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Abstract

This paper presents an approach for reconstruction of

4D temporally coherent models of complex dynamic scenes.

No prior knowledge is required of scene structure or camera

calibration allowing reconstruction from multiple moving

cameras. Sparse-to-dense temporal correspondence is inte-

grated with joint multi-view segmentation and reconstruc-

tion to obtain a complete 4D representation of static and

dynamic objects. Temporal coherence is exploited to over-

come visual ambiguities resulting in improved reconstruc-

tion of complex scenes. Robust joint segmentation and re-

construction of dynamic objects is achieved by introducing

a geodesic star convexity constraint. Comparative evalua-

tion is performed on a variety of unstructured indoor and

outdoor dynamic scenes with hand-held cameras and mul-

tiple people. This demonstrates reconstruction of complete

temporally coherent 4D scene models with improved non-

rigid object segmentation and shape reconstruction.

1. Introduction

Existing reconstruction frameworks for general dynamic

scenes commonly operate on a frame-by-frame basis [14,

32] or are limited to simple scenes [15]. Previous work

on indoor and outdoor dynamic scene reconstruction has

shown that joint segmentation and reconstruction across

multiple views gives improved reconstruction [17]. In this

work we build on this concept exploiting temporal coher-

ence of the scene to overcome visual ambiguities inherent in

single frame reconstruction and multiple view segmentation

methods for general scenes. This is illustrated in Figure 1

where the resulting 4D scene reconstruction has temporally

coherent labels and surface correspondence for each object.

We present a sparse-to-dense approach to estimate dense

temporal correspondence and surface reconstruction for

non-rigid objects. Initially sparse 3D feature points are ro-

bustly tracked from wide-baseline image correspondence

using spatio-temporal information to obtain sparse tempo-

ral correspondence and reconstruction. Sparse 3D feature

correspondences are used to constrain optical flow estima-

tion to obtain an initial dense temporally consistent model

of dynamic regions. The initial model is then refined using

Figure 1. Temporally consistent scene reconstruction for Odzemok

dataset colour-coded to show the obtained scene segmentation.

a novel optimisation framework using a geodesic star con-

vexity constraint for simultaneous multi-view segmentation

and reconstruction of non-rigid shape. The proposed ap-

proach overcomes limitations of existing methods allowing

an unsupervised temporally coherent 4D reconstruction of

complete models for general scenes. The scene is automat-

ically decomposed into a set of spatio-temporally coherent

objects as shown in Figure 1. The contributions are as fol-

lows:

• Temporally coherent reconstruction of complex dy-

namic scenes.

• A framework for space-time sparse-to-dense segmen-

tation and reconstruction.

• Optimisation of dense reconstruction and segmenta-

tion using geodesic star convexity.

• Robust and computationally efficient reconstruction of

dynamic scenes by exploiting temporal coherence.

2. Related work

2.1. Temporal multiview reconstruction

Extensive research has been performed in multi-view re-

construction of dynamic scenes. Most existing approaches

process each time frame independently due to the difficulty

of simultaneously estimating temporal correspondence for

non-rigid objects. Independent per-frame reconstruction

can result in errors due to the inherent visual ambiguity
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caused by occlusion and similar object appearance for gen-

eral scenes. Quantitative evaluation of state-of-the-art tech-

niques for static object reconstruction from multiple views

was presented [39]. Research investigating spatio-temporal

reconstruction across multiple frames [15, 18] requires ac-

curate initialisation, is limited to simple scenes and does

not produce temporally coherent 4D models. A number

of approaches that use temporal information [2, 30, 28] ei-

ther require a large number of closely spaced cameras or

bi-layer segmentation [46, 25] as a constraint for complete

reconstruction. Other approaches for reconstruction of gen-

eral scenes from multiple handheld wide-baseline cameras

[3, 41] exploit prior reconstruction of the background scene

to allow dynamic foreground segmentation and reconstruc-

tion. Recent approaches for spatio-temporal reconstruction

of multi-view data either work on indoor studio data [35] or

for dynamic reconstruction of crowd sourced data [24].

Methods to estimate 3D scene flow have been reported in

the literature [31]. However existing approaches are lim-

ited to narrow baseline correspondence for dynamic scenes.

