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Abstract

We address the problem of weakly supervised object lo-

calization where only image-level annotations are available

for training. Many existing approaches tackle this prob-

lem through object proposal mining. However, a substan-

tial amount of noise in object proposals causes ambiguities

for learning discriminative object models. Such approaches

are sensitive to model initialization and often converge to an

undesirable local minimum. In this paper, we address this

problem by progressive domain adaptation with two main

steps: classification adaptation and detection adaptation.

In classification adaptation, we transfer a pre-trained net-

work to our multi-label classification task for recognizing

the presence of a certain object in an image. In detec-

tion adaptation, we first use a mask-out strategy to collect

class-specific object proposals and apply multiple instance

learning to mine confident candidates. We then use these se-

lected object proposals to fine-tune all the layers, resulting

in a fully adapted detection network. We extensively evalu-

ate the localization performance on the PASCAL VOC and

ILSVRC datasets and demonstrate significant performance

improvement over the state-of-the-art methods.

1. Introduction

Object localization is an important task for image un-

derstanding. It aims to identify all instances of partic-

ular object categories (e.g., person, cat, and car) in im-

ages. The fundamental challenge in object localization

lies in constructing object appearance models for handling

large intra-class variations and complex background clut-

ters. The state-of-the-art approaches typically train object

detectors from a large set of training images [11, 14] in a

fully supervised manner. However, this strongly supervised

learning paradigm relies on instance-level annotations, e.g.,

tight bounding boxes, which are time-consuming and labor-

intensive. In this paper, we focus on the weakly supervised

object localization problem where only binary image-level

labels indicating the presence or absence of an object cate-

gory are available for training. Figure 1 illustrates the prob-
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Figure 1. Weakly supervised object localization problem setting.

Given a collection of training images with image-level annota-

tions, our goal is to train object detectors for localizing objects

in unseen images.

lem setting. This particular setting is important for large-

scale practical applications because image-level annotations

are often readily available from the Internet, e.g., through

text tags [15], GPS tags [8], and image search queries [23].

Most existing methods [36, 4, 3, 2, 33, 35, 37, 34] for-

mulate the weakly supervised localization (WSL) task as a

multiple instance learning (MIL) problem. Recent efforts

include leveraging convolutional neural networks (CNN) to

extract discriminative appearance features [41, 36, 37, 2, 3]

and transferring knowledge from strongly supervised de-

tectors to other categories without bounding box annota-

tions [27, 16, 17, 31]. While existing methods have shown

promising results, these methods have three main draw-

backs. First, it’s hard to select correct object proposals

because the collection of candidate proposals contains too

much noise. Typically, only a few out of several thousands

of proposals are actual object instances. Second, many ap-

proaches use a pre-trained CNN as a feature extractor and

do not adapt the weights from whole-image classification

to object detection. Third, existing methods often require

either auxiliary strongly annotated data or pre-trained de-

tectors for domain adaptation.
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Figure 2. Comparison of our approach with existing object local-

ization methods. Strongly supervised methods use instance-level

annotations to train object detectors. Most of the weakly super-

vised methods use one-step proposal mining to select object in-

stances from a large and noisy candidate pool directly. We propose

a two-step progressive domain adaptation approach. We first filter

out the noisy object proposal collection and then mine confident

candidates for learning discriminative object detectors.

In this paper, we propose a two-step domain adapta-

tion for weakly supervised object localization: classifica-

tion adaptation and detection adaptation. Figure 2 illus-

trates the major difference between the proposed algorithm

and existing work. Our key observation is that it’s hard to

train object detectors directly under weak supervisory sig-

nals due to the substantial amount of noise in the object

proposal collections. Essentially, the main difficulty arises

from the large gap between source domain and target do-

main, as shown in the top-right and bottom-left corner of

Figure 2. The goal of our work is to bridge the gap by pro-

gressive domain adaptation. In the classification adaptation

step, we train a classification network using the given weak

image-level labels. We train the classification network to

recognize the presence of a certain object category in an

image. In the detection adaptation step, we use the clas-

sification network to collect class-specific object proposals

and apply multiple instance learning to mine confident can-

didates. We then use the previously selected object candi-

dates to fine-tune all the layers, resulting in a fully adapted

detection network.

