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Abstract

This paper proposes a field model for repairing 3D

shapes constructed from multi-view RGB data. Specifically,

we represent a 3D shape in a Markov random field (MRF) in

which the geometric information is encoded by random bi-

nary variables and the appearance information is retrieved

from a set of RGB images captured at multiple viewpoints.

The local priors in the MRF model capture the local struc-

tures of object shapes and are learnt from 3D shape tem-

plates using a convolutional deep belief network. Repair-

ing a 3D shape is formulated as the maximum a posteriori

(MAP) estimation in the corresponding MRF. Variational

mean field approximation technique is adopted for the MAP

estimation. The proposed method was evaluated on both

artificial data and real data obtained from reconstruction

of practical scenes. Experimental results have shown the

robustness and efficiency of the proposed method in repair-

ing noisy and incomplete 3D shapes.

1. Introduction

Suppose we are given a set of RGB/RGB-D images of

an object captured at multiple viewpoints. The object in the

real world (i.e. 3D space) is then re-constructed using some

3D reconstruction algorithm. Ideally, if an object can be ob-

served in RGB/RGB-D images, it can be well reconstructed.

However, in reality we have found that the reconstruction

often fails even if the RGB/RGB-D data is complete. This

is because the matching of the RGB data in structure-from-

motion based reconstruction methods (e.g. [14]) could not

be done accurately, specially for objects of uniform colours.

For reconstruction methods using depth (e.g. [39, 4]), the

missing of depth could also cause the incompleteness. We

illustrate several cases of this situation in Fig. 1.

Recent advances of 3D acquisition devices and 3D scene

reconstruction research [28, 38, 39, 40, 4] have enabled

large-scale acquisition of 3D scene data and this has raised

∗This work was conducted when Duc Thanh Nguyen was working at

the Singapore University of Technology and Design.

Figure 1. Examples of incomplete shapes after reconstruction us-

ing [4].

a demand on 3D data analysis. However, it often hap-

pens that the 3D data cannot be obtained at high quality (as

shown in Fig. 1), even by recent reconstruction methods,

e.g. [4]. Specifically, the 3D surfaces are missing and/or

broken and this phenomenon causes difficulties for many

sequential tasks such as 3D object detection and recognition

[30, 36], shape analysis [20, 19], and scene understanding

[32, 12]. Repairing missing and broken surfaces thus plays

a critical role and deserves in-depth study. In this paper,

we focus on repairing incomplete 3D shapes. This problem

can be also referred to as shape completion. We assume

objects are not occluded, i.e. they can be fully observed in

RGB/RGB-D images. However, this assumption does not

mean that objects can be completely reconstructed.

1.1. Related Work

Existing shape completion approaches make use of geo-

metric information represented at either low-level or high-

level. Low-level geometry describes local structures, e.g.

local smoothness, and can be used to fill small holes on

broken surfaces. For example, Curless and Levoy [5] pro-

posed to extract surfaces by examining the boundary of un-

seen and empty voxels. However, this method requires ad-

ditional range images to carve away redundant surfaces. In

[7], Davis et al. filled gaps and holes on broken surfaces

by performing a convolution on the signed distance values.

This process was repeated until a new implicit surface could

be defined at the gaps. In [16], a broken object was repre-

sented in an octree grid on which inner and outer grid points

were determined. The broken object was then constructed

by contouring the grid points. In [29], holes on a broken
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object were filled by local patches (on the same object) best

suiting to be pasted at the holes. This method implicitly

assumed there were local structures similar to the missing

parts at holes. In [17], Kazhdan et al. proposed to inter-

polate surfaces by fitting surfaces with gradients that could

be transformed into a continuous vector field in 3D. This

method was then extended in [18] in which constraints at

the location of 3D points were incorporated in construction

of surfaces. In general, methods using low-level geometric

features solely rely on the smoothness constraint, they could

potentially resolve small gaps but dare not able to recover

large missing parts.

High-level geometric information can be represented via

3D object models. The object models can be predefined

using CAD model databases, e.g. [26, 10, 31]. Alterna-

tively, the object models can be constructed based on 2D

image segmentation, e.g. [27], or 2D object detection. For

example, in [6], image-based object detection method [8]

was used to detect the 2D image of an object model, the

3D model was then computed and the pose was estimated.

The model was then incorporated into the SLAM system.

