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Abstract

In this paper, we introduce a new hierarchical model for

human action recognition using body joint locations. Our

model can categorize complex actions in videos, and per-

form spatio-temporal annotations of the atomic actions that

compose the complex action being performed. That is, for

each atomic action, the model generates temporal action

annotations by estimating its starting and ending times, as

well as, spatial annotations by inferring the human body

parts that are involved in executing the action. Our model

includes three key novel properties: (i) it can be trained

with no spatial supervision, as it can automatically discover

active body parts from temporal action annotations only;

(ii) it jointly learns flexible representations for motion pose-

lets and actionlets that encode the visual variability of body

parts and atomic actions; (iii) a mechanism to discard idle

or non-informative body parts which increases its robust-

ness to common pose estimation errors. We evaluate the

performance of our method using multiple action recogni-

tion benchmarks. Our model consistently outperforms base-

lines and state-of-the-art action recognition methods.

1. Introduction

Human action recognition in video is a key technology

for a wide variety of applications, such as smart surveil-

lance, human-robot interaction, and video search. Conse-

quently, it has received wide attention in the computer vi-

sion community with a strong focus on recognition of sin-

gle actions in short video sequences [1, 21, 29, 36]. As

this area evolves, there has been an increasing interest to

develop more flexible models that can extract useful knowl-

edge from longer video sequences, featuring multiple con-

current or sequential actions, which we refer to as complex

actions. Furthermore, to facilitate tasks such as video tag-

ging or retrieval, it is important to design models that can

identify the spatial and temporal spans of each relevant ac-
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Figure 1. Sample frames from a video sequence featuring a complex ac-

tion. Our method is able to identify the global complex action, as well as,

the temporal and spatial span of meaningful actions (related to actionlets)

and local body part configurations (related to motion poselets).

tion. As an example, Figure 1 illustrates a potential us-

age scenario, where an input video featuring a complex ac-

tion is automatically annotated by identifying its underlying

atomic actions and corresponding spatio-temporal spans.

A promising research direction for reasoning about com-

plex human actions is to explicitly incorporate body pose

representations. In effect, as noticed long ago, body poses

are highly informative to discriminate among human ac-

tions [13]. Similarly, recent works have also demonstrated

the relevance of explicitly incorporating body pose infor-

mation in action recognition models [11, 30]. While human

body pose estimation from color images remains elusive,

the emergence of accurate and cost-effective RGBD cam-

eras has enabled the development of robust techniques to

identify body joint locations and to infer body poses [25].

In this work, we present a new pose-based approach to

recognizing and provide detailed information about com-

plex human actions in RGBD videos. Specifically, given

a video featuring a complex action, our model can iden-

tify the complex action occurring in the video, as well as,

the set of atomic actions that compose this complex action.

Furthermore, for each atomic action, the model is also able

to generate temporal annotations by estimating its starting
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and ending times, and spatial annotations by inferring the

body parts that are involved in the action execution.

To achieve this, we propose a hierarchical compositional

model that operates at three levels of abstraction: body

poses, atomic actions, and complex actions. At the level

of body poses, our model learns a dictionary that captures

relevant spatio-temporal configurations of body parts. We

refer to the components of this dictionary as motion pose-

lets [2, 26]. At the level of atomic actions, our model learns

a dictionary that captures the main modes of variation in

the execution of each action. We refer to the components

of this dictionary as actionlets [32]. Atoms in both dictio-

naries are given by linear classifiers that are jointly learned

by minimizing an energy function that constraints composi-

tions among motion poselets and actionlets, as well as, their

spatial and temporal relations. While our approach can be

extended to more general cases, here we focus on modeling

atomic actions that can be characterized by the body mo-

tions of a single actor, such as running, drinking, or eating.

Our model introduces several contributions with respect

to prior work [18, 26, 32, 34]. First, it presents a novel for-

mulation based on a structural latent SVM model [39] and

an initialization scheme based on self-pace learning [15].

These provide an efficient and robust mechanism to infer, at

test and training time, action labels for each detected motion

poselet, as well as, their temporal and spatial span. Second,

it presents a multi-modal approach that trains a group of

actionlets for each atomic action. This provides a robust

method to capture relevant intra-class variations in action

execution. Third, it incorporates a garbage collector mech-

anism that identifies and discards idle or non-informative

spatial areas of the input videos. This provides an effective

method to process long video sequences. Finally, we pro-

vide empirical evidence indicating that the integration of the

previous contributions in a single hierarchical model, gen-

erates a highly informative and accurate solution that out-

performs state-of-the-art approaches.

