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Abstract

Recent work has shown that optical flow estimation can

be formulated as a supervised learning task and can be suc-

cessfully solved with convolutional networks. Training of

the so-called FlowNet was enabled by a large synthetically

generated dataset. The present paper extends the concept

of optical flow estimation via convolutional networks to dis-

parity and scene flow estimation. To this end, we propose

three synthetic stereo video datasets with sufficient realism,

variation, and size to successfully train large networks. Our

datasets are the first large-scale datasets to enable training

and evaluation of scene flow methods. Besides the datasets,

we present a convolutional network for real-time disparity

estimation that provides state-of-the-art results. By combin-

ing a flow and disparity estimation network and training it

jointly, we demonstrate the first scene flow estimation with

a convolutional network.

1. Introduction

Estimating scene flow means providing the depth and 3D

motion vectors of all visible points in a stereo video. It is

the “royal league” task when it comes to reconstruction and

motion estimation and provides an important basis for nu-

merous higher-level challenges such as advanced driver as-

sistance and autonomous systems. Research over the last

decades has focused on its subtasks, namely disparity esti-

mation and optical flow estimation, with considerable suc-

cess. The full scene flow problem has not been explored

to the same extent. While partial scene flow can be simply

assembled from the subtask results, it is expected that the

joint estimation of all components would be advantageous
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Figure 1. Our datasets provide over 35000 stereo frames with

dense ground truth for optical flow, disparity and disparity change,

as well as other data such as object segmentation.

with regard to both efficiency and accuracy. One reason for

scene flow being less explored than its subtasks seems to be

a shortage of fully annotated ground truth data.

The availability of such data has become even more im-

portant in the era of convolutional networks. Dosovitskiy

et al. [4] showed that optical flow estimation can be posed

as a supervised learning problem and can be solved with a

large network. For training their network, they created a

simple synthetic 2D dataset of flying chairs, which proved

to be sufficient to predict accurate optical flow in general

videos. These results suggest that also disparities and scene

flow can be estimated via a convolutional network, ideally

jointly, efficiently, and in real-time. What is missing to im-

plement this idea is a large dataset with sufficient realism

and variability to train such a network and to evaluate its

performance.
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Dataset MPI Sintel [2] KITTI Benchmark Suite [16] SUN3D[26] NYU2[21] Ours

2012 2015 FlyingThings3D Monkaa Driving

#Training frames 1064 194 200† 2.5M 1449 21818 8591 4392
#Test frames 564 195 200† — — 4248 — —

#Training scenes 25 194 200 415 464 2247 8 1
Resolution 1024×436 1226×370 1242×375 640×480 640×480 960×540 960×540 960×540
Disparity/Depth ✓ sparse sparse ✓ ✓ ✓ ✓ ✓

Disparity change ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Optical flow ✓ (sparse) (sparse) ✗ ✗ ✓ ✓ ✓

Segmentation ✓ ✗ ✗ (✓) ✓ ✓ ✓ ✓

Motion boundaries ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Naturalism (✓) ✓ ✓ ✓ ✓ ✗ ✗ (✓)

Table 1. Comparison of available datasets: our new collection offers more annotated data and greater data variety than any existing choice.

All our data has fully contiguous, dense, accurate ground truth. †Note that in KITTI 2015, a scene is a sequence of 21 stereo pairs, but

groundtruth is only provided for a single frame.

In this paper, we present a collection of three such

datasets, made using a customized version of the open

source 3D creation suite Blender3. Our effort is similar

in spirit to the Sintel benchmark [2]. In contrast to Sintel,

our dataset is large enough to facilitate training of convolu-

tional networks, and it provides ground truth for scene flow.

In particular, it includes stereo color images and ground

truth for bidirectional disparity, bidirectional optical flow

and disparity change, motion boundaries, and object seg-

mentation. Moreover, the full camera calibration and 3D

point positions are available, i.e. our dataset also covers

RGBD data. The datasets are freely available online4.

We cannot exploit the full potential of this dataset in a

single paper, but we already demonstrate various usage ex-

amples in conjunction with convolutional network training.

We train a network for disparity estimation, which yields

competitive performance also on previous benchmarks, es-

pecially among those methods that run in real-time. Finally,

we also present a network for scene flow estimation and

provide the first quantitative numbers on full scene flow on

a sufficiently sized test set.