Scene flow approaches dependent on optical flow [42, 4]

require an accurate estimate for most of the pixels which

fails in the case of large motion. The approach presented in

this paper is for general dynamic indoor or outdoor scenes

with large non-rigid motions and no prior knowledge of

scene structure. Temporal correspondence and reconstruc-

tion are simultaneously estimated to produce a 4D model of

the complete scene with both static and dynamic objects.

2.2. Multiview video segmentation

In the field of image segmentation, approaches have been

proposed to provide impressive temporally consistent video

segmentation [16, 37, 34, 45]. Hierarchical segmentation

based on graphs was proposed in [16], directed acyclic

graph were used to propose an object followed by segmen-

tation in [45] and [37, 34] used optical flow. All of these

methods work only for monocular videos. Recently a num-

ber of approaches have been proposed for multi-view fore-

ground object segmentation by exploiting appearance sim-

ilarity [12, 11, 27, 29, 44] . These approaches assume a

static background and different colour distributions for the

foreground and background which limits applicability for

general complex scenes and non-rigid objects.

To address this issue we introduce a novel method

for spatio-temporal multi-view segmentation of dynamic

scenes using shape constraints. Single image segmenta-

tion techniques using shape constraints provide good re-

sults for complex scene segmentation [19](convex and con-

cave shapes), but requires manual interaction. The pro-

posed approach performs multi-view video segmentation

by initializing the foreground object model using spatio-

temporal information from wide-baseline feature corre-

spondence followed by a multi-layer optimization frame-

work using geodesic star convexity to constrain the segmen-

tation. Our multi-view formulation naturally enforces co-

herent segmentation between views and also resolves ambi-

guities such as the similarity of background and foreground.

2.3. Joint segmentation and reconstruction

Joint segmentation and reconstruction methods simulta-

neously estimate multi-view segmentation or matting with

reconstruction and have been shown to given improved per-

formance for complex scenes. A number of approaches

have been introduced for joint optimization. However, these

are either limited to static scenes [43, 20] or process each

frame independently thereby failing to enforce temporal

consistency [8, 32, 17]. A joint formulation for multi-view

video was proposed for sports data and indoor sequences

in [17] and for challenging outdoor scenes in [32]. Re-

cent work proposed joint reconstruction and segmentation

on monocular video achieving semantic segmentation of

static scenes. Other joint segmentation and reconstruction

approaches that use temporal information based on patch re-

finement [40, 36] work only for rigid objects. An approach

based on optical flow and graph cuts was shown to work

well for non-rigid objects in indoor settings but requires

silhouettes and is computationally expensive [18]. Practi-

cal application of temporally coherent joint estimation re-

quires approaches that work on non-rigid objects for general

scenes in uncontrolled environments.

The proposed approach overcomes the limitations of

previous methods enabling robust wide-baseline spatio-

temporal reconstruction and segmentation of general

scenes. Temporal correspondence is exploited to overcome

visual ambiguities giving improved reconstruction together

with temporally coherent 4D scene models.

3. Methodology

This work is motivated by the limitations of existing

multiple view reconstruction methods which either work in-

dependently at each frame resulting in errors due to visual

ambiguity and occlusion [14, 17, 32], or commonly require

restrictive assumptions on scene complexity and structure

[41, 18]. We address these issues by introducing tempo-

ral coherence in the reconstruction to reduce ambiguity, en-

sure consistent non-rigid structure initialisation at succes-

sive frames and improve reconstruction quality.

3.1. Overview
A novel automatic multi-object dynamic segmentation

and reconstruction method based on the geodesic star-

convexity shape constraint is proposed to obtain a 4D model

of the scene including both dynamic and static objects. An

overview of the framework is presented in Figure 2 :

Sparse reconstruction: The input to the system is mul-

tiple view wide-baseline video with known camera in-

trinsics. Extrinsic parameters are calibrated automati-

cally [21, 23] using sparse wide-baseline feature matching.

Segmentation-based feature detection (SFD) [33] is used to
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Figure 2. Temporally consistent scene reconstruction framework

obtain a relatively large number of sparse features suitable

for wide-baseline matching which are distributed through-

out the scene including on dynamic objects such as people.