The proposed algorithm addresses the drawbacks from

prior work in three aspects: (1) Our classification adaptation

step fine-tunes the network such that it can collect class-

specific object proposals with higher precision. This step

aims at removing background clutters and potential confu-

sion from similar objects cases, leading to a purified col-

lection of object candidates for multiple instance learning.

(2) Detection adaptation uses confident object candidates

to optimize the CNN representations for the target domain.

This step aims at turning image classifiers into object de-

tectors, providing more discriminative feature representa-

tions for localizing generic objects (instead of the presence

of them) in an image. (3) Our method learns object detec-

tors from weakly annotated data without any strong labels.

We make the following three contributions in this work:

1. We propose to use progressive domain adaptation for

weakly supervised object localization. We show that

this strategy is crucial for good performance.

2. Our classification adaptation helps filter the object pro-

posal collection, and our detection adaptation helps

learn discriminative feature representation for the de-

tection task.

3. We present detailed evaluations on the PASCAL VOC

and ILSVRC datasets. Experimental results demon-

strate that our progressive domain adaptation algo-

rithm performs favorably against the state-of-the-art

methods. Our detector achieves 39.5% mAP on VOC

2007, surpassing the second best performing algorithm

by 8 points.

2. Related Work

Weakly supervised learning. Existing methods often

treat WSL as an MIL problem [36, 4, 3, 2, 33, 35, 34, 37].

In an MIL framework, each image is considered as a bag of

potential object instances. Positive images are assumed to

contain at least one object instance of a certain object cate-

gory and negative images do not contain object instances

from this category. Using this weak supervisory signal,

WSL methods often alternate between (1) selecting the pos-

itive object instances from positive images and (2) learning

object detectors. However, this results in a non-convex op-

timization problem. Due to the non-convexity, these meth-

ods are sensitive to model initialization and prone to get-

ting trapped into local extrema. Although many efforts

have been made to overcome the problem via seeking bet-

ter initialization models [36, 37, 34, 35, 33] and optimiza-

tion strategies [4, 3, 2], the localization performance is still

limited. We observe that previous MIL-based methods at-

tempt to train object detectors directly from the large and

noisy collection of object candidates. In this work, we ap-

ply MIL [36] to mine confident candidates. However, unlike

existing methods, we apply MIL on a cleaner collection of

class-specific object proposals (instead of on a large, noisy,

category-independent proposals).

Convolutional neural networks for object localization.

Recently, convolutional neural networks have achieved

great success on various visual recognition tasks [21, 40, 42,

32, 29, 25, 14, 13]. The key ingredient for the success lies

in end-to-end training CNN in a fully supervised fashion. In
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object detection problems, these methods [29, 25, 14, 13]

require instance-level supervision. Moving beyond strong

supervision, recent work focuses on applying off-the-shelf

CNN features [36, 37, 41, 1, 3, 2], learning from weak la-

bels [43, 24] or noisy labels [26, 38]. Our classification

adaptation step is related to the method by Oquab et al. [24]

in the formulation of multi-label classification. We use a

different a multi-label loss that allows us to incorporate neg-

ative images during training. Also, we focus on detect-

ing the locations and spatial supports of objects while the

method by Oquab et al. [24] only predicts approximate lo-

cations of objects. Our work resembles the work by Baz-

zani et al. [1]. We use a similar mask-out strategy to collect

class-specific object proposals. The main differences are

three-fold. (1) Our classification adaptation transfers the

source classification domain (1000 single-label classes for

ILSVRC 2012) to the target classification domain (20 multi-

label classes for PASCAL VOC). (2) We use a contrast-

based mask-out strategy for ranking proposals. (3) Instead

of training a classifier over pre-trained CNN features, we

fine-tune the parameters of all the CNN layers for training

object detectors.