2. Related work

Datasets. The first significant efforts to create standard

datasets were the Middlebury datasets for stereo dispar-

ity estimation [20] and optical flow estimation [1]. While

the stereo dataset consists of real scenes, the optical flow

dataset is a mixture of real scenes and rendered scenes.

Both datasets are very small in today’s terms. Especially

the small test sets have led to heavy manual overfitting. An

advantage of the stereo dataset is the availability of relevant

real scenes, especially in the latest high-resolution version

from 2014 [19].

MPI Sintel [2] is an entirely synthetic dataset derived

from a short open source animated 3D movie. It provides

3https://www.blender.org/
4http://lmb.informatik.uni-freiburg.de/resources/datasets/

dense ground truth for optical flow. Since very recently, a

beta testing version with disparities is available for training.

With 1064 training frames, the Sintel dataset is the largest

dataset currently available. It contains sufficiently realis-

tic scenes including natural image degradations such as fog

and motion blur. The authors put much effort into the cor-

rectness of the ground truth for all frames and pixels. This

makes the dataset a very reliable test set for comparison of

methods. However, for training convolutional networks, the

dataset is still too small.

The KITTI dataset was produced in 2012 [8] and ex-

tended in 2015 [16]. It contains stereo videos of road scenes

from a calibrated pair of cameras mounted on a car. Ground

truth for optical flow and disparity is obtained from a 3D

laser scanner combined with the egomotion data of the car.

While the dataset contains real data, the acquisition method

restricts the ground truth to static parts of the scene. More-

over, the laser only provides sparse data up to a certain dis-

tance and height. For the most recent version, 3D models

of cars were fitted to the point clouds to obtain a denser la-

beling and to also include moving objects. However, the

ground truth in these areas is still an approximation.

Dosovitskiy et al. [4] trained convolutional networks for

optical flow estimation on a synthetic dataset of moving 2D

chair images superimposed on natural background images.

This dataset is large but limited to single-view optical flow

and does not contain any 3D motions.

Both the latest Sintel dataset and the KITTI dataset can

be used to estimate scene flow with some restrictions. In

occluded areas (visible in one frame but not in the other),

ground truth for scene flow is not available. On KITTI, the

most interesting component of scene flow, namely the 3D

motion of foreground points, is missing or approximated via

fitted CAD models of cars. A comprehensive overview of

the most important comparable datasets and their features is

given in Table 1.

Convolutional networks. Convolutional networks [15]

have proven very successful for a variety of recognition
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tasks, such as image classification [14]. Recent applica-

tions of convolutional networks include also depth estima-

tion from single images [6], stereo matching [27], and opti-

cal flow estimation [4].

The FlowNet of Dosovitskiy et al. [4] is most related to

our work. It uses an encoder-decoder architecture with ad-

ditional crosslinks between contracting and expanding net-

work parts, where the encoder computes abstract features

from receptive fields of increasing size, and the decoder

reestablishes the original resolution via an expanding up-

convolutional architecture [5]. We adapt this approach for

disparity estimation.

The disparity estimation method in Žbontar et al. [27]

uses a Siamese network for computing matching distances

between image patches. To finally estimate the disparity,

the authors then perform cross-based cost aggregation [28]

and semi-global matching (SGM) [10]. In contrast to our

work, Žbontar et al. have no end-to-end training of a convo-

lutional network on the disparity estimation task, with cor-

responding consequences for computational efficiency and

elegance.

Scene flow. While there are hundreds of papers on dis-

parity estimation and optical flow estimation, there are only

a few on scene flow. None of them uses a learning approach.

Scene flow estimation was popularized for the first time

by the work of Vedula et al. [22] who analyzed different

possible problem settings. Later works were dominated by

variational methods. Huguet and Devernay [11] formulated

scene flow estimation in a joint variational approach. Wedel

et al. [25] followed the variational framework but decoupled

the disparity estimation for larger efficiency and accuracy.

Vogel et al. [24] combined the task of scene flow estimation

with superpixel segmentation using a piecewise rigid model

for regularization. Quiroga et al. [17] extended the regular-

izer further to a smooth field of rigid motion. Like Wedel

et al. [25] they decoupled the disparity estimation and re-

placed it by the depth values of RGBD videos.

