✂v , Y P R

n✂1,

X P R
v✂1 is divided into m non-overlapping groups

XG1
, XG2

, ☎ ☎ ☎ , XGm
, and v ✏ γ ✂ 4096 denotes the di-

mension of feature vector of each video sample. Such a so-

lution incorporates a grouping structure by inducing spar-

sity at the neuron level and smoothness in the individual

neuron output feature vector Aj . We solve this optimization

function using the one-vs-all strategy for all action classes

which gives us a sparse discriminative neurons-set for each

action class. This process also reduces the complexity of

the action specific classifiers and leads to better generaliza-

tion of the learning [24,32]. Figure 3 shows an overview of

the proposed temporal modeling and classification method.

6. Experiments

We evaluated our proposed algorithm on two multiview

and three single-view benchmark datasets. The former in-

cludes the Northwestern-UCLA Multiview Action3D [60]

and UWA3D Multiview Activity II [40] datasets whereas

the latter includes MSR Action Pairs3D [34], MSR Daily

Activity3D [58], and MSR Gesture3D [26,57] datasets. The

results on single-view datasets are provided in the supple-

mentary material.

We report action recognition results of our method for

unseen (novel) and unknown views, i.e. we assume that no

videos, labels or correspondences from the target view are

available at training time. More importantly, we use the

same CNN model, learned from synthetic data, for all five

datasets to show the generalization strength of our model

and to show that our model can be applied to any depth

action video without the need for re-training or fine-tuning.

We used the MatConvNet toolbox [53] for implementing

convolutional neural networks. In our experiments, we set

the number of Fourier Pyramid levels l ✏ 3, and the number
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Figure 3: Overview of the proposed temporal modeling and classification. Video frames are individually passed through the CNN model

and the Fourier Temporal Pyramid features are extracted from the time series of each neuron output of the CNN representation layer.

Figure 4: Visualizing the data and segmentation noise. Column

wise: Raw depth images from Kinect; after background removal

by Kinect (the green pixels); after background removal; the nor-

malized depth image which feeds to our proposed model.

of low frequency Fourier coefficients q ✏ 4 using cross-

validation on training samples. The learned CNN model

and MATLAB code of our method are freely available 1.

From here on, we refer to our proposed view-invariant

human pose representation model (Section 4) and our pro-

posed temporal modeling (Section 5) as HPM and TM, re-

spectively. In addition to other compared methods, we re-

port the accuracy of our defined baseline method which uses

a similar approach to [15] but with the CNN model that

was fine-tuned on depth images from NYUD2 [18]. We re-

port the recognition accuracy of our method in two different

settings: (1) HPM where we apply average pooling on the

CNN features of all frames of a video to obtain its represen-

tation, and (2) HPM+TM where we employ the proposed

temporal modeling approach on the CNN features to cap-

ture the temporal structure of the videos.

6.1. NorthwesternUCLA dataset [60]

This dataset contains RGB, depth and human skeleton

data captured simultaneously by 3 Kinect cameras from dif-

ferent views. It consists of 10 action classes including: (1)

pick up with one hand, (2) pick up with two hands, (3) drop

trash, (4) walk around, (5) sit down, (6) stand up, (7) don-

ning, (8) doffing, (9) throw, and (10) carry. Each action was

performed by 10 subjects 1 to 6 times. Fig. 5 shows sample

depth images of four actions captured by the three cameras.

We follow [60] and use the samples from the first two

cameras for training and the samples from the third camera

1http://www.csse.uwa.edu.au/✒ajmal/code.html

Figure 5: Sample depth images from the Northwestern-UCLA

dataset [60] captured simultaneously by 3 Kinect cameras.

for testing. Comparative results are shown in Table 1. The

recognition accuracy of the proposed method in the first set-

ting (HPM) significantly outperforms our defined baseline

and all existing methods excluding HOPC [39, 40]. This

demonstrates the effectiveness of the proposed training ap-

proach. However, average pooling is unable to fully encode

the temporal structure of actions. Combining our temporal

modeling algorithm with the HPM significantly improves

the recognition accuracy by 14% and achieves 92.0% accu-

racy. Moreover, it dramatically outperforms state-of-the-art

methods irrespective of the modality they use.