SFD features are matched between views using a SIFT de-

scriptor giving a sparse 3D point-cloud and camera extrin-

sics for each time instant. The sparse point cloud is clus-

tered in 3D [38] with each cluster representing a unique

foreground object. Objects with insufficient detected fea-

tures are reconstructed as part of the scene background.

Initial dense complete scene reconstruction: Sparse re-

construction at each time instant is clustered in 3D[38] to

obtain an initial coarse object segmentation. Delaunay tri-

angulation [13] is performed on the set of back projected

sparse features for each object in the camera image plane

with best visibility. This is propagated to the other views

using the sparse feature matching to obtain an initial ob-

ject reconstruction. This reconstruction is refined using the

framework explained in Section 3.3 to obtain segmentation

and dense reconstruction of each object.

Accurate reconstruction of the background object is often

challenging due to the lack of features, repetitive texture,

occlusion, textureless regions and relatively narrow base-

line for distant objects. Hence we create a rough geometric

proxy of the background by computing the minimum ori-

ented bounding box for the sparse 3D point cloud using

principal component analysis (PCA) [10]. The dense re-

construction of the foreground objects and background are

combined to obtain a full scene reconstruction at the first

time instant. For consecutive time instants only dynamic

objects are reconstructed with the segmentation and recon-

struction of static objects retained which reduces computa-

tional complexity.

Temporally coherent reconstruction of dynamic objects:

Dynamic object regions are detected at each time instant by

sparse temporal correspondence of SFD features at succes-

sive frames. Sparse temporal feature correspondence allows

propagation of the dense reconstruction for each dynamic

object to obtain an initial approximation (Section 3.2). The

initial estimate is refined using a joint optimisation of seg-

mentation and reconstruction based on geodesic star con-

vexity (Section 3.3). A single 3D model for each dynamic

object is obtained by fusion of the view-dependent depth

maps using Poisson surface reconstruction [26].

Subsequent sections present the novel contributions of this

work in identifying the dynamic points, initialisation using

space-time information and refinement using geodesic star

convexity to obtain a dense reconstruction. The approach is

demonstrated to outperform state-of-the-art dynamic scene

reconstruction and gives a temporally coherent 4D model.

3.2. Initial temporally coherent reconstruction
Once the static scene reconstruction is obtained for the

first frame, we perform temporally coherent dynamic scene

reconstruction at successive time instants. Dynamic regions

are identified using temporal correspondence of sparse 3D

features. These points are used to obtain an initial dense

model for the dynamic objects using optical flow. The initial

coarse reconstruction for each dynamic region is refined in

the subsequent optimization step with respect to each cam-

era view. Dynamic scene objects are identified from the

temporal correspondence of sparse feature points. Sparse

correspondence is then used to propagate an initial model

of the moving object for refinement. Figure 3 presents the

sparse reconstruction and temporal correspondence.

Sparse temporal dynamic feature tracking: Numer-

ous approaches have been proposed to track moving objects

in 2D using either features or optical flow. However these

methods may fail in the case of occlusion, movement par-

allel to the view direction, large motions and moving cam-

eras. To overcome these limitations we match the sparse

3D feature points obtained using SFD from multiple wide-

baseline views at each time instant. The use of sparse 3D

features is robust to large non-rigid motion, occlusions and

camera movement. SFD [33] detects sparse features which

are stable across wide-baseline views and consecutive time

instants for a moving camera and dynamic scene. Sparse

3D feature matches between consecutive time instants are
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Figure 3. Sparse temporal dynamic feature tracking algorithm: Re-

sults on two datasets; Min and Max is the minimum and maximum

movement in the 3D points respectively.