Recently, Wu et al. [36] proposed to learn the shape model

via a convolutional deep belief network. The network was

trained on a huge training set of 3D CAD models and then

used to recognise and complete broken shapes. Although

object-based knowledge could show more advantages com-

pared with low-level geometry information, existing meth-

ods of this approach use only 3D models to recover incom-

plete shapes. This manner holds two limitations. First, the

shape repaired using this approach is formed by the pre-

defined/trained 3D models and thus may not represent the

real data. Second, RGB data contains rich and useful infor-

mation (i.e. multi-view data) but is not exploited in shape

completion.

1.2. Contributions

To overcome the above issues, we propose a robust and

efficient shape repairing method integrating both geometry

and multi-view appearance information. In particular, the

contributions of the paper include,

• We propose a Markov Random Field (MRF) model

for representing 3D shapes. The pairwise priors in the

MRF model capture local geometrical structures of the

shape and can be learnt using a convolutional deep be-

lief network. The likelihoods are constructed from the

multi-view RGB data which is used to verify the con-

sistency of 3D points in various viewpoints.

• We propose a new formulation of shape repairing via

maximum a posteriori (MAP) estimation in the MRF

model and an efficient inference method for MAP es-

timation using variational mean field approximation.

Figure 2. Proposed MRF model.

• We benchmark a new 3D object dataset including

objects present in different levels of incompleteness.

Compared with existing datasets, e.g. 3D warehouse,

SUN database [37], our dataset is more enriched. It in-

cludes the 3D models, 2D images captured at various

viewpoints, and the 2D-3D correspondences. We will

release the dataset to the public as an effort to advance

the future research.

The remainder of the paper is organised as follows. Sec-

tion 2 presents the MRF model and formulates the prob-

lem of shape completion. The variational method used for

approximation of the MAP estimation is then presented in

Section 3. Experimental results and comparisons are re-

ported in section 4. Section 5 concludes the paper with re-

marks.

2. Problem Formulation

Let S be a 3D shape reconstructed from a sequence of

images captured at multiple viewpoints. The shape S can be

broken (due to missing data) and/or rough (due to the align-

ment error of the 3D reconstruction method). We represent

the geometric information of the shape S in a 3D voxel grid

(see Fig. 2).

Let G(V,E) denote an MRF in which V is the set of

voxels in the grid and and E is the set of edges connecting

the voxels. Each voxel vi ∈ V is associated with a label

li ∈ {0, 1}, li = 1 if vi is a voxel of S and li = 0, otherwise.

Similarly to the lattice structure often used in MRFs for 2D

image segmentation [2], for each vi, we consider a set of its

4-connected voxels in the voxel grid; there are 6 neighbours

of each voxel (i.e. 4-connected voxels of vi in a 3 × 3 × 3
cube centred at vi). The label node li of vi is then connected

to the label nodes of the 4-connected voxels of vi. Fig. 2

illustrate the proposed MRF model.

Let L = {li} ∈ {0, 1}|V | be a set of labels. The configu-
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Figure 3. Results of the CDBN applied on the broken table pre-

sented in Fig. 2.

ration L is object-specific and modelled via the probability

p(L) (also called prior). As conventionally defined in bi-

nary MRFs, p(L) can be expressed in the form of Gibbs

distribution as

p(L) =
1

Z

∏

(vi,vj)∈E

ψi,j(li, lj)
∏

vi∈V

ψi(li) (1)

where ψi,j and ψi are respectively the potentials functions

and Z is a normalisation factor (partition function).

In [35], the prior p(L) was used to model a single ob-

ject class (e.g. pedestrian). However, a single prior is weak

to model multiple object classes. In our problem, we con-

struct a multi-model prior p(Lm) representing different ob-

ject types m (e.g. furniture objects). Motivated by the ro-

bustness of deep structures in multi-class object recognition

[11], the convolutional deep belief network (CDBN) pro-

posed in [36] is adopted to construct the shape prior p(Lm)
in our MRF. The CDBN is enriched by learning from a large

set of 3D computer graphics CAD models and thus able to

cover many possible object classes. In particular, the re-

constructed shape S is fed through the pre-trained CDBN

to retrieve a set M of matching models. Note that the set

M may have more than one model since S is not complete

and/or may not exactly match with a unique model. For ex-

ample, the missing parts of a shape S may be due to the

misalignment between image frames used to construct S

and those missing parts may be replaced by different parts

from different models due to the variation of S. However,

each retrieved model m ∈ M is a complete shape in which

unobserved voxels are predicted by the CDBN trained on

various 3D CAD models. Fig. 3 shows several results of the

CDBN applied on the broken table presented in Fig. 2.