The fastest method in KITTI’s scene flow top 7 is from

Cech et al. [3] with a runtime of 2.4 seconds. The method

employs a seed growing algorithm for simultaneous dispar-

ity and optical flow estimation.

3. Definition of scene flow

Optical flow is a projection of the world’s 3D motion

onto the image plane. Commonly, scene flow is consid-

ered as the underlying 3D motion field that can be computed

from stereo videos or RGBD videos. Assume two succes-

sive time frames t and t+1 of a stereo pair, yielding four

images (It
L

, It
R

, It+1

L
, It+1

R
). Scene flow provides for each

visible point in one of these four images the point’s 3D po-

sition and its 3D motion vector [23].

These 3D quantities can be computed only in the case

of known camera intrinsics and extrinsics. A camera-
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Figure 2. Given stereo images at times t−1, t and t+1, the arrows

indicate disparity and flow relations between them. The red com-

ponents are commonly used to estimate scene flow. In our datasets

we provide all relations including the blue arrows.

independent definition of scene flow is obtained by the sep-

arate components optical flow, the disparity, and the dispar-

ity change [11], cf. Fig. 2. This representation is complete

in the sense that the visible 3D points and their 3D motion

vectors can be computed from the components if the camera

parameters are known.

Given the disparities at t and t+1, the disparity change

is almost redundant. Thus, in the KITTI 2015 scene flow

benchmark [16], only optical flow and disparities are evalu-

ated. In this case, scene flow can be reconstructed only for

surface points that are visible in both the left and the right

frame. Especially in the context of convolutional networks,

it is particularly interesting to estimate also depth and mo-

tion in partially occluded areas. Moreover, reconstruction

of the 3D motions from flow and disparities is more sensi-

tive to noise, because a small error in the optical flow can

lead to a large error in the 3D motion vector.

4. Three rendered datasets

We created a synthetic dataset suite that consists of three

subsets and provides the complete ground truth scene flow

(incl. disparity change) in forward and backward direction.

To this end, we used the open source 3D creation suite

Blender to animate a large number of objects with complex

motions and to render the results into tens of thousands of

frames. We modified the pipeline of Blender’s internal ren-

der engine to produce – besides stereo RGB images – three

additional data passes per frame and view. These provide

3D positions of all visible surface points, as well as their

future and past 3D positions. The pixelwise difference be-

tween two such data passes for a given camera view results

in an ”image” of 3D motion vectors – the complete scene

flow ground truth as seen by this camera. Note that the in-

formation is complete even in occluded regions since the

render engine always has full knowledge about all (visible

and invisible) scene points.

All non-opaque materials – notably, most car windows

– were rendered as fully transparent to avoid consistency

problems in the 3D data. To prevent layer blending artifacts,
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we rendered all non-RGB data without antialiasing.

Given the intrinsic camera parameters (focal length,

principal point) and the render settings (image size, virtual

sensor size and format), we project the 3D motion vector

of each pixel into a 2D pixel motion vector coplanar to the

imaging plane: the optical flow. Depth is directly retrieved

from a pixel’s 3D position and converted to disparity using

the known configuration of the virtual stereo rig. We com-

pute the disparity change from the depth component of the

3D motion vector. Examples are shown in Fig. 1,3,8.

In addition, we rendered object segmentation masks in

which each pixel’s value corresponds to the unique index

of its object. Objects can consist of multiple subparts, of

which each can have a separate material (with own appear-

ance properties such as textures). We make use of this and

render additional segmentation masks, where each pixel en-

codes its material’s index. The recently available beta ver-

sion of Sintel also includes this data.

Similar to the Sintel dataset, we also provide object and

material segmentations, as well as motion boundaries which

highlight pixels between at least two moving objects, if the

following holds: the difference in motion between the ob-

jects is at least 1.5 pixels, and the boundary segment covers

an area of at least 10 pixels. The thresholds were chosen to

match the results of Sintel’s segmentation.

For all frames and views, we provide the full camera

intrinsics and extrinsics matrices. Those can be used for

structure from motion or other tasks that require camera

tracking. We rendered all image data using a virtual focal

length of 35mm on a 32mm wide simulated sensor. For the

Driving dataset we added a wide-angle version using a fo-

cal length of 15mm which is visually closer to the existing

KITTI datasets.