2. Related Work

There is a large body of work on human activity recog-

nition in the computer vision literature [1, 21, 29, 36]. We

focus on recognizing human actions and activities from

videos using pose-based representations and review in the

following some of the most relevant previous work.

The idea of using human body poses and configurations

as an important cue for recognizing human actions has been

explored recurrently, as poses provide strong cues on the

actions being performed. Initially, most research focused

on pose-based action recognition in color videos [8, 27].

But due to the development of pose estimation methods on

depth images[25], there has been recent interest in pose-

based action recognition from RGBD videos [7, 9, 28].

Some methods have tackled the problem of jointly recogniz-

ing actions and poses in videos [20] and still images [37],

with the hope to create positive feedback by solving both

tasks simultaneously.

One of the most influential pose-based representations in

the literature is Poselets, introduced by Bourdev and Malik

[3]. Their representation relies on the construction of a large

set of frequently occurring poses, which is used to represent

the pose space in a quantized, compact and discriminative

manner. Their approach has been applied to action recogni-

tion in still images [19], as well as in videos [26, 33, 41].

Researchers have also explored the idea of fusing pose-

based cues with other types of visual descriptors. For exam-

ple, Cheron et al. [5] introduce P-CNN as a framework for

incorporating pose-centered CNN features extracted from

optical flow and color. In the case of RGBD videos, re-

searchers have proposed the fusion of depth and color fea-

tures [9, 14]. In general, the use of multiple types of features

helps to disambiguate some of the most similar actions.

Also relevant to our framework are hierarchical models

for action recognition. In particular, the use of latent vari-

ables as an intermediary representation in the internal lay-

ers of the model can be a powerful tool to build discrimi-

native models and meaningful representations [10, 34]. An

alternative is to learn hierarchical models based on recurrent

neural networks [6], but they tend to lack interpretability in

their internal layers and require very large amounts of train-

ing data to achieve good generalization.

While most of the previous work have focused on recog-

nizing single and isolated simple actions, in this paper we

are interested in the recognition of complex, composable

and concurrent actions and activities. In this setting, a per-

son may be executing multiple actions simultaneously, or

in sequence, instead of performing each action in isolation.

An example of these is the earlier work of Ramanan and

Forsyth [22], with more recent approaches by Yeung et al.

[38] and Wei et al. [35]. Another recent trend aims at fine-

grained detection of actions performed in sequence such as

those in a cooking scenario [24, 16].

We build our model upon several of these ideas in the

literature. Our method extends the state-of-the-art by in-

troducing a model that can perform detailed annotation of

videos during testing time but only requires weak super-

vision at training time. While learning can be done with

reduced labels, the hierarchical structure of poselets and ac-

tionlets combined with other key mechanisms enable our

model to achieve improved performance over competing

methods in several evaluation benchmarks.

3. Model Description

In this section, we introduce our model for pose-based

recognition of complex human actions. Our goal is to build

a model with the capability of annotating input videos with

the actions being performed, automatically identifying the
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Figure 2. Graphical representation of our discriminative hierarchical

model for recognition of complex human actions. At the top level, activ-

ities are represented as compositions of atomic actions that are inferred at

the intermediate level. These actions are, in turn, compositions of poses at

the lower level, where pose dictionaries are learned from data. Our model

also learns temporal transitions between consecutive poses and actions.

Figure 3. Skeleton representation used for splitting the human body into

a set of spatial regions.

parts of the body that are involved in each action (spatial

localization) along with the temporal span of each action

(temporal localization). As our focus is on concurrent and

composable activities, we would also like to encode mul-

tiple levels of abstraction, such that we can reason about

poses, actions, and their compositions. Therefore, we de-

velop a hierarchical compositional framework for modeling

and recognizing complex human actions.

One of the key contributions of our model is its capabil-

ity to spatially localize the body regions that are involved

in the execution of each action, both at training and testing

time. Our training process does not require careful spatial

annotation and localization of actions in the training set; in-

stead, it uses temporal annotations of actions only. At test

time, it can discover the spatial and temporal span, as well

as, the specific configuration of the main body regions ex-

ecuting each action. We now introduce the components of

our model and the training process that achieves this goal.