Domain adaptation. Some recent approaches use do-

main adaptation to help learn object detectors or fea-

tures [27, 16, 17, 31]. Shi et al. [31] learn a mapping rela-

tionship between the bounding box overlap and the appear-

ance similarity, and then transfer it to the target domain.

Hoffman et al. [16] learn the difference between classifi-

cation and detection tasks and transfer this knowledge to

convert classifiers to detectors using weakly annotated data.

Also, MIL is incorporated for joint learning of representa-

tion and detector [17]. Rochan et al. [27] transfer existing

appearance models of the familiar objects to the unseen ob-

ject. Existing domain adaptation methods often use strongly

annotated source data to improve recognition performance

for weakly supervised object localization. Our work differs

from these approaches in that we focus on object localiza-

tion in a weakly supervised manner, i.e., we do not require

any instance-level annotation and do not borrow additional

strongly annotated data or outside detectors.

Progressive and self-paced learning. Our work is also

related to several approaches in other problem contexts. Ex-

amples include visual tracking [39], pose estimation [12],

image search [20], and object discovery [22]. Progressive

methods can decompose complex problems into simpler

ones. We find that progressive adaptation is particularly im-

portant for the weakly supervised object localization prob-

lem.

3. Classification Adaptation

In this section, we introduce the classification adaptation

step. This step aims to train the whole-image classifica-

Figure 3. Classification adaptation step. We use the AlexNet archi-

tecture [21] and replace the softmax loss layer with the proposed

multi-label loss layer. We set the number of nodes in the last fully-

connected layer to 2C (C is number of object categories). These

2C entries are divided into C pairs for representing the presence

and absence of each object category. See Section 3 for details.

tion network such that the adapted network is sensitive to

the object categories of interest. The original AlexNet [21]

is trained for multi-class classification with a softmax loss

layer by assuming that only one single object exists per im-

age. In our adapted network, we replace the last classifi-

cation layer with a multi-label loss layer. Unlike the prob-

lem in ImageNet classification, we address a more general

multi-label classification problem where each image may

contain multiple objects from more than one category.

Assuming that the object detection dataset has C

categories and a total of N training images, we de-

note the weakly labeled training image set as I =
{(I(1),y(1)), . . . , (I(N),y(N))}, where I is the image data

and y = [y1, . . . , yc, . . . , yC ]
⊤ ∈ {0, 1}C , c ∈ {1, . . . , C}

is the C-dimensional label vector of I, in which each en-

try can be 1 or 0 indicating whether at least one specific

object instance exists in the image. In the weakly object

localization setting, one image may contain objects from

different categories, i.e., more than one entry in y can be 1.

In this case, conventional softmax loss cannot be used for

this multi-label classification problem. We thus introduce a

multi-label loss to handle this problem.

First, we transform the original training label to a new

label t ∈ {0, 1}2C , where

t2c−1 =

{

1, yc = 1

0, yc = 0
and t2c =

{

0, yc = 1

1, yc = 0
. (1)

In other words, each odd entry of t represents whether the

image contains the corresponding object. Similarly, each

even entry represents whether the image does not contain

the corresponding object.

We then introduce our new loss layer for multi-label clas-

sification. We denote the CNN as a function p(·) that maps

an input image I to a 2C dimensional output p(I) ∈ R
2C .

The odd entry p2c−1(I) represents the probability that the

image contains at least one object instance of c-th category.

3514



Figure 4. Detection adaptation step. We first use a mask-out strategy to collect class-specific object proposals and apply multiple instance

learning to mine confident candidates. We then use these selected object proposals to fine-tune all the layers (marked magenta), resulting

in a network that is fully adapted for detection. See Section 4 for details.

Similarly, the even entry p2c(I) indicates the probability

that the image does not contain objects of c-th category. We

compute the probabilities using a sigmoid for each object

class and thus we have p2c−1(I) + p2c(I) = 1.