Like the Sintel dataset, our datasets also include two dis-

tinct versions of every image: the clean pass shows col-

ors, textures and scene lighting but no image degradations,

while the final pass additionally includes postprocessing ef-

fects such as simulated depth-of-field blur, motion blur, sun-

light glare, and gamma curve manipulation.

To handle the massive amount of data (2.5TB), we com-

pressed all RGB image data to the lossy but high-quality

WebP5 format (we provide both WebP and lossless PNG

versions). Non-RGB data was compressed losslessly.

4.1. FlyingThings3D

The main part of the new data collection consists of ev-

eryday objects flying along randomized 3D trajectories. We

generated about 25000 stereo frames with ground truth data.

Instead of focusing on a particular task (like KITTI) or en-

forcing strict naturalism (like Sintel), we rely on random-

ness and a large pool of rendering assets to generate orders

of magnitude more data than any existing option, without

5https://developers.google.com/speed/webp/

Figure 3. Example scenes from our FlyingThings3D dataset.

3rd row: Optical flow images, 4th row: Disparity images,

5th row: Disparity change images. Best viewed on a color screen

in high resolution (data images normalized for display).

running a risk of repetition or saturation. Data generation is

fast, fully automatic, and yields dense accurate ground truth

for the complete scene flow task. The motivation for creat-

ing this dataset is to facilitate training of large convolutional

networks, which should benefit from the large variety.

The base of each scene is a large textured ground plane.

We generated 200 static background objects with shapes

that were randomly chosen from cuboids and deformed

cylinders. Each object was randomly scaled, rotated, tex-

tured and then placed on the ground plane.

To populate the scene, we downloaded 35927 detailed

3D models from Stanford’s ShapeNet6 [18] database. From

these we assembled a training set of 32872 models and a

testing set of size 3055 (model categories are disjoint).

We sampled between 5 and 20 random objects from this

object collection and randomly textured every material of

every object. The camera and all ShapeNet objects were

translated and rotated along linear 3D trajectories modeled

such that the camera can see the objects, but with random-

ized displacements.

The texture collection was a combination of procedu-

ral images created using ImageMagick7, landscape and

cityscape photographs from Flickr8, and texture-style pho-

6http://shapenet.cs.stanford.edu/
7http://www.imagemagick.org/script/index.php
8https://www.flickr.com/ Non-commercial public license. We used the

code framework by Hays and Efros [9]
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KITTI 2015 Driving (ours)

Figure 4. Example frames from the 2015 version of the KITTI

benchmark suite [16] and our new Driving dataset. Both show

many static and moving cars from various realistic viewpoints, thin

objects, complex shadows, textured ground, and challenging spec-

ular reflections.

tographs from Image*After9. Like the 3D models, also the

textures were split into disjoint training and testing parts.

For the final pass images, the scenes vary in presence and

intensity of motion blur and defocus blur.

4.2. Monkaa

The second part of our dataset is made from the open

source Blender assets of the animated short film Monkaa10.

In this regard, it resembles the MPI Sintel dataset. Monkaa

contains nonrigid and softly articulated motion as well as

visually challenging fur. Beyond that, there are few visual

similarities to Sintel; the Monkaa movie does not strive for

the same amount of naturalism.

We selected a number of suitable movie scenes and addi-

tionally created entirely new scenes using parts and pieces

from Monkaa. To increase the amount of data, we rendered

our selfmade scenes in multiple versions, each with random

incremental changes to the camera’s rotation and motion

path.

4.3. Driving

The Driving scene is a mostly naturalistic, dynamic

street scene from the viewpoint of a driving car, made to

resemble the KITTI datasets. It uses car models from the

same pool as the FlyingThings3D dataset and additionally

employs highly detailed tree models from 3D Warehouse11

and simple street lights. In Fig. 4 we show selected frames

from Driving and lookalike frames from KITTI 2015.

Our stereo baseline is set to 1 Blender unit, which to-

gether with a typical car model width of roughly 2 units is

comparable to KITTI’s setting (54cm baseline, 186cm car

width [8]).

9http://www.imageafter.com/textures.php
10https://cloud.blender.org/bi/monkaa/
11https://3dwarehouse.sketchup.com/

5. Networks

To prove the applicability of our new synthetic datasets

to scene flow estimation, we use them to train convolu-

tional networks. In general, we follow the architecture of

the FlowNet [4]: each network consists of a contractive part

and an expanding part with long-range links between them.