3.1. Body regions

We divide the body pose into R fixed spatial regions and

independently compute a pose feature vector for each re-

gion. Figure 3 illustrates the case when R = 4 that we

use in all our experiments. Our body pose feature vector

consists of the concatenation of two descriptors. At frame

t and region r, a descriptor xg
t,r encodes geometric infor-

mation about the spatial configuration of body joints, and

a descriptor xm
t,r encodes local motion information around

each body joint position. We use the geometric descriptor

from [18]: we construct six segments that connect pairs of

joints at each region1 and compute 15 angles between those

segments. Also, three angles are calculated between a plane

formed by three segments2 and the remaining three non-

coplanar segments, totalizing an 18-D geometric descriptor

(GEO) for every region. Our motion descriptor is based

on tracking motion trajectories of key points [31], which in

our case coincide with body joint positions. We extract a

HOF descriptor using 32x32 RGB patches centered at the

joint location for a temporal window of 15 frames. At each

joint location, this produces a 108-D descriptor, which we

concatenate across all joints in each a region to obtain our

motion descriptor. Finally, we apply PCA to reduce the di-

mensionality of our concatenated motion descriptor to 20.

The final descriptor is the concatenation of the geometric

and motion descriptors, xt,r = [xg
t,r;x

m
t,r].

3.2. Hierarchical compositional model

We propose a hierarchical compositional model that

spans three semantic levels. Figure 2 shows a schematic

of our model. At the top level, our model assumes that

each input video has a single complex action label y. Each

complex action is composed of a temporal and spatial ar-

rangement of atomic actions with labels u = [u1, . . . , uT ],
ui ∈ {1, . . . , S}. In turn, each atomic action consists of

several non-shared actionlets, which correspond to repre-

sentative sets of pose configurations for action identifica-

tion, modeling the multimodality of each atomic action.

We capture actionlet assignments in v = [v1, . . . , vT ],
vi ∈ {1, . . . , A}. Each actionlet index vi corresponds to

a unique and known actomic action label ui, so they are re-

lated by a mapping u = u(v). At the intermediate level, our

model assumes that each actionlet is composed of a tempo-

ral arrangement of a subset from K body poses, encoded in

z = [z1, . . . , zT ], zi ∈ {1, . . . ,K}, where K is a hyperpa-

rameter of the model. These subsets capture pose geometry

and local motion, so we call them motion poselets. Finally,

at the bottom level, our model identifies motion poselets

using a bank of linear classifiers that are applied to the in-

coming frame descriptors.

We build each layer of our hierarchical model on top of

BoW representations of labels. To this end, at the bottom

1Arm segments: wrist-elbow, elbow-shoulder, shoulder-neck, wrist-

shoulder, wrist-head, and neck-torso; Leg segments: ankle-knee, knee-hip,

hip-hip center, ankle-hip, ankle-torso and hip center-torso
2Arm plane: shoulder-elbow-wrist; Leg plane: hip-knee-ankle
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level of our hierarchy, and for each body region, we learn a

dictionary of motion poselets. Similarly, at the mid-level of

our hierarchy, we learn a dictionary of actionlets, using the

BoW representation of motion poselets as inputs. At each

of these levels, spatio-temporal activations of the respec-

tive dictionary words are used to obtain the corresponding

histogram encoding the BoW representation. The next two

sections provide details on the process to represent and learn

the dictionaries of motion poselets and actionlets. Here we

discuss our integrated hierarchical model.
We formulate our hierarchical model using an energy

function. Given a video of T frames corresponding to com-
plex action y encoded by descriptors x, with the label vec-
tors z for motion poselets, v for actionlets and u for atomic
actions, we define an energy function for a video as:

E(x,v, z, y) = Emotion poselets(z,x)

+ Emotion poselets BoW(v, z) + Eatomic actions BoW(u(v), y)

+ Emotion poselets transition(z) + Eactionlets transition(v). (1)

Besides the BoW representations and motion poselet
classifiers described above, Equation (1) includes two
energy potentials that encode information related to
temporal transitions between pairs of motion poselets
(Emotion poselets transition) and actionlets (Eactionlets transition). The
energy potentials are given by:

Emot. poselet(z,x) =
∑

r,t

[

∑

k

wr
k
⊤xt,rδ

k
z(t,r)