To make the modelsm adaptive to small variations of the

true shape, we extend the 2D Distance Transform in [9] to

the 3D domain and apply it on the models m. Fig. 4 shows

two 2D slices across the 3D Distance Transform computed

on a result of the CDBN in Fig. 3. By using the Distance

Transform, the prior p(Lm) is not restricted to the models

m but allows an extent of m. This idea is similar to the 2D

shape band proposed in [1]. In particular, we define,

ψm,i,j(li, lj) ∝ exp

[
αf(Dm(i), Dm(j))lilj

]
(2)

where α > 0 is a user-defined parameter,Dm(i) is the value

of the Distance Transform of the model m at voxel vi, and

f(Dm(i), Dm(j)) is some activation function representing

the co-occurrence of li and lj . A low value of Dm(i) indi-

cates that vi is close to m and vice versa.

The activation function f(Dm(i), Dm(j)) is defined as,

f(Dm(i), Dm(j)) =
−1

1 + e−
√

D2
m(i)+D2

m(j)
+ ǫ (3)

where 0.5 < ǫ < 1.

The function f(Dm(i), Dm(j)) is used to regulate the

pairwise prior ψm,i,j(li, lj) in (2) in the principle that lo-

cations close to the model m should have higher value

of ψm,i,j(li, lj) than ones far from m. Indeed, if vi
and vj are truly empty voxels, Dm(i) and Dm(j) would

have high value and −1

1+e
−

√
D2

m(i)+D2
m(j)

→ −1. Thus,

f(Dm(i), Dm(j)) < 0, i.e. ψm,i,j(1, 1) < 1 =
ψm,i,j(0, 0). In other words, ψm,i,j(li, lj) would attain high

value when li and lj are considered as empty voxels. Note

that when li = lj = 1,
√
D2

m(i) +D2
m(j) in (3) is a variant

of the Mahalanobis distance in which the covariance matrix

is diagonal and the standard deviation is set to 1.

In contrast, if vi and vj are close to m (or even if they

are the voxels ofm),Dm(i) andDm(j) would tend to 0 and

f(Dm(i), Dm(j)) would become > 0, i.e. ψm,i,j(1, 1) >
1 = ψm,i,j(0, 0). In other words, the prior in this case is in

favour of considering vi and vj as foreground voxels.

In a similar way, we define the potential ψm,i in (1)

through an activation function g(Dm(i)) as follows,

ψm,i(li) ∝ exp

[
βg(Dm(i))li

]
(4)

where β > 0 and

g(Dm(i)) =
−1

1 + e−Dm(i)
+ ǫ (5)

As in conventional MRFs, the likelihood functions

p(vi|li) can be computed based on the observation data

which is the RGB images in our case. Specifically, the like-

lihoods p(vi|li) are defined based on the consistency of the

image appearance observed at different viewpoints as fol-

lows. Let Ii = {I1, I2, ...} be the set of images on which vi
can be observed. Assume that the images in Ii are ordered

in time and the difference in the camera’s tilt of two adjacent

images Ij and Ij+1 is about an angle θ. Such sets Ii can be

determined given the temporal sequence of input frames and

the camera pose estimated during the reconstruction.
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Figure 4. 2D slices across the 3D Distance Transform computed

on a result of the CDBN in Fig. 3. Darker values represent small

distance and vice versa.

Figure 5. Illustration of likelihood computation for a foreground

voxel (left) and free space voxel (right).

Let xi,j denote the corresponding pixel of vi on an im-

age Ij ∈ Ii. A local image regionR(xi,j) centred at xi,j on

Ij is then determined. On R(xi,j), we extract a histogram

of oriented gradients (HOG) [3], denoted as hR(xi,j). The

HOG captures the local appearance of the region R(xi,j).
It is expected that if vi is a foreground voxel, then the

HOGs extracted at regions R(xi,j) and R(xi,j+1) on ad-

jacent frames Ij and Ij+1 should be consistent. However,

to achieve this, adjacent frames Ij and Ij+1 need to be sam-

pled so that they are not very far yet not too close to each

other. This is because, when Ij and Ij+1 are too far from

each other, a foreground voxel would even have quite dif-

ferent HOGs on those frames. On the other hand, if Ij and

Ij+1 are too close, an empty voxel even would have very

similar HOGs on those frames. In our experiment, we use

an angle θ to sample images Ij . The likelihood p(vi|li) is

computed as,

p(vi|li) ∝ exp

[ −γ
|Ii| − 1

|Ii|−1∑

j=1

d(hR(xi,j), hR(xi,j+1))

]

(6)

where γ > 0 and d(hR(xi,j), h
t
R(xi,j+1)

) is the χ2-distance

between two HOGs hR(xi,j) and hR(xi,j+1). Note that

p(vi|li) does not depend onm. Fig. 5 illustrates the compu-

tation of the likelihoods using multi-view RGB data.