The contracting part contains convolutional layers with oc-

casional strides of 2, resulting in a total downsampling fac-

tor of 64. This allows the network to estimate large dis-

placements. The expanding part of the network then gradu-

ally and nonlinearly upsamples the feature maps, taking into

account also the features from the contractive part. This is

done by a series of up-convolutional and convolutional lay-

ers. Note that there is no data bottleneck in the network,

as information can also pass through the long-range con-

nections between contracting and expanding layers. For an

illustration of the overall architecture we refer to the figures

in Dosovitskiy et al. [4].

For disparity estimation we propose the basic architec-

ture DispNet described in Table 2. We found that additional

convolutions in the expanding part yield smoother disparity

maps than the FlowNet architecture (see Fig. 6).

We also tested an architecture that makes use of an ex-

plicit correlation layer [4], which we call DispNetCorr. In

this network, the two images are processed separately up

to layer conv2 and the resulting features are then correlated

horizontally. We consider a maximum displacement of 40
pixels, which corresponds to 160 pixels in the input image.

Compared to the 2D correlation in Dosovitskiy et al. [4],

1D correlation is computationally much cheaper and allows

us to cover larger displacements with finer sampling than in

the FlowNet, which used a stride of 2 for the correlation.

We also train a FlowNet and a joint SceneFlowNet for

scene flow estimation by combining and fine-tuning pre-

trained networks for disparity and flow. This is illustrated

in Figure 5. A FlowNet predicts flow between the left and

right image and two DispNets predict the disparities at t and

t+1. The networks in this case do not contain correlation

layers and convolutions between up-convolutions. We then

fine-tune the large combined network to estimate flow, dis-

parity, and additionally disparity change.

Training. All networks are trained end-to-end, given the

images as input and the ground truth (optical flow, disparity,

or scene flow) as output. We employ a custom version of

Caffe [12] and make use of the Adam optimizer [13]. We

set β1 = 0.9 and β2 = 0.999 as in Kingma et al. [13]. As

learning rate we used λ = 0.0001 and divided it by 2 every

200k iterations starting from iteration 400k.

Due to the depth of the networks and the direct con-

nections between contracting and expanding layers (see Ta-

ble 2), lower layers get mixed gradients if all six losses are

active. We found that using a loss weight schedule can be

beneficial: we start training with a loss weight of 1 assigned
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Method KITTI 2012 KITTI 2015 Driving FlyingThings3D Monkaa Sintel Time

train test train test (D1) clean clean test clean clean train

DispNet 2.38 — 2.19 — 15.62 2.02 5.99 5.38 0.06s

DispNetCorr1D 1.75 — 1.59 — 16.12 1.68 5.78 5.66 0.06s

DispNet-K 1.77 — (0.77) — 19.67 7.14 14.09 21.29 0.06s

DispNetCorr1D-K 1.48 1.0† (0.68) 4.34% 20.40 7.46 14.93 21.88 0.06s

SGM 10.06 — 7.21 10.86% 40.19 8.70 20.16 19.62 1.1s

MC-CNN-fst — — — 4.62% 19.58 4.09 6.71 11.94 0.8s

MC-CNN-acrt — 0.9 — 3.89% — — — — 67s

Table 3. Disparity errors. All measures are endpoint errors, except for the D1-all measure (see the text for explanation) for KITTI 2015

test. †This result is from a network fine-tuned on KITTI 2012 train.