+ θrδK+1
z(t,r)

]

(2)

Emot. poselet BoW(v, z) =
∑

r,a,k

βr
a,kδ

a
v(t,r)

δkz(t,r) (3)

Eatomic act. BoW(u(v), y) =
∑

r,s

αr
y,sδ

s
u(v(t,r))

(4)

Emot. pos. trans.(z) =
∑

r,k+1,k
′

+1

ηr
k,k′

∑

t

δkz(t−1,r)
δk

′

z(t,r)
(5)

Eacttionlet trans.(v) =
∑

r,a,a′

γr
a,a′

∑

t

δav(t−1,r)
δa

′

v(t,r)
(6)

Our goal is to maximize E(x,v, z, y), and obtain the

spatial and temporal arrangement of motion poselets z and

actionlets v, as well as, the underlying complex action y.

In the previous equations, we use δba to indicate the

Kronecker delta function δ(a = b), and use indexes k ∈
{1, . . . ,K} for motion poselets, a ∈ {1, . . . , A} for action-

lets, and s ∈ {1, . . . , S} for atomic actions. In the energy

term for motion poselets, wr
k are a set of K linear pose clas-

sifiers applied to frame descriptors xt,r, according to the

label of the latent variable zt,r. Note that there is a special

label K+1; the role of this label will be explained in Section

3.5. In the energy potential associated to the BoW represen-

tation for motion poselets, βr denotes a set of A mid-level

classifiers, whose inputs are histograms of motion poselet

labels at those frame annotated as actionlet a. At the high-

est level, αr
y is a linear classifier associated with complex

action y, whose input is the histogram of atomic action la-

bels, which are related to actionlet assignments by the map-

ping function u(v). Note that all classifiers and labels here

correspond to a single region r. We add the contributions

of all regions to compute the global energy of the video.

The transition terms act as linear classifiers ηr and γr over

histograms of temporal transitions of motion poselets and

temporal transitions of actionlets respectively. As we have

a special label K + 1 for motion poselets, the summation

index k+1 indicates the interval [1, . . . ,K + 1].

3.3. Learning motion poselets

In our model, motion poselets are learned by treating

them as latent variables during training. Before training,

we fix the number of motion poselets per region to K. In

every region r, we learn an independent set of pose classi-

fiers {wr
k}

K
k=1

, initializing the motion poselet labels using

the k-means algorithm. We learn pose classifiers, actionlets

and complex actions classifiers jointly, allowing the model

to discover discriminative motion poselets useful to detect

and recognize complex actions. As shown in previous work,

jointly learning linear classifiers to identify body parts and

atomic actions improves recognition rates [18, 34], so here

we follow a similar hierarchical approach, and integrate

learning of motion poselets with the learning of actionlets.

3.4. Learning actionlets

A single linear classifier does not offer enough flexibility

to identify atomic actions that exhibit high visual variabil-

ity. As an example, the atomic action “open” can be associ-

ated with “opening a can” or “opening a book”, displaying

high variability in action execution. Consequently, we aug-

ment our hierarchical model including multiple classifiers

to identify different modes of action execution.

Inspired by [23], we use the Cattell’s Scree test to find a

suitable number of actionlets to model each atomic action.

Specifically, using the atomic action labels, we compute a

descriptor for every video interval using normalized his-

tograms of initial pose labels obtained with k-means. Then,

for a particular atomic action s, we compute the eigenval-

ues λ(s) of the affinity matrix of the atomic action descrip-

tors, which is build using χ2 distance. For each atomic

action s ∈ {1, . . . , S}, we find the number of actionlets

Gs as Gs = argmini λ(s)
2

i+1
/(
∑i

j=1
λ(s)j) + c · i, with

c = 2 · 10−3. Finally, we cluster the descriptors from each

atomic action s running k-means with k = Gs. This scheme

generates a set of non-overlapping actionlets to model each

single atomic action. In our experiments, we notice that

the number of actionlets used to model each atomic action

varies typically from 1 to 8.

To transfer the new labels to the model, we define u(v)
as a function that maps from actionlet label v to the corre-

sponding atomic action label u. A dictionary of actionlets
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provides a richer representation for actions, where several

actionlets will map to a single atomic action. This behav-

ior resembles a max-pooling operation, where at inference

time we will choose the set of actionlets that best describe

the performed actions in the video, keeping the semantics

of the original atomic action labels.