Given the likelihoods p(vi|li) and prior p(Lm) defined

for each model m, the problem of repairing the shape S is

to find the optimal L∗ such that

L∗ = argmax
Lm∈{0,1}|V |

{
max
m∈M

p(Lm|V )

}

∝ argmax
Lm∈{0,1}|V |

{
max
m∈M

p(V |L)p(Lm)

}

= argmax
Lm∈{0,1}|V |

{
max
m∈M

[ ∏

vi∈V

p(vi|li)
]
p(Lm)

}
(7)

where p(V |Lm) is replaced by p(V |L) since p(vi|li) does

not depend on m, and, similarly to conventional MRFs, it is

assumed that p(V |L) = ∏
vi∈V p(vi|li).

The problem defined in (7) is to find the best model

m ∈ M that is used as the prior to maximise the poste-

riori p(Lm|V ) (i.e. the MAP inference). Since the MRF

model can have cycles, the inference in (7) cannot be solved

by using exact inference methods (e.g. [21]). In addition,

a brute-force inference would be intractable due to expo-

nential complexity. To overcome this issue, variational ap-

proach is adopted in the paper.

3. Variational Mean Field

Variational methods have shown their power as a robust

approximation approach applied successfully in various

computer vision tasks, e.g. human detection [35, 24, 25],

object tracking [22], template matching [23]. In the context

of graphical models, e.g. MRF [15, 13, 33], the core idea

of the variational approach is to approximate the posteriori

p(L|V ) by a variational distribution Q via maximising an

objective function J(Q) defined as,

J(Q) = log p(V )−KL(Q(L)||p(L|V ))

= log p(V )−
∑

L

Q(L) log
Q(L)

p(L|V )

= −
∑

L

Q(L) logQ(L) +
∑

L

Q(L) log p(L, V )

= H(Q(L)) + EQ(L){log p(L, V )} (8)

where H(Q(L)) is the entropy of Q(L), EQ(L){·} is the

expectation with respect to Q(L).
SinceKL is non-negative, J(Q) is bounded by log p(V )

and thus maximising J(Q) is equivalent to retrieving both

the desired marginal (i.e. p(V )) and the posteriori Q∗(L).
Indeed, if Q∗ = p(L|V ), J(Q∗) will reach the maximum.

In this paper, we representQ in the form of full factorisation

(e.g. dropping edges in a Boltzmann graph) as,

Q(L) =

|V |∏

i=1

Qi(li) (9)

where Qi(li) is the variational distribution of li.
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As defined in (2) and (4), ψm,i,j(li, lj) and ψm,i(li) are

expressed in the form of a Boltzmann distribution. Thus,

we can write,

Qi(li) = µli
i (1− µi)

(1−li) (10)

where µi, i ∈ {1, ..., |V |} are computed via mean field

equations [15] as follows,

µi =
p(vi|li = 1)ki

p(vi|li = 0) + p(vi|li = 1)ki
(11)

where p(vi|li) is defined in (6) and

ki = exp

{ ∑

vj∈N (vi)

αf(Dm(i), Dm(j))µj + βg(Dm(i))

}

(12)

where N (vi) is the set of neighbouring voxels of vi.

As shown in (11) and (12), µi is updated locally based

on the neighbouring nodes in N (vi) and the update is per-

formed iteratively to increase J(Q) which is finally com-

puted as,

J(Q) =
∑

i

H(Qi) +
∑

i,j

αf(Dm(i), Dm(j))µiµj

+
∑

i

βg(Dm(i))µi +
∑

i

(1− µi) log p(vi|li = 0)

+
∑

i

µi log p(vi|li = 1)− logZ (13)

where H(Qi) is the entropy of the individual variational dis-

tribution Qi and H(Q) =
∑

i H(Qi) due to the full factori-

sation of Q.

The estimation of J(Q), as shown in (13), requires the

computation of Z, which again takes an exponential com-

plexity. However, the optimisation of J(Q) can be done

without involving Z by using an alternative objective func-

tion J̃(Q) = J(Q) + logZ. Once the optimal variational

distribution Q∗ has been obtained, it can be used to approx-

imate p(L|V ). In particular, since Q is fully factorised, we

can approximate

p(L∗|V ) ≈
|V |∏

i=1

Qi(l
∗
i ) (14)

where l∗i = argmaxli Qi(li).