Name Kernel Str. Ch I/O InpRes OutRes Input

conv1 7×7 2 6/64 768×384 384×192 images

conv2 5×5 2 64/128 384×192 192×96 conv1

conv3a 5×5 2 128/256 192×96 96×48 conv2

conv3b 3×3 1 256/256 96×48 96×48 conv3a

conv4a 3×3 2 256/512 96×48 48×24 conv3b

conv4b 3×3 1 512/512 48×24 48×24 conv4a

conv5a 3×3 2 512/512 48×24 24×12 conv4b

conv5b 3×3 1 512/512 24×12 24×12 conv5a

conv6a 3×3 2 512/1024 24×12 12×6 conv5b

conv6b 3×3 1 1024/1024 12×6 12×6 conv6a

pr6+loss6 3×3 1 1024/1 12×6 12×6 conv6b

upconv5 4×4 2 1024/512 12×6 24×12 conv6b

iconv5 3×3 1 1025/512 24×12 24×12 upconv5+pr6+conv5b

pr5+loss5 3×3 1 512/1 24×12 24×12 iconv5

upconv4 4×4 2 512/256 24×12 48×24 iconv5

iconv4 3×3 1 769/256 48×24 48×24 upconv4+pr5+conv4b

pr4+loss4 3×3 1 256/1 48×24 48×24 iconv4

upconv3 4×4 2 256/128 48×24 96×48 iconv4

iconv3 3×3 1 385/128 96×48 96×48 upconv3+pr4+conv3b

pr3+loss3 3×3 1 128/1 96×48 96×48 iconv3

upconv2 4×4 2 128/64 96×48 192×96 iconv3

iconv2 3×3 1 193/64 192×96 192×96 upconv2+pr3+conv2

pr2+loss2 3×3 1 64/1 192×96 192×96 iconv2

upconv1 4×4 2 64/32 192×96 384×192 iconv2

iconv1 3×3 1 97/32 384×192 384×192 upconv1+pr2+conv1

pr1+loss1 3×3 1 32/1 384×192 384×192 iconv1

Table 2. Specification of DispNet architecture. The contracting

part consists of convolutions conv1 to conv6b. In the expanding

part, upconvolutions (upconvN), convolutions (iconvN, prN) and

loss layers are alternating. Features from lower layers are concate-

nated with higher layer features. The predicted disparity image is

output by pr1.

to the lowest resolution loss loss6 and a weight of 0 for

all other losses (that is, all other losses are switched off).

During training, we progressively increase the weights of

losses with higher resolution and deactivate the low resolu-

tion losses. This enables the network to first learn a coarse

representation and then proceed with finer resolutions with-

out losses constraining intermediate features.

Data augmentation. Despite the large training set, we

chose to perform data augmentation to introduce more di-

versity into the training data at almost no extra cost12. We

perform spatial (rotation, translation, cropping, scaling) and

chromatic transformations (color, contrast, brightness), and

we use the same transformation for all 2 or 4 input images.

12The computational bottleneck is in reading the training samples from

disk, whereas data augmentation is performed on the fly.

}
FlowNet

DispNet

DispNet

Figure 5. Interleaving the weights of a FlowNet (green) and two

DispNets (red and blue) to a SceneFlowNet. For every layer, the

filter masks are created by taking the weights of one network (left)

and setting the weights of the other networks to zero, respectively

(middle). The outputs from each network are then concatenated to

yield one big network with three times the number of inputs and

outputs (right).

For disparity, any rotation or vertical shift would break

the epipolar constraint, and horizontal shifts between stereo

views could lead to negative disparities.

6. Experiments

Evaluation of existing methods. We evaluated several

existing disparity methods on our new dataset. Namely,

for disparity we evaluate the state-of-the-art method of

Žbontar and LeCun [27] and the popular Semi-Global

Matching [10] approach with a block matching implemen-

tation from OpenCV13. Results are shown together with

those of our DispNets in Table 3. We use the endpoint error

(EPE) as error measure in most cases, with the only excep-

tion of KITTI 2015 test set where only the D1-all error mea-

sure is reported by the KITTI evaluation server (percentage

of pixels with estimation error > 3px and > 5% of the true

disparity).

DispNet. We train DispNets on the FlyingThings3D

dataset and then optionally fine-tune on KITTI. The fine-

13http://docs.opencv.org/2.4/modules/calib3d/doc/camera calibration

and 3d reconstruction.html#stereosgbm
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Figure 6. Close-up of a predicted disparity map without (left) and

with (right) convolutions between up-convolutions. Note how the

prediction on the right is much smoother.

tuned networks are denoted by a ‘-K’ suffix in the table. At

submission time, DispNetCorr fine-tuned on KITTI 2015

was second best in the KITTI 2015 top results table, slightly

behind MC-CNN-acrt [27] but being roughly 1000 times

faster. On KITTI resolution it runs at 15 frames per second

on an Nvidia GTX Titan X GPU. For foreground pixels (be-

longing to car models) our error is roughly half that of [27].

The network achieves an error that is ∼30% lower than the

best real-time method reported in the table, Multi-Block-

Matching [7]. Also on the other datasets DispNet performs

well and outperforms both SGM and MC-CNN.