3.5. A garbage collector for motion poselets

While poses are highly informative for action recogni-

tion, an input video might contain irrelevant or idle zones,

where the underlying poses are noisy or non-discriminative

to identify the actions being performed in the video. As a

result, low-scoring motion poselets could degrade the pose

classifiers during training, decreasing their performance. To

deal with this problem, we include in our model a garbage

collector mechanism for motion poselets. This mechanism

operates by assigning all low-scoring motion poselets to the

(K +1)-th pose dictionary entry. These collected poses are

associated with a learned score lower than θr, as in Equa-

tion (2). Our experiments show that this mechanism leads

to learning more discriminative motion poselet classifiers.

3.6. Learning

Initial actionlet labels. An important step in the train-
ing process is the initialization of latent variables. This is a
challenging due to the lack of spatial supervision: at each
time instance, the available atomic actions can be associ-
ated with any of the R body regions. We adopt the machin-
ery of self-paced learning [15] to provide a suitable solution
and formulate the association between actions and body re-
gions as an optimization problem. We constrain this opti-
mization using two structural restrictions: i) atomic actions
intervals must not overlap in the same region, and ii) a la-
beled atomic action must be present at least in one region.
We formulate the labeling process as a binary Integer Lin-
ear Programming (ILP) problem, where we define bmr,q = 1
when action interval q ∈ {1, . . . , Qm} is active in region r
of video m; and bmr,q = 0 otherwise. Each action interval
q is associated with a single atomic action. We assume that
we have initial motion poselet labels zt,r in each frame and
region. We describe the action interval q and region r using
the histogram hm

r,q of motion poselet labels. We can find the
correspondence between action intervals and regions using
a formulation that resembles the operation ofk-means, but
using the structure of the problem to constraint the labels:

P1) min
b,µ

M
∑

m=1

R
∑

r=1

Qm
∑

q=1

bmr,qd(h
m
r,q − µr

aq
)−

1

λ
bmr,q

s.t.

R
∑

r=1

bmr,q ≥ 1, ∀q, ∀m

bmr,q1 + bmr,q2 ≤ 1 if q1 ∩ q2 6= ∅, ∀r, ∀m

bmr,q ∈ {0, 1}, ∀q, ∀r, ∀m

(7)

with

d(hm
r,q−µr

aq
) =

K
∑

k=1

(hm
r,q[k]−µr

aq
[k])2/(hm

r,q[k]+µr
aq
[k]). (8)

Here, µr
aq

are the means of the descriptors with action label

aq within region r. We solve P1 iteratively using a block

coordinate descending scheme, alternating between solving

bmr,q with µr
a fixed, which has a trivial solution; and then fix-

ing µr
a to solve bmr,q , relaxing P1 to solve a linear program.

Note that the second term of the objective function in P1 re-

sembles the objective function of self-paced learning [15],

managing the balance between assigning a single region to

every action or assigning all possible regions to the respec-

tive action interval.
Learning model parameters. We formulate learning

the model parameters as a Latent Structural SVM problem
[39], with latent variables for motion poselets z and action-
lets v. We find values for parameters in equations (2-6),
slack variables ξi, motion poselet labels zi, and actionlet
labels vi, by solving:

min
W,ξi, i={1,...,M}

1

2
||W ||22 +

C

M

M
∑

i=1

ξi, (9)

where
W⊤ = [α⊤, β⊤, w⊤, γ⊤, η⊤, θ⊤], (10)

and

ξi = max
z,v,y

{E(xi, z,v, y) + ∆((yi,vi), (y,v))

−max
zi

E(xi, zi,vi, yi)}, i ∈ [1, ...M ].
(11)

In Equation (11), each slack variable ξi quantifies the error

of the inferred labeling for video i. We solve Equation (9)

iteratively using the CCCP algorithm [40], by solving for

latent labels zi and vi given model parameters W , temporal

atomic action annotations (when available), and labels of

complex actions occurring in training videos (see Section

3.7). Then, we solve for W via 1-slack formulation using

Cutting Plane algorithm [12].
The role of the loss function ∆((yi,vi), (y,v)) is to pe-

nalize inference errors during training. If the true actionlet
labels are known in advance, the loss function is the same
as in [18] using the actionlets instead of atomic actions:

∆((yi,vi), (y,v)) = λy(yi 6= y)+λv
1

T

T
∑

t=1

δ(vti 6= vt), (12)

where vti is the true actionlet label. If the spatial ordering
of actionlets is unknown (hence the latent actionlet formula-
tion), but the temporal composition is known, we can com-
pute a list At of possible actionlets for frame t, and include
that information on the loss function as

∆((yi,vi), (y,v)) = λy(yi 6= y) + λv
1

T

T
∑

t=1

δ(vt /∈ At) (13)
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3.7. Inference

The input to the inference algorithm is a new video se-
quence with features x. The task is to infer the best complex
action label ŷ, and to produce the best labeling of actionlets
v̂ and motion poselets ẑ.

ŷ, v̂, ẑ = argmax
y,v,z

E(x,v, z, y) (14)

We can solve this by exhaustively enumerating all values
of complex actions y, and solving for v̂ and ẑ using:

v̂, ẑ|y = argmax
v,z

R
∑

r=1

T
∑

t=1

(

αr
y,u(v(t,r)) + βr

v(t,r),z(t,r)

+wr
z(t,r)

⊤xt,rδ(z(t,r) ≤ K) + θrδK+1
z(t,r)

+γr
v(t−1,r),v(t,r)

+ ηr
z(t−1,r),z(t,r)

)

.

(15)

4. Experiments

Our experimental validation focuses on evaluating two

properties of our model. First, we measure action classifi-

cation accuracy on several action recognition benchmarks.

Second, we measure the performance of our model to pro-

vide detailed information about atomic actions and body re-

gions associated to the execution of a complex action.

We evaluate our method on four action recognition

benchmarks: the MSR-Action3D dataset [17], Concur-

rent Actions dataset [35], Composable Activities Dataset

[18], and sub-JHMDB [11]. Using cross-validation, we set

K = 100 in Composable Activities and Concurrent Actions

datasets, K = 150 in sub-JHMDB, and K = 200 in MSR-

Action3D. In all datasets, we fix λy = 100 and λu = 25.

The number of actionlets to model each atomic action is

estimated using the method described in Section 3.4. The

garbage collector (GC) label (K + 1) is automatically as-

signed during inference according to the learned model pa-

rameters θr. We initialize the 20% most dissimilar frames

to the K + 1 label. In practice, at test time, the number

of frames labeled as (K + 1) ranges from 14% in MSR-

Action3D to 29% in sub-JHMDB.

Computation is fast during testing. In the Composable

Activities dataset, our CPU implementation runs at 300 fps

on a 32-core computer, while training time is 3 days, mostly

due to the massive execution of the cutting plane algorithm.

Using Dynamic Programming, complexity to estimate la-

bels is linear with the number of frames T and quadratic

with the number of actionlets A and motion poselets K.

In practice, we filter out the majority of combinations of

motion poses and actionlets in each frame, using the 400

best combinations of (k, a) according to the value of non-

sequential terms in the dynamic program. Details are pro-

vided in the supplementary material.

Algorithm Accuracy

Our model 93.0%

L. Tao et al. [26] 93.6%

C. Wang et al. [30] 90.2%

Vemulapalli et al. [28] 89.5%

Table 1. Recognition accuracy in the MSR-Action3D dataset.

4.1. Classification of Simple and Isolated Actions

As a first experiment, we evaluate the performance of

our model on the task of simple and isolated human action

recognition in the MSR-Action3D dataset [17]. Although

our model is tailored at recognizing complex actions, this

experiment verifies the performance of our model in the

simpler scenario of isolated atomic action classification.

The MSR-Action3D dataset provides pre-trimmed depth

videos and estimated body poses for isolated actors per-

forming actions from 20 categories. We use 557 videos in

a similar setup to [32], where videos from subjects 1, 3, 5,

7, 9 are used for training and the rest for testing. Table 1

shows that in this dataset our model achieves classification

accuracies comparable to state-of-the-art methods.

4.2. Detection of Concurrent Actions

Our second experiment evaluates the performance of our

model in a concurrent action recognition setting. In this

scenario, the goal is to predict the temporal localization of

actions that may occur concurrently in a long video. We

evaluate this task on the Concurrent Actions dataset [35],

which provides 61 RGBD videos and pose estimation data

annotated with 12 action categories. We use a similar evalu-

ation setup as proposed by the authors. We split the dataset

into training and testing sets with a 50%-50% ratio. We

evaluate performance by measuring precision-recall: a de-

tected action is declared as a true positive if its temporal

overlap with the ground truth action interval is larger than

60% of their union, or if the detected interval is completely

covered by the ground truth annotation.