We can define negative logarithmic classification loss

Lc(I) of one image for category c as,

Lc(I) = −(t2c−1 log p2c−1(I) + t2c log p2c(I)). (2)

We obtain the final loss function L by summing up all the

training samples and losses for all the categories,

L =

N
∑

i=1

C
∑

c=1

Lc(I
(i)) = −

N
∑

i=1

t(i) logp(I(i)). (3)

Here log(·) is the element-wise logarithmic function. The

sum over different categories is done by dot product.

In the classification adaptation network, we substitute

the conventional softmax loss layer with our new multi-

label loss layer and adjust the number of nodes in the last

fully-connected layer to 2C. We use mini-batch Stochastic

Gradient Descent (SGD) for training the CNN. We initialize

all the layers except the last layer using the pre-trained pa-

rameters on ILSVRC 2012 [6]. We randomly initialize the

weights of the modified classification layer. We describe the

implementation details in Section 5.1.

4. Detection Adaptation

4.1. Classspecific proposal mining

The goal of detection adaptation step is to transfer image

classifiers to object detectors. To train object detectors, we

first collect confident object proposals. We use a mask-out

strategy to collect class-specific object proposals and ap-

ply multiple instance learning to mine confident candidates.

The mining procedure offers two key benefits:

• Compared with generic object proposals, class-specific

proposals remove substantial noise and potential con-

fusion from similar objects. This helps MIL avoid con-

verging to an undesirable local minimum and reduce

computational complexity.

• More precise object proposals can be mined using

MIL. These confident object proposals allow us to fur-

ther fine-tune the network for object detection.

The adapted classification network recognizes whether

an image contains a certain object. We use a mask-out strat-

egy to collect object proposals for each class based on the

adapted classification network. The idea of masking out

the input of CNN has been previously explored in [44, 1].

Intuitively, if the mask-out image by a region causes a sig-

nificant drop in classification score for the c-th class, the

region can be considered discriminative for the c-th class.

Inspired by [44, 1], we investigate the contrastive relation-

ship between a selected region and its mask-out image.

Without loss of generality, we take mining object propos-

als for the c-th category as an example. First, for the image I

labeled with yc = 1, we apply Edge Boxes [46] to generate

the initial collection of object proposals. The set of initial

proposals is marked as B̂c. For an initial bounding box re-

gion b̂, we denote its corresponding image as Iin(b̂) and

its mask-out image as Iout(b̂). We generate the mask-out

image by replacing the pixel values within b̂ with the fixed

mean pixel values pre-computed on ILSVRC 2012. We feed

the region image Iin(b̂) and mask-out image Iout(b̂) to the

adapted classification network. We can then compute the
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contrastive score for bounding box region b̂ of image I as,

sc(I, b̂) = p2c−1(Iin(b̂))− p2c−1(Iout(b̂)). (4)

Here, if the value of sc(I, b̂) is large, it indicates that the re-

gion b̂ is likely an object of the c-th category. Note that our

mask-out strategy differs from [1], which compute the score

difference between the whole image and mask-out image.

With classification adaptation, a bounding box region

can achieve higher confidence than the whole image for

classification. In Figure 5, we show top 10 class-specific

proposals using our mask-out strategy. According to (4),

top M (M=50 in our experiments) object proposals of im-

age I are selected for the c-th category. That is, selected

proposals are category-specific. We mark the top-ranked

proposals as Bc.

Since we set a loose criteria in the previous mask-out

step, the top-ranked proposals are still coarse and may con-

tain many false positives. We apply MIL to mine confident

candidates for training object detector. In MIL, the label of

object candidate is set as a latent variable. During the train-

ing, the label is iteratively updated. For candidates set Bc,

we set up latent variable zkc ∈ {0, 1}M , k, c ∈ 1, . . . , C,

in which each entry represents whether the corresponding

proposal is an object of the k-th category. We make two

assumptions for solving zk=c
c .

