
Deep Saliency with Encoded Low level Distance Map and High Level Features