Figure 6 compares the action specific recognition accu-

racies of our method in the two settings. The proposed tem-

poral modeling (HPM+TM) achieves significantly higher

accuracies than average pooling (HPM) for most action

classes. The recognition accuracies of the stand up and sit

down actions significantly improve, because these actions

result in similar descriptors through average pooling.

It is important to emphasize that the proposed view-

invariant pose model was learned from synthetic depth im-

ages generated from a small number of human poses, i.e.

size of the pose dictionary was 339. A search for many hu-

man poses such as drop trash, donning and doffing from the

Northwestern-UCLA dataset returns no results in the pose

dictionary or mocap data. Moreover, some activities in this

dataset (e.g. donning, doffing, carry) involve human-object

interactions. Yet, the proposed model is able to achieve high

recognition accuracies for these actions.
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Table 1: Comparison of action recognition accuracy (%) on the

Northwestern-UCLA Multiview Action3D dataset.

Method Recognition accuracy(%)

Input: RGB images

AOG [60] 73.3

Action Tube [15] 61.5

LRCN [9] 64.7

NKTM [41] 75.8

Input: Depth images+Skeleton data

Actionlet [59] 76.0

LARP [54] 74.2

Input: Depth images

CCD [7] 34.4

DVV [27] 52.1

CVP [72] 53.5

HON4D [34] 39.9

SNV [67] 42.8

HOPC [39] 80.0

baseline 70.2

Ours (HPM) 78.1

Ours (HPM+TM) 92.0

Figure 6: Class specific action recognition accuracies of our pro-

posed method in two settings: 1) HPM and 2) HPM+TM on the

Northwestern-UCLA Multiview Action3D dataset.

6.2. UWA3DII dataset [40]

This dataset consists of 30 human actions performed by

10 subjects with different scales: (1) one hand waving, (2)

one hand Punching, (3) two hand waving, (4) two hand

punching, (5) sitting down, (6) standing up, (7) vibrating,

(8) falling down, (9) holding chest, (10) holding head, (11)

holding back, (12) walking, (13) irregular walking, (14) ly-

ing down, (15) turning around, (16) drinking, (17) phone

answering, (18) bending, (19) jumping jack, (20) running,

(21) picking up, (22) putting down, (23) kicking, (24) jump-

ing, (25) dancing, (26) moping floor, (27) sneezing, (28) sit-

ting down (chair), (29) squatting, and (30) coughing. Each

subject performed 30 actions 4 times. Each time the action

was captured from a different viewpoint (front, top, left and

right). This dataset is challenging because the videos were

acquired at different times from varying viewpoints and the

data contains self-occlusions, more action classes and high

similarity across action classes. Moreover, in the top view,

the lower part of the body was not properly captured be-

cause of occlusion. Figure 7 shows sample depth images of

four actions observed from the four viewpoints.

We follow [40] and use videos from two views for

training and videos from the remaining views as test

Figure 7: Sample depth images from the UWA3D Multiview Ac-

tivityII dataset [40] captured by one camera from 4 different views.

data. Table 2 summarizes our results. Our HPM signif-

icantly outperforms the state-of-the-art methods excluding

NKTM [41] on all view pairs. However, NKTM [41] must

extract hand-crafted dense motion trajectories prior to us-

ing the model. The combination of HPM and our proposed

temporal modeling (HPM+TM) dramatically improves the

average recognition accuracy to 76.9% which is over 13.4%

higher than the nearest competitor (NKTM). It is interesting

to note that our method achieves 76.5% average recognition

accuracy when view 4 is used as the test view. As shown in

Fig. 7, view 4 is the top view where the lower part of the

body was not properly captured by the videos.

Figure 8 compares the class specific action recognition

accuracies of our proposed method in the two settings.