Figure 4. Spatio-temporal consistency check for 3D tracking

Figure 5. Sparse dynamic feature tracking for Juggler dataset.

back-projected to each view. These features are matched

temporally using a SIFT descriptor to identify the moving

points. Robust matching is achieved by enforcing multiple

view consistency for the temporal feature correspondence

in each view as illustrated in Figure 4. Each match must

satisfy the constraint:
‖dt,v(p) + ut,v+1(p+ dt,v(p))− ut,v(p)−

dt,v+1(p+ ut,v(p))‖ < ǫ

where p is the feature image point in view v at frame t,

dt,v(p) is the disparity at frame t from view v to v + 1,

ut,v(p) is the temporal correspondence from frames t to

t+1 for view v. The multi-view consistency check ensures

that correspondences between any two views remain tem-

porally consistent for successive frames. Matches in the 2D

domain are sensitive to camera movement and occlusion,

hence we map the set of refined matches into 3D to make

the system robust to camera motion. The Frobenius norm is

applied on the 3D point gradients in all directions [45] to ob-

tain the ‘net’ motion at each sparse point. The ‘net’ motion

between pairs of 3D points for consecutive time instants are

ranked, and the top and bottom 5 percentile values removed.

Median filtering is then applied to identify the dynamic fea-

tures. Figure 5 shows an example with moving cameras.

Sparse-to-dense model reconstruction: Dynamic 3D fea-

ture points are used to initialize the segmentation and recon-

struction of the initial model. This avoids the assumption of

static backgrounds and prior scene segmentation commonly

used to initialise multiple view reconstruction with a coarse

visual-hull approximation [17]. Temporal coherence also

provides a more accurate initialisation to overcome visual

ambiguities at individual frames. Figure 6 illustrates the

use of temporal coherence for reconstruction initialisation

and refinement. Dynamic feature correspondence is used to

identify the mesh for each dynamic object. This mesh is

back projected on each view to obtain the region of interest.

Optical flow [5] is performed on the projected mask for each

view in the temporal domain using the dynamic feature cor-

respondences over time as initialization. Dense multi-view

wide-baseline correspondences from the previous frame are

propagated to the current frame using the information from

the flow vectors to obtain dense multi-view matches in the

current frame. The matches are triangulated in 3D to obtain

a refined 3D dense model of the dynamic object for the cur-

rent frame.

For dynamic scenes, a new object may enter the scene or

a new part may appear as the object moves. To allow the

introduction of new objects and object parts we also use in-

formation from the cluster of sparse points for each dynamic

object. The cluster corresponding to the dynamic features

is identified and static points are removed. This ensures that

the set of new points not only contain the dynamic features

but also the unprocessed points which represent new parts

of the object. These points are added to the refined sparse

model of the dynamic object. To handle the new objects we

detect new clusters at each time instant and consider them

as dynamic regions.

Once we have a set of dense 3D points for each dynamic

object, Poisson surface reconstruction is performed on the

set of sparse points to obtain an initial coarse model of each

dynamic region R, which is subsequently refined using the

optimization framework (Section 3.3).

3.3. Temporally coherent dense reconstruction

The initial reconstruction and segmentation from dense

temporal feature correspondence is refined using a joint op-

timization framework. A novel shape constraint is intro-

duced based on geodesic star convexity which has previ-

Figure 6. Initial sparse-to-dense model reconstruction workflow
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ously been shown to give improved performance in inter-

active image segmentation for structures with fine details

(for example a persons fingers or hair)[19]. In this work the

shape constraint is automatically initialised for each view

from the initial segmentation. The geodesic star-convexity

is integrated as a constraint on the energy minimisation for

joint multi-view reconstruction and segmentation [17]. The

shape constraint is based on the geodesic distance with fore-

ground object initialisation (seeds) as star centres to which

the object shape is restricted. The union formed by multi-

ple object seeds form a geodesic forest. This allows com-

plex shapes to be segmented. In this work to automati-

cally initialize the segmentation we use the sparse tempo-

ral feature correspondence as star centers (seeds) to build a

geodesic forest automatically. The region outside the ini-

tial coarse reconstruction of all dynamic objects is initial-

ized as the background seed for segmentation as shown in

in Figure 7. The shape of the dynamic object is restricted

by this geodesic distance constraint that depends on the im-

age gradient. Comparison with existing methods for multi-

view segmentation demonstrates improvements in recovery

of fine detail structure as illustrated in Figure 7.