Our model is tailored at recognizing complex actions that

are composed of atomic components. However, in this sce-

nario, only atomic actions are provided and no composi-

tions are explicitly defined. Therefore, we apply a simple

preprocessing step: we cluster training videos into groups

by comparing the occurrence of atomic actions within each

video. The resulting groups are used as complex actions

labels in the training videos of this dataset. At inference

time, our model outputs a single labeling per video, which

corresponds to the atomic action labeling that maximizes

the energy of our model. Since there are no thresholds to

adjust, our model produces the single precision-recall mea-

surement reported in Table 2. Our model outperforms the

state-of-the-art method in this dataset at that recall level.
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Algorithm Precision Recall

Our full model 0.92 0.81

Wei et al. [35] 0.85 0.81

Table 2. Recognition accuracy in the Concurrent Actions dataset.

Algorithm Accuracy

Base model + GC, GEO desc. only, spatial supervision 88.5%

Base model + GC, with spatial supervision 91.8%

Our full model, no spatial supervision (latent v) 91.1%

Lillo et al. [18] (without GC) 85.7%

Cao et al. [4] 79.0%

Table 3. Recognition accuracy in the Composable Activities dataset.

4.3. Recognition of Composable Activities

In this experiment, we evaluate the performance of our

model to recognize complex and composable human ac-

tions. In the evaluation, we use the Composable Activi-

ties dataset [18], which provides 693 videos of 14 subjects

performing 16 activities. Each activity is a spatio-temporal

composition of atomic actions. The dataset provides a to-

tal of 26 atomic actions that are shared across activities. We

train our model using two levels of supervision during train-

ing: i) spatial annotations that map body regions to the ex-

ecution of each action are made available ii) spatial super-

vision is not available, and therefore the labels v to assign

spatial regions to actionlets are treated as latent variables.

Table 3 summarizes our results. We observe that un-

der both training conditions, our model achieves compara-

ble performance. This indicates that our weakly supervised

model can recover some of the information that is missing

while performing well at the activity categorization task. In

spite of using less supervision at training time, our method

outperforms state-of-the-art methodologies that are trained

with full spatial supervision.

4.4. Action Recognition in RGB Videos

Our experiments so far have evaluated the performance

of our model in the task of human action recognition in

RGBD videos. In this experiment, we explore the use of

our model in the problem of human action recognition in

RGB videos. For this purpose, we use the sub-JHMDB

dataset [11], which focuses on videos depicting 12 actions

and where most of the actor body is visible in the image

frames. In our validation, we use the 2D body pose config-

urations provided by the authors and compare against pre-

vious methods that also use them. Given that this dataset

only includes 2D image coordinates for each body joint, we

obtain the geometric descriptor by adding a depth coordi-

nate with a value z = d to joints corresponding to wrist and

knees, z = −d to elbows, and z = 0 to other joints, so we

can compute angles between segments, using d = 30 fixed

with cross-validation. We summarize the results in Table 4,

which shows that our method outperforms alternative state-

of-the-art techniques.

Algorithm Accuracy

Our model 77.5%

Huang et al. [11] 75.6%

Chéron et al. [5] 72.5%

Table 4. Recognition accuracy in the sub-JHMDB dataset.

Videos Annotation inferred Precision Recall

Testing set Spatio-temporal, no GC 0.59 0.77

Testing set Spatio-temporal 0.62 0.78

Training set Spatial only 0.86 0.90

Training set Spatio-temporal 0.67 0.85

Table 5. Atomic action annotation performances in the Composable Ac-

tivities dataset. The results show that our model is able to recover spatio-

temporal annotations both at training and testing time.

4.5. Spatiotemporal Annotation of Atomic Actions

In this experiment, we study the ability of our model

to provide spatial and temporal annotations of relevant

atomic actions. Table 5 summarizes our results. We re-

port precision-recall rates for the spatio-temporal annota-

tions predicted by our model in the testing videos (first

and second rows). Notice that this is a very challenging

task. The testing videos do no provide any label, and the

model needs to predict both, the temporal extent of each ac-

tion and the body regions associated with the execution of

each action. Although the difficulty of the task, our model

shows satisfactory results being able to infer suitable spatio-

temporal annotations.