• For image I with yc = 1, at least one proposal in Bc

belongs to the c-th category, i.e., 1⊤ · zk=c
c ≥ 1 where

1 is an M -dimensional all-one vector.

• For image I′ with yc = 0, none of proposals in B′
c′ 6=c

belongs to the c-th category, i.e., 1⊤ · zk=c

c′ 6=c
= 0.

Under the two assumptions, we can treat each image with

yc = 1 as a positive bag and treat each image with yc = 0
as a negative bag. We then cast the task of solving zk=c

c as

an MIL problem. Note that multiple positive instances can

be collected according to the scores of the MIL classifier for

each class.

We use the smoothed hinge loss function in [36]. Note

that the initialization step in [36] is carried out via a sub-

modular clustering method from the initial object propos-

als. The noisy collection of proposals limits the perfor-

mance of clustering process. Also, the initialization step

is time-consuming as the similarity measures among all the

proposals in all the images need to be computed. Our class-

specific proposals not only help filter the object proposal

collection but also reduce the training time of MIL.

4.2. Object detector learning

In this step, we aim at adapting the network from multi-

label image classification for object detection. We jointly

train the detection network with C object classes and a

background class instead of training each object detec-

tor independently. Similar to [13], we replace the 2C-

dimensional classification layer (for image-level classifica-

Figure 5. Examples of the mined object proposals using the mask-

out strategy. We show top 10 proposals for each category (different

colors indicate mined proposals for different categories). Note that

the mined object proposals are class-specific.

tion) with a randomly initialized (C+1)-dimensional classi-

fication layer (for instance-level classification with C object

classes and background). We take the top-scoring proposals

given by MIL as positive samples for each object category.

We collect background samples from object proposals that

have a maximum IoU ∈ [0.1, 0.5) overlap with the mined

object proposals by MIL. For data augmentation, we also

treat all the proposals that have IoU ≥ 0.5 overlap with a

mined object as positive samples.

Given a test image, we first generate object proposals us-

ing Edge Boxes [46] and use the adapted detection network

to score each proposal. We then rank all the proposals and

use non-maximum suppression to obtain final detections.

5. Experiments

5.1. Implementation details

For multi-label image classification training, we use the

AlexNet [21] as our base CNN model, initialized with the

parameters pre-trained on ImageNet dataset. We train the

network with SGD at a learning rate of 0.001 for 10,000

mini-batch iterations. We set the size of mini-batch to 500.

For class-specific proposal mining, we use Edge Boxes [46]

to generate 2,000 initial object proposals and select top

M=50 proposals as the input for multiple instance learning.

For object detector training, we use AlexNet [21] and VG-

GNet [32] as our base models. Similar to Fast-RCNN [13],

we set the maximum number iterations to 40k.

We implement our network using Caffe [19]. For the

PASCAL VOC 2007 trainval set, fine-tuning the AlexNet

for classification and detection adaptation takes about 10

hours and 1 hours with a Tesla K40 GPU, respectively.

With our mined class-specific proposals, it takes about

3 hours to mine confident object samples on PC wBaz-

zani:WACV16ith a 4.0 GHz Intel i7 CPU and 16 GB mem-

ory. The source code, as well as the pre-trained models, are

available at the project webpage1.

5.2. Datasets and evaluation metrics

Datasets. We extensively evaluate the proposed method

on the PASCAL VOC 2007, 2010, 2012 datesets [10, 9] and

ILSVRC 2013 detection dataset [6, 28]. For VOC 2007, we

1https://sites.google.com/site/lidonggg930/wsl
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use both train and val splits as the training set and test split

as our test set. For VOC 2010 and 2012, we use train split as

the training set and val split as the test set. For the ILSVRC

detection dataset, we follow the RCNN [14] in splitting the

val data into val1 and val2. We use val1 for training ob-

ject detectors and val2 for validating the localization perfor-

mance. Note that we do not use any instance-level anno-

tations (i.e., object bounding boxes) for training in all the

datasets.