While fine-tuning on KITTI improves the results on this

dataset, it increases errors on other datasets. We explain this

significant performance drop by the fact that KITTI 2015

only contains relatively small disparities, up to roughly 150
pixels, while the other datasets contain some disparities of

500 pixels and more. When fine-tuned on KITTI, the net-

work seems to lose its ability to predict large displacements,

hence making huge errors on these.

We introduced several modifications to the network ar-

chitecture compared to the FlowNet [4]. First, we added

convolutional layers between up-convolutional layers in the

expanding part of the network. As expected, this allows the

network to better regularize the disparity map and predict

smoother results, as illustrated in Fig. 6. The result is a

∼15% relative EPE decrease on KITTI 2015.

Second, we trained a version of our network with a 1D

correlation layer. In contrast to Dosovitskiy et al. [4], we

find that networks with correlation in many cases improve

the performance (see Table 3). A likely plausible explana-

tion is that the 1D nature of the disparity estimation prob-

lem allows us to compute correlations at a finer grid than

the FlowNet.

SceneFlowNet. As mentioned in Sec. 5, to construct a

SceneFlowNet, we first train a FlowNet and a DispNet, then

combine them as described in Fig. 5 and train the combina-

tion. Table 4 shows the results of the initial networks and

the SceneFlowNet. We observe that solving the joint task

yields better results than solving the individual tasks. The

final results on our datasets are given in Table 5 and a qual-

Flow Disparity Disp. Ch

FlowNet 13.78
DispNet 2.41
FlowNet +500k 12.18
DispNet +500k 2.37
SceneFlowNet +500k 10.99 2.21 0.79

Table 4. Performance of solving the single tasks compared to solv-

ing the joint scene flow task, trained and tested on FlyingTh-

ings3D. FlowNet was initially trained for 1.2M and DispNet for

1.4M iterations, +500k denotes training for 500k more iterations.

The SceneFlowNet is initialized with the FlowNet and DispNet.

Solving the joint task yields better results in each individual task.

SceneFlowNet Driving FlyingThings3D Monkaa

Flow 23.53 10.99 6.54
Disparity 15.35 2.21 6.59
Disp. change 16.34 0.80 0.78

Table 5. Endpoint errors for the evaluation of our SceneFlowNet

on the presented datasets. The Driving dataset contains the largest

disparities, flows and disparity changes, resulting in large errors.

The FlyingThings3D dataset contains large flows, while Monkaa

contains smaller flows and larger disparities.

itative example from FlyingThings3D is shown in Fig. 8.

Although the FlyingThings3D dataset is more sophisti-

cated than the FlyingChairs dataset, training on this dataset

did not yield a FlowNet that performs better than training

on FlyingChairs. Notwithstanding the fact that FlyingTh-

ings3D, in contrast to FlyingChairs, offers the possibility to

train networks for disparity and scene flow estimation, we

are investigating how 3D datasets can also improve the per-

formance of FlowNet.

7. Conclusion

We have introduced a synthetic dataset containing over

35000 stereo image pairs with ground truth disparity, opti-

cal flow, and scene flow. While our motivation was to create

a sufficiently large dataset that is suitable to train convolu-

tional networks to estimate these quantities, the dataset can

also serve for evaluation of other methods. This is particu-

larly interesting for scene flow, where there has been a lack

of datasets with ground truth.

We have demonstrated that the dataset can indeed be

used to successfully train large convolutional networks: the

network we trained for disparity estimation is on par with

the state of the art and runs 1000 times faster. A first ap-

proach of training the network for scene flow estimation us-

ing a standard network architecture also shows promising

results. We are convinced that our dataset will help boost

deep learning research for such challenging vision tasks as

stereo, flow and scene flow estimation.
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RGB image (L) DispNetCorr1D-K MC-CNN prediction SGM prediction

RGB image (L) Disparity GT DispNetCorr1D MC-CNN prediction SGM prediction

Figure 7. Disparity results. Rows from top to bottom: KITTI 2012, KITTI 2015, FlyingThings3D (clean), Monkaa (clean), Sintel (clean).

Note how the DispNet prediction is basically noise-free.

RGB image 0/1 (L) RGB image 0/1 (R) flow GT / prediction disp GT / prediction ∆disp GT / prediction

Figure 8. Results of our SceneFlowNet created from pretrained FlowNet and DispNets. The disparity change was added and the network

was fine-tuned on FlyingThings3D for 500k iterations.
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