We also study the capability of the model to provide spa-

tial and temporal annotations during training. In our first

experiment, each video is provided with the temporal extent

of each action, so the model only needs to infer the spatial

annotations (third row in Table 5). In a second experiment,

we do not provide any temporal or spatial annotation, but

only the global action label of each video (fourth row in Ta-

ble 5). In both experiments, we observe that the model is

still able to infer suitable spatio-temporal annotations.

4.6. Effect of Model Components

In this experiment, we study the contribution of key

components of the proposed model. First, using the sub-

JHMDB dataset, we measure the impact of three compo-

nents of our model: garbage collector for motion poselets

(GC), multimodal modeling of actionlets, and use of latent

variables to infer spatial annotation about body regions (la-

tent v). Table 6 summarizes our experimental results. Ta-

ble 6 shows that the full version of our model achieves the

best performance, with each of the components mentioned

above contributing to the overall success of the method.

Second, using the Composable Activities dataset, we

also analyze the contribution of the proposed self-paced

learning scheme for initializing and training our model.

We summarize our results in Table 7 by reporting action

recognition accuracy under different initialization schemes:
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Algorithm Accuracy

Base model, GEO descriptor only 66.9%

Base Model 70.6%

Base Model + GC 72.7%

Base Model + Actionlets 75.3%

Our full model (Actionlets + GC + latent v) 77.5%

Table 6. Analysis of contribution to recognition performance from each

model component in the sub-JHMDB dataset.

Initialization Algorithm Accuracy

Random 46.3%

Clustering 54.8%

Ours 91.1%

Ours, fully supervised 91.8%

Table 7. Results in Composable Activities dataset, with latent v and dif-

ferent initializations.

Motion poselet #4 - most likely action: talking on cellphone

Motion poselet #7 - most likely action: erasing on board

Motion poselet #19 - most likely action: waving hand

Figure 4. Moving poselets learned from the Composable Activities

dataset.

i) Random: random initialization of latent variables v, ii)

Clustering: initialize v by first computing a BoW descrip-

tor for the atomic action intervals and then perform k-means

clustering, assigning the action intervals to the closer clus-

ter center, and iii) Ours: initialize v using the proposed self-

paced learning scheme. Our proposed initialization scheme

helps the model to achieve its best performance.

4.7. Qualitative Results

Finally, we provide a qualitative analysis of relevant

properties of our model. Figure 4 shows examples of mov-

ing poselets learned in the Composable Activities dataset.

We observe that each moving poselet captures a salient body

configuration that helps to discriminate among atomic ac-

tions. To further illustrate this, Figure 4 indicates the most

likely underlying atomic action for each moving poselet.

Figure 5 presents a similar analysis for moving poselets

learned in the MSR-Action3D dataset.

We also visualize the action annotations produced by our

model. Figure 6 (top) shows the action labels associated

with each body part in a video from the Composable Ac-

tivities dataset. Figure 6 (bottom) illustrates per-body part

action annotations for a video in the Concurrent Actions

dataset. These examples illustrate the capabilities of our

model to correctly annotate the body parts that are involved

in the execution of each action, in spite of not having that

information during training.

Motion poselet #16 - most likely action: tennis swing

Motion poselet #34 - most likely action: golf swing

Motion poselet #160 - most likely action: bend

Figure 5. Moving poselets learned from the MSR-Action3D dataset.

Figure 6. Automatic spatio-temporal annotation of atomic actions. Our

method detects the temporal span and spatial body regions that are involved

in the performance of atomic actions in videos.

5. Conclusions and Future Work

We present a hierarchical model for human action recog-

nition using body joint locations. By using a semisuper-

vised approach to jointly learn dictionaries of motions pose-

lets and actionlets, the model demonstrates to be very flexi-

ble and informative, to handle visual variations and to pro-

vide spatio-temporal annotations of relevant atomic actions

and active body part configurations. In particular, the model

demonstrates to be competitive with respect to state-of-the

-art approaches for complex action recognition, while also

proving highly valuable additional information. As future

work, the model can be extended to handle multiple actor

situations, to use contextual information such as relevant

objects, and to identify novel complex actions not present

in the training set.
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