3.3.1 Optimization based on geodesic star convexity

The depth of the initial coarse reconstruction estimate is re-

fined for each dynamic object at a per pixel level. Our goal

is to assign an accurate depth value from a set of depth val-

ues D =
{

d1, ..., d|D|−1,U
}

and assign a layer label from

a set of label values L =
{

l1, ..., l|L |

}

to each pixel p for

the region R of each dynamic object. Each di is obtained by

sampling the optical ray from the camera and U is an un-

known depth value to handle occlusions. This is achieved

by optimisation of a joint cost function [17] for label (seg-

mentation) and depth (reconstruction):

E(l, d) = λdataEdata(d) + λcontrastEcontrast(l)+

λsmoothEsmooth(l, d) + λcolorEcolor(l) (1)

where, d is the depth at each pixel, l is the layer label for

multiple objects and the cost function terms are defined

in section 3.3.2. This is solved subject to a geodesic star-

convexity constraint on the labels l. A label l is star convex

with respect to center ci, if every point p ∈ l is visible to a

star center ci in set C = {c1, ..., cn} via l in the image x,

where n is the number of star centers[19]. This is expressed

as an energy cost:

E⋆(l|x,C ) =
∑

p∈R

∑

q∈Γc,p

E⋆
p,q(lp, lq) (2)

∀q ∈ Γc,p, E
⋆
p,q =

{

∞ if lp 6= lq
0 otherwise

(3)

where ∀p ∈ R : p ∈ l ⇔ lp = 1 and Γc,p is the geodesic

path joining p to any star center in set C given by:

Γc,p = arg min
Γ∈Pc,p

L (Γ) (4)

Figure 7. Geodesic star convexity: A region R with star centers C

connected with geodesic distance Γc,p. Segmentation results with

and without geodesic star convexity based optimization are shown

on the right for the Juggler dataset.

where Pc,p denotes the set of all discrete paths between

c and p and L (Γ) is the length of discrete geodesic path

as defined in [19]. In our case we define the temporal

sparse feature correspondences as star centers, hence the

segmentation will include all the points which are visible

to these sparse features via geodesic distances in the region

R, thereby employing the shape constraint. Since the star

centers are selected automatically, the method is unsuper-

vised. The energy in the Eq. 1 is minimized as follows:

min(l,d)
s.t.

E(l, d)
lǫS⋆(C )

⇔ min
(l,d)

E(l, d) + E⋆(l|x,C ) (5)

where S⋆(C ) is the set of all shapes which lie within the

geodesic distances wrt to the centers in C . Optimization

of eq. 5, subject to each pixel p in the region R being at

a geodesic distance from the star centers in the set C , is

performed using the α-expansion algorithm for a pixel p by

iterating through the set of labels in L × D [7]. Graph-cut

is used to obtain a local optimum [6].

3.3.2 Energy cost function

For completeness in this section we define each of the terms

in eq. 1, these are based on previous terms used for joint

optimisation over depth for each pixel introduced in [32],

with modification of the color matching term to improve

robustness and extension to multiple labels.

Matching term: The data term for matching between views

is specified as a measure of photo-consistency as follows:

Edata(d) =
∑

p∈P
edata(p, dp) =

{

M(p, q) =
∑

i∈Ok
m(p, q), if dp 6= U

MU , if dp = U
(6)

where P is the 4-connected neighbourhood of pixel p, MU

is the fixed cost of labelling a pixel unknown and q denotes

the projection of the hypothesised point P in an auxiliary

camera where P is a 3D point along the optical ray passing

through pixel p located at a distance dp from the reference

camera. Ok is the set of k most photo-consistent pairs with

reference camera and m(p, q) is inspired from [22].

Contrast term: The contrast term is as follows:

Econtrast(l) =
∑

p,q∈N

econtrast(p, q, lp, lq) (7)
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Figure 8. Comparison of segmentation on benchmark static

datasets using geodesic star-convexity.

Figure 9. Comparison of segmentation with Kowdle.

econtrast(p, q, lp, lq) =

{

0, if (lp = lq)
1

1+ǫ
(ǫ+ exp−C(p,q)), otherwise

(8)

Smoothness term: This term is defined as:

Esmooth(l, d) =
∑

(p,q)∈N

esmooth(lp, dp, lq, dq) (9)

esmooth(lp, dp, lq, dq) =
{

min(|dp − dq| , dmax), if lp = lq and dp, dq 6= U

0, if lp = lq and dp, dq = U

dmax, otherwise (10)

dmax is set to 50 times the size of the depth sampling step

defined in Section 3.3.1 for all datasets.