Applying (14) on the models m, the optimal configu-

rations L∗
m with respect to m can be determined. The fi-

nal configuration L∗ in (7) is then selected as L∗
m which

achieves the maximum of p(L∗
m|V ) over all models m.

4. Experiments

4.1. Implementation Details

We adopted the CDBN in [36] for learning and extract-

ing the shape models m ∈ M as follows. The CDBN rep-

resents a shape in a 24× 24× 24 volume with 3 voxel-pad

for every dimension (resulting in a 30× 30× 30 grid). The

CDBN sequentially consists of three convolutional layers,

one fully connected layer and one final layer (with 4000

hidden units as a combination of Bernoulli variables). In

the network, each convolution filter is connected to all fea-

tures returned by the previous layer. The CDBN was trained

on the ModelNet dataset [36] including 3D CAD models

from various sources such as 3D warehouse, SUN database

[37], etc. Training the CDBN was conducted in a layer-wise

fashion and refined using a fine-tuning method. Readers are

referred to [36] for the details of the network architecture

and training procedure.

Given the well-trained CDBN, a test shape is fed into

the network. Voxels that belong to the object surface are set

to 1 (i.e. observed voxels in the CDBN), those which are

empty are set to −1 (i.e. unknown voxels in the CDBN).

The CDBN then results in a set of labels using Gibbs sam-

pling; labels 1 for foreground voxels and 0 for free space

voxels. Note that the labelling is performed using only

the geometric information learnt from the 3D CAD models

while the appearance information from the RGB data is not

taken into account. We initialise the sampling with 9 differ-

ent random configurations of labels and obtain 9 labelling

results. Those results are considered as the shape models

(i.e. |M| = 9). Fig. 3 shows some results of the CDBN

applied on the table in Fig. 2. Note that the results may

not capture the true shape of the table since only geometric

information is used.

The 3D Distance Transforms are then applied on the re-

sults of the CDBN to compute the potentials ψm,i,j(li, lj)
and ψm,i. In our implementation, we set α = 10 and

ǫ = 0.7 in (2), β = 30 in (4). To compute the likelihoods

p(vi|li) in (6), we sample the RGB frames so that the angle

between two consecutive frames is about 30◦ (with a devi-

ation of 5◦). In addition, the HOGs are extracted on image

regions of size 33×33 in relative to a 640×480 frame cap-

tured at about 1.2 metres from the object. This information

is computed from the camera pose information. Each image

region is divided uniformly into 4 sub-regions on which the

HOGs are extracted. Those HOGs are then concatenated.

Similarly to [3], we quantise the oriented gradients into 9

bins and compute the HOGs (of 9 bins) for 4 sub-regions

to form a 36-dimensional HOG for an image region. We

set γ = 10 in (6). We have experimented those parameters

with various values and found that the performance was not

sensitive to the changes while these settings gave good per-

formance.
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Figure 6. Some samples of our dataset: Complete 3D reconstructed model (left) and RGB images captured at different viewpoints.

For the variational mean field method, we set the max-

imum number of iterations to 100. However, we have ob-

served that in our practice that the mean field approximation

method could complete the inference in less then 10 itera-

tions.

4.2. Evaluation

To evaluate the recovery ability of our proposed method,

we benchmark a new 3D object dataset including 77 com-

plete objects. Those objects are captured and reconstructed

from indoor scenes. Each object is associated with a set of

RGB images used to reconstruct the object. Camera poses

are computed and the correspondences between 3D points

and 2D pixels are also established. Fig. 6 shows some ex-

amples of complete objects in our collected dataset.

Each complete object is then degraded by randomly re-

moving the 3D points. The removal is performed at 9 dif-

ferent levels varying from 10% to 90% of the original 3D

points. In total, there are 77 × 9 = 693 objects created. In

addition to the synthetic data, we also collect 10 incomplete

objects reconstructed from realistic data. Fig. 7 illustrates

several samples of our dataset.