Evaluation metrics. We use two metrics to evaluate lo-

calization performance. First, we compute the fraction of

positive training images in which we obtain correct local-

ization (CorLoc) [7]. Second, we measure the performance

of object detectors using average precision (AP) in the test

set. For both metrics, we consider that a bounding box is

correct if it has an intersection-over-union (IoU) ratio of at

least 50% with a ground-truth object instance annotation.

5.3. Comparison to the stateoftheart

We compare the proposed algorithm with state-of-the-

art methods for weakly supervised object localization, in-

cluding the MIL-based methods [33, 4, 36, 37, 2, 3], topic

model [30], and latent category learning [41]. For fair com-

parisons, we do not include methods that use strong labels

for training.

Table 1 shows performance comparison in terms of Cor-

Loc on the PASCAL VOC 2007 trainval set. Our method

achieves 52.4% of average CorLoc for all the 20 categories,

outperforming all the state-of-the-art algorithms. Compared

to the MIL-based approaches [33, 3, 4], we achieve signif-

icant improvements by 10 to 20 points. While these ap-

proaches use sophisticated model initialization or optimiza-

tion strategies for improving MIL, the inevitable noise in

the initial collection of category-independent proposals lim-

its the performance of trained object detectors during MIL

iterations. Compared to the topic model [30], we incorpo-

rate inter-class relations by jointly training CNN with all ob-

ject classes and background class while they rely on hand-

crafted features. Wang et al. [41] use a pre-trained CNN

for feature extraction. In contrast, we learn feature repre-

sentations with our classification and detection adaptation,

boosting the performance of CorLoc by 3.9 points.

Table 2 shows the detection average precision (AP) per-

formance on the PASCAL VOC 2007 test set. Our method

achieves 39.5% mAP, outperforming the state-of-the-art ap-

proaches by 8 points. Our method using the AlexNet

achieves comparable performance with the second best

method [41], 31.6% (ours) vs. 31.0% [41]. Most of ex-

isting methods [41, 3, 2, 36, 37] use pre-trained networks to

extract features for object detector learning and do not fine-

tune the network. In contrast, we progressively adapt the

network from whole-image classification to object detec-

tion. Such domain adaptation helps learn better object de-

tectors from weakly annotated data. Unlike previous work

that relies on noisy and class-independent proposals to se-

lect object candidates, we mine purer and class-specific pro-

posals for MIL training, which can discard background clut-

ters and confusion with similar objects.

Table 3 shows our detection performance in terms of

mean average precision on the PASCAL VOC 2010 and

2012 and ILSVRC 2013 datasets2. Using the VGGNet, our

method achieves better localization performance. We in-

clude the full results in the supplementary materials.

5.4. Ablation studies

To quantify the relative contribution of each step, we ex-

amine the performance of our approach using different con-

figurations.

• OM: Using mask-out strategy to mine top M=50 class-

specific object proposals.

• MIL: Using MIL to mine confident objects.

• FT: Using the mined object candidates to fine-tune the

detection network.

The last four rows of Table 1 show our CorLoc per-

formance on the PASCAL VOC 2007 trainval set. We

achieve average CorLoc of 31.8% by directly using top-

ranked class-specific object proposals. Using MIL for se-

lecting confident objects, we obtain 41.2% with around 10

points improvement. The result demonstrates that MIL it-

erations help to select better object proposals. The per-

formance boost comes from: (1) the mined object pro-

posals are less noisy and can discard background clutters,

and (2) the mined object proposals are class-specific and

can discard confusion with similar objects. Furthermore,

adding detection network fine-tuning, we obtain 49.8% per-

formance using the AlexNet and 52.4% using a deeper VG-

GNet [32]. Such network training further boosts the per-

formance by another 10 points. In detection adaptation, we

collect confident object proposals and use them to train all

the layers. This fine-tuning step helps turn image classifiers

to object detectors for modeling object appearance.