Color term: This term is computed using the negative log

likelihood [6] of the color models learned from the fore-

ground and background markers. The star centers obtained

from the sparse 3D features are foreground markers and for

background markers we consider the region outside the pro-

jected initial coarse reconstruction for each view. The color

models use GMMs with 5 components each for FG/BG

mixed with uniform color models [9] as the markers are

sparse.
Ecolor(l) =

∑

p∈P

−logP (Ip|lp) (11)

where P (Ip|lp = li) denotes the probability at pixel p in the

reference image belonging to layer li.

λdata λc λsmooth λcolor

Magician/Dance2 0.4 5.0 .0005 0.6

Juggler 0.5 5.0 .0005 0.4

Odzemok/Dance1/Office 0.4 3.0 .001 0.6
Table 2. Parameters used for all datasets: λc represents λcontrast

4. Results and Performance Evaluation

The proposed system is tested on publicly available

multi-view research datasets of indoor and outdoor scenes:

Figure 10. Segmentation results for dynamic scenes (Error against

ground-truth is highlighted in red).

static data for segmentation comparison Couch, Chair and

Car[27]; and dynamic data for full evaluation Dance2[1],

Office1, Dance11, Odzemok1, Magician and Juggler [3].

Dance1, Dance2 and Office are captured from 8 static cam-

eras, Odzemok from 6 static and 2 moving cameras and Ma-

gician and Juggler from 6 moving handheld cameras. More

information is available on the website2.

4.1. Multiview segmentation evaluation

Segmentation is evaluated against the state-of-the-art

methods for multi-view segmentation Kowdle[27] and

Djelouah[11] for static scenes and joint segmentation recon-

struction per frame Mustafa[32] and using temporal infor-

mation Guillemaut[18] for both static and dynamic scenes.

For static multi-view data the segmentation is initialised as

detailed in Section 3.1 followed by refinement using the

constrained optimisation Section 3.3. For dynamic scenes

the full pipeline with temporal coherence is used as detailed

in 3. Ground-truth is obtained by manually labelling the

foreground for Office, Dance1 and Odzemok dataset, and

for other datasets ground-truth is available online. We ini-

tialize all approaches by the same proposed initial coarse

reconstruction for fair comparison.

To evaluate the segmentation we measure completeness as

the ratio of intersection to union with ground-truth[27].

Comparisons are shown in Table 1 and Figure 8 and 9 for

static benchmark datasets and in Table 3 and Figure 10 and

11 for dynamic scenes. Results for multi-view segmentation

of static scenes are more accurate than Djelouah, Mustafa

and Guillemaut and comparable to Kowdle with improved

segmentation of some detail such as the back of the chair.

For dynamic scenes the geodesic star convexity based op-

timization together with temporal consistency gives im-

proved segmentation of fine detail such as the legs of the

table in the Office dataset and limbs of the person in the

Juggler, Magician and Dance2 datasets in Figure 10 and

11. This overcomes limitations of previous multi-view per-

frame segmentation.

1http://cvssp.org/data/
2http://cvssp.org/projects/4d/4DRecon/
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Figure 11. Segmentation results for dynamic scenes on sequence of frames (Error against ground-truth is highlighted in red).

Figure 12. Reconstruction result mesh comparison

Dataset Guillemaut Mustafa Proposed

Magician 68.0± 0.7 88.7± 0.5 91.2 ± 0.2

Juggler 84.6± 0.6 87.9± 0.6 93.3 ± 0.2

Odzemok 90.1± 0.3 89.9± 0.3 91.8 ± 0.2

Dance1 99.2± 0.5 99.4± 0.2 99.5 ± 0.2

Office 99.3± 0.4 99.0± 0.3 99.4 ± 0.2

Dance2 98.6± 0.3 99.0± 0.2 99.0 ± 0.2

Table 3. Dynamic scene segmentation completeness in %

4.2. Reconstruction evaluation
Reconstruction results obtained using the proposed

method with parameters defined in Table 2 are compared

against Mustafa[32], Guillemaut[18], and Furukawa [14]

for dynamic sequences. Furukawa [14] is a per-frame multi-

view wide-baseline stereo approach which ranks highly on

the middlebury benchmark [39] but does not refine the seg-

mentation.Figure 12 and 13 present qualitative and quan-

titative comparison of our method with the state-of-the-art

approaches. Comparison of reconstructions demonstrates

that the proposed method gives consistently more complete

and accurate models. The colour maps highlight the quanti-

tative differences in reconstruction. As far as we are aware

no ground-truth data exist for dynamic scene reconstruc-
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Dataset Number of Views Kowdle Djelouah Guillemaut Mustafa Proposed