To measure the performance of shape completion, Sung

et al. [31] proposed two metrics: accuracy vs complete-

ness. The accuracy measures the percentage that com-

pleted points can be matched with ground-truth points while

the completeness measures the percentage that ground-truth

points (after removed to create the synthetic data) can be

recovered. In [31], a match is confirmed by thresholding

the distances between completed points and ground-truth

points. In this paper, we use the inaccuracy vs incomplete-

ness as shape completion measures. However, instead of

thresholding the distances, we directly use them in calcu-

lating the inaccuracy and incompleteness. In particular,

the inaccuracy is the average of the distances from com-

pleted points to nearest ground-truth points. Similarly, the

incompleteness is the average of the distances from ground-

truth points to completed points. In contrast to the accu-

racy and completeness, the inaccuracy and incompleteness

favour small distances. In other words, the smaller the inac-

curacy/incompleteness is, the better the shape completion

is. To efficiently compute the distances, the 3D Distance

Transform is used. Fig. 8 shows the performance of our

proposed method under varying levels of shape incomplete-

ness. In this experiment, complete shapes are used as the

ground truth while degraded shapes are considered as the

inputs. As shown in Fig. 8, both the inaccuracy and incom-

pleteness increase accordingly to the levels of shape degra-

dation. However, while the inaccuracy gradually changes,

the incompleteness shows a significant increase. Fig. 9 il-

lustrates several completion results of our method.

For the current implementation, we experiment our

method for 30×30×30-voxel objects. However, the method

is adaptive to any resolutions specified by 3D shape models.

We could also apply tensor voting techniques, e.g. [34], to

interpolate normals in higher resolutions. We consider this
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Synthetic data. The most left column represents complete shapes (ground-truth).

Realistic data

Figure 7. Some examples of incomplete 3D shapes in our dataset.

Figure 8. Performance of our method under various levels of shape

degradation.

extension as our future work.

4.3. Comparison

In addition to evaluation, we also compare our method

with other existing methods. In particular, we evaluate the

ShapeNets [36], a recent shape completion method using

high-level geometric information learnt from CAD mod-

els. For methods using low-level geometric information,

we evaluate the Screened Poisson Surface Reconstruction

(SPSR) [18]1 (which is shown to perform better than its

original work in [17]) and the PolyMender [16]2. Since the

1The SPRS is available in MeshLab and its implementation

can be found at http://www.cs.jhu.edu/˜misha/Code/

PoissonRecon/Version8.0/
2Binary code is available at http://www.cse.wustl.edu/

˜taoju/code/polymender.htm

work in [18] makes use of gradients, in addition to the ge-

ometric information of 3D points, the normals of 3D points

were also computed and buffered for use during degrading

3D objects in our dataset.

For comparison, we use the sum of both the inaccu-

racy and incompleteness as a single metric. Note that the

ShapeNets just results in a set of 9 different shapes for a

given incomplete shape. Thus, we apply our method to

identify the best matching shape amongst the 9 shapes gen-

erated by the ShapeNets. The matching shape is then used

for comparison. For the SPSR and PolyMender methods,

completed results are voxelised to 30 × 30 × 30. We re-

port the comparison between our method and other exist-

ing methods in Fig. 10. As shown in the experiments, our

method achieves the best performance. Compared with the

ShapeNets purely using geometric information, our method

shows the potential of multi-view RGB data in dealing with

incompleteness. The proposed method also significantly

outperforms the SPSR and PolyMender methods which use

only low-level geometric information. This shows the ben-

efits of the 3D shape prior in shape repairing.

4.4. Computational Analysis

We measure the complexity of the proposed method

via the processing time and the number of iterations of

the variational inference. Our experiments on an Intel(R)

Core(TM) i7 2.10GHz CPU computer with 8.00 GB mem-

ory have shown that an incomplete shape could be repaired

in about 0.03 seconds and 8.89 iterations. We have also

found that both the processing time and number of iterations

slightly changed under different levels of shape incomplete-
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Figure 9. Some completion results of our proposed method.

Figure 10. Comparison between our method and existing methods.

ness. In fact, those quantities depend on the result of the

shape models generated by the ShapeNets.

5. Conclusion

This paper proposes a method for repairing 3D shapes

using both the geometry and multi-view RGB data. The 3D

shape is modelled in an MRF in which the priors between

hidden nodes are obtained from shape models learnt using

a convolutional deep belief network. The consistency of the

RGB images of the 3D shape at multiple viewpoints is ex-

ploited in the data likelihoods. The problem of repairing

an incomplete shape is formulated as the maximum a pos-

teriori (MAP) estimation in the MRF model. Variational

mean field method is used to approximation the MAP esti-

mation. We benchmark a new 3D object dataset for evalua-

tion of the method. Experimental results on the new dataset

have shown the robustness and efficiency of the proposed

method. Repairing shapes in higher resolutions would be

our future work.
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