The last five rows of Table 2 show our detection AP per-

formance on the PASCAL VOC 2007 test set. We refer

Song et al. [36] as our MIL baseline. A straightforward

approach to train detector uses proposals selected by MIL.

However, the simple combination only gives marginal per-

formance improvement from 22.7% to 23.0% because the

selected proposals by MIL are too noisy for training object

detection network effectively without object mining. Using

the top-ranked object proposals based on the adapted classi-

fication network, we achieve significant improvement from

23.0% to 31.0%, highlighting the importance of progressive

adaptation. Using a deeper network VGGNet [32], we can

achieve a large improvement from 26.2% to 39.5%. In ad-

2The result of Cinbis et al. [4] is obtained on the VOC 2010 test set.

The result of Wang et al. [41] is obtained on the ILSVRC 2013 val set.
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Table 1. Quantitative comparison in terms of correct localization (CorLoc) on the PASCAL VOC 2007 trainval set.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Avg.

Siva et al. [33] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2

Shi et al. [30] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

Cinbis et al. [4] 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8

Bilen et al. [3] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

Wang et al. [41] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

OM 50.4 30 34.6 18.2 6.2 39.3 42.2 57.3 10.8 29.8 20.5 41.8 43.2 51.8 24.7 20.8 29.2 26.6 45.6 12.5 31.8

OM + MIL 64.3 54.3 42.7 22.7 34.4 58.1 74.3 36.2 24.3 50.4 11.0 29.2 50.5 66.1 11.3 42.9 39.6 18.3 54.0 39.8 41.2

OM + MIL + FT-AlexNet 77.3 62.6 53.3 41.4 28.7 58.6 76.2 61.1 24.5 59.6 18.0 49.9 56.8 71.4 20.9 44.5 59.4 22.3 60.9 48.8 49.8

OM + MIL + FT-VGGNet 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

Table 2. Quantitative comparison in terms of detection average precision (AP) on the PASCAL VOC 2007 test set.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Cinbis et al. [4] 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4

Song et al. [36] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

Song et al. [37] 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6

Bilen et al. [2] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4

Bilen et al. [3] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

Wang et al. [41] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

OM + MIL 37.2 35.7 25.8 13.8 12.7 36.2 42.4 22.3 14.3 24.2 9.4 13.1 27.9 38.9 3.7 18.7 20.1 16.3 36.1 18.4 23.4

OM + FT-AlexNet 30.4 22.4 15.0 3.5 2.8 26.6 27.3 46.8 0.8 10.8 13.1 34.7 35.8 38.7 12.6 8.4 8.8 12.8 33.6 4.6 19.5

MIL + FT-AlexNet 17.5 50.2 22.5 4.0 9.9 38.8 48.7 39.3 0.3 22.1 10.1 19.8 22.4 49.9 3.4 15.5 32.1 10.8 40.0 1.9 23.0

OM + MIL + FT-AlexNet 49.7 33.6 30.8 19.9 13 40.5 54.3 37.4 14.8 39.8 9.4 28.8 38.1 49.8 14.5 24.0 27.1 12.1 42.3 39.7 31.0

OM+ FT-VGGNet 30.4 25.3 11.1 6.3 1.5 31.3 29.4 49.1 1.0 10.6 12.6 42.0 38.7 36.7 12.8 10.8 10.3 10.3 34.1 5.0 20.5

MIL + FT-VGGNet 25.6 58.5 25.3 1.8 11.7 43.5 53.4 35.7 0.2 32.3 10.7 19.3 32.8 56.5 1.8 15.6 37.3 16.0 43.6 2.9 26.2

OM + MIL + FT-VGGNet 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

Table 3. Object detection performance (mAP) on the PASCAL

VOC 2010 and 2012 and ILSVRC 2013 datasets.