Couch 11 99.6± 0.1 99.0± 0.2 97.0± 0.3 98.5± 0.2 99.7 ± 0.3

Chair 18 99.2 ± 0.4 98.6± 0.3 97.9± 0.5 98.0± 0.5 99.1± 0.3
Car 44 98.0± 0.7 97.0± 0.8 95.0± 0.7 97.6± 0.3 98.6 ± 0.4

Table 1. Static segmentation completeness comparison with existing methods on benchmark datasets

Figure 13. Reconstruction result comparison with reference mesh and proposed for Dance2 benchmark dataset

Figure 14. Complete scene reconstruction with 4D mesh sequence.

Dataset Furukawa Guillemaut Mustafa Ours

Dance1 326 s 493 s 295 s 254 s

Magician 311 s 608 s 377 s 325 s

Odzemok 381 s 598 s 394 s 363 s

Office 339 s 533 s 347 s 291 s

Juggler 394 s 634 s 411 s 378 s

Dance2 312 s 432 s 323 s 278 s

Table 4. Comparison of computational efficiency for dynamic

datasets (time in seconds (s))

tion from real multi-view video. In Figure 13 we present

a comparison with the reference mesh available with the

Dance2 dataset reconstructed using a visual-hull approach.

This comparison demonstrates improved reconstruction of

fine detail with the proposed technique.

In contrast to all previous approaches the proposed method

gives temporally coherent 4D model reconstructions with

dense surface correspondence over time. The introduction

of temporal coherence constrains the reconstruction in re-

gions which are ambiguous on a particular frame such as

the right leg of the juggler in Figure 12 resulting in more

complete shape. Figure 14 shows three complete scene re-

constructions with 4D models of multiple objects. The Jug-

gler and Magician sequences are reconstructed from mov-

ing hand-held cameras.

Computation times for the proposed approach vs other

methods are presented in Table 4. The proposed approach

to reconstruct temporally coherent 4D models is compa-

rable in computation time to per-frame multiple view re-

construction and gives a ∼50% reduction in computation

cost compared to previous joint segmentation and recon-

struction approaches using a known background. This ef-

ficiency is achieved through improved per-frame initialisa-

tion based on temporal propagation and the introduction of

the geodesic star constraint in joint optimisation. Further

results can be found in the supplementary material.

5. Conclusion
This paper present a framework for temporally coher-

ent 4D model reconstruction of dynamic scenes from a set
of wide-baseline moving cameras. The approach gives a
complete model of all static and dynamic non-rigid ob-
jects in the scene. Temporal coherence for dynamic objects
addresses limitations of previous per-frame reconstruction
giving improved reconstruction and segmentation together
with dense temporal surface correspondence for dynamic
objects. A sparse-to-dense approach is introduced to es-
tablish temporal correspondence for non-rigid objects us-
ing robust sparse feature matching to initialise dense opti-
cal flow providing an initial segmentation and reconstruc-
tion. Joint refinement of object reconstruction and segmen-
tation is then performed using a multiple view optimisation
with a novel geodesic star convexity constraint that gives
improved shape estimation and is computationally efficient.
Comparison against state-of-the-art techniques for multiple
view segmentation and reconstruction demonstrates signifi-
cant improvement in performance for complex scenes. The
approach enables reconstruction of 4D models for complex
scenes which has not been demonstrated previously.
Limitations: As with previous dynamic scene reconstruc-
tion methods the proposed approach has a number of lim-
itations: persistent ambiguities in appearance between ob-
jects will degrade the improvement achieved with temporal
coherence; scenes with a large number of inter-occluding
dynamic objects will degrade performance; the approach
requires sufficient wide-baseline views to cover the scene.
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