HPM+TM achieves significantly higher accuracies than us-

ing average pooling for most action classes. The recogni-

tion accuracies of the stand up and sit down actions dramat-

ically improve which again demonstrates the effectiveness

of our proposed temporal modeling method.

It is important to emphasize that for many human poses

in the UWA3DII dataset such as two hand waving, holding

chest, holding head, holding back, sneezing and coughing,

a similar pose does not exist in the CMU mocap data and

hence the pose dictionary used to learn our model. How-

ever, our method still achieves high recognition accuracies

for these actions.

6.3. Computation time

Our model can be used in real-time applications as it

does not involve complex feature processing or computa-

tionally expensive training and testing phases. With a Mat-

lab implementation, our method can process 25 frames per

second on a 3.4GHz machine with 24GB RAM. The nearest

competitor, in terms of accuracy, HOPC [39,40] is 50 times

slower than our method. Table 3 compares the speed of our
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Table 2: Comparison of action recognition accuracy (%) on the UWA3D Multiview ActivityII dataset. Each time two views are used for

training and the remaining two views are individually used for testing.

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4
Mean

Test view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Input: RGB images

AOG [60] 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3

Action Tube [15] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0

LRCN [9] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3

NKTM [41] 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5

Input: Depth images+Skeleton data

Actionlet [59] 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8

LARP [54] 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4

Input: Depth images

CCD [7] 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2

DVV [27] 23.5 25.9 23.6 26.9 22.3 20.2 22.1 24.5 24.9 23.1 28.3 23.8 24.1

CVP [72] 25.0 25.6 25.5 28.2 24.7 24.0 23.0 24.5 26.6 23.3 30.3 26.8 25.6

HON4D [34] 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9

SNV [67] 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9

HOPC [39] 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2

baseline 53.1 47.3 50.1 49.2 35.5 42.3 52.2 31.6 65.2 51.6 67.8 50.9 49.7

Ours (HPM) 71.3 58.4 58.3 64.4 38.7 51.5 58.0 42.7 69.5 64.6 71.7 57.1 58.9

Ours (HPM+TM) 80.6 80.5 75.2 82.0 65.4 72.0 77.3 67.0 83.6 81.0 83.6 74.1 76.9

Figure 8: Per class recognition accuracy of the proposed HPM and HPM+TM on the UWA3D Multiview ActivityII dataset.

method to the nearest competitors from each modality.

It is interesting to note that our technique outperforms

the current state-of-the-art on both cross-view datasets

while using the same CNN model learned from synthetic

data. This shows the generalization ability of our CNN

model and its ability to be deployed for online action recog-

nition because the cost of adding a new action class is equal

to training the action specific classifiers. On the other hand,

adding more action classes is computationally expensive

for existing techniques [17, 39–41, 54, 59, 60]. NKTM [41]

must extract computationally expensive motion trajectories.

LARP [60] requires to compute a nominal curve for the new

action and warp all the training curves to this nominal curve

using DTW. Similarly, HOPC [60] computes computation-

ally expensive spatio-temporal features.

Table 3: Average computation speed (fps: frames per second).

On-line training speed is that of adding a new action class.

Method On-line training Testing

NKTM [41] 12 fps 16 fps

LARP [54] 0.1 fps 10 fps

HOPC [39] 0.04 fps 0.5 fps

Ours 22 fps 25 fps

7. Conclusion

We proposed a deep CNN model that represents depth

images of different human poses acquired from multiple

views in a view-invariant high-level space. To train the

model, we proposed a framework for generating a large cor-

pus of training data synthetically by fitting realistic human

models to real mocap data and rendering it from multiple

viewpoints. We also introduced a temporal modeling and

classification method which encodes the temporal structures

of actions and discovers a discriminative set of neurons cor-

responding to each action class. The proposed method is

scalable as it requires to be trained only once using synthetic

depth images and generalizes well to real data. Experiments

on benchmark multiview datasets show that the proposed

approach outperforms existing state-of-the-art. Our method

performs equally well on single-view benchmark datasets

(see supplementary material) and generalizes to hand ges-

tures even though the CNN model was trained on full hu-

man body poses.
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