Methods VOC 2010 VOC 2012 ILSVRC 2013

Cinbis et al. [4] 18.5 - -

Wang et al. [41] - - 6.0

OM + MIL + FT-AlexNet 21.4 22.4 7.7

OM + MIL + FT-VGGNet 30.7 29.1 10.8

dition, we evaluate the performance using the best proposal

(M=1) mined by the mask-out strategy for detection adap-

tation. The OM+FT method achieves 19.5% mAP using

AlexNet and 20.5% using VGGNet. Without the MIL step,

the results are poor due to noisy training samples. These

experimental results validate the importance of the progres-

sive adaptation steps proposed in this work.

Table 4 shows results using different mask-out strategies.

Similar to the top 5 error evaluation for the ImageNet clas-

sification protocol, we compute the percentage of positive

images in which an object is correctly located by at least

one from top M proposals. When M=1, this metric reduces

to the commonly used CorLoc. These results show our con-

trastive score In-Out strategy outperforms Whole-Out. Only

using classification score of the region itself can also collect

good proposals because classification adaptation step trains

the network to be sensitive to object categories of target

datasets. As the classification network is fine-tuned using

the whole image, the mask-out image provides additional

discriminative power for ranking the object proposals. Con-

sidering the trade-off between recall and precision, we set

M=50 throughout the experiments.

Table 4. Different mask-out strategies in terms of average correct

localization from top M proposals.

Mask-out strategy M=1 M=10 M=50 M=100

In-Out 31.8 73.8 82.9 84.2

Whole-Out 29.6 64.9 76.0 78.5

In 32.7 71.0 79.9 81.8

5.5. Error analysis

In Figure 7, we apply the detector error analysis tool

from Hoiem et al. [18] to analyze errors of our detector.

Comparing the first and third columns, we achieve signifi-

cant improvement of localization performance by detection

adaptation. Fine-tuning the network for object-level detec-

tion helps learn discriminative appearance model for object

categories, particularly for animals and furniture classes.

Comparing the second and third columns, the importance of

class-specific proposal mining step is clear. We attribute the

performance boost to the classification adaptation that fine-

tunes the network from 1000-way single-label classification

(source) to 20-way multi-label classification task (target).

From the error analysis plots, the majority of errors

comes from inaccurate localization. We show a few sample

results in Figure 8. Our model often detects the correct cat-

egory of an object instance but fails to predict a sufficiently

tight bounding box, e.g., IoU ∈ [0.1, 0.5). For example,

we may detect a human face and a partial train and claim

to detect a person or a train. The error analysis suggests

that the learned model makes sensible errors. We believe

that we can further improve the performance of our model
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Figure 6. Sample detection results. Green boxes indicate ground-truth instance annotation. Yellow boxes indicate correction detections

(with IoU ≥ 0.5). For all the testing results, we set threshold of detection as 0.8 and use NMS to remove duplicate detections.

Figure 7. Detector error analysis. The detections are categorized

into five types of correct detection (Cor), false positives due to

poor localization (Loc), confusion with similar objects (Sim), con-

fusion with other VOC objects (Oth), and confusion with back-

ground (BG). Each plot shows types of detection as top detections

increase. Line plots show recall as function of the number of ob-

jects by IoU ≥ 0.5 (solid) and IoU ≥ 0.1 (dash). The results of

“MIL+FT” and “OM+MIL+FT” are obtained using the VGGNet.

by incorporating techniques for addressing the inaccurate

localization issues [5, 45].

6. Conclusion

We present a progressive domain adaptation approach to

tackle the weakly supervised object localization problem.

In classification adaptation, we transfer the classifiers from

source to target domains using a multi-label loss function

Figure 8. Sample results of detection errors due to imprecise lo-

calization.

for training a multi-label classification network. In detec-

tion adaptation, we transfer adapted classifiers to object de-

tectors. We first use a mask-out strategy to generate class-

specific object proposals and apply MIL to mine confident

candidates. We then use the selected object proposals to

fine-tune all the layers for object detection. Experimental

results demonstrate that our algorithm significantly outper-

forms the state-of-the-art methods. We achieve 39.5% mAP

on VOC 2007, surpassing the second best approach by 8

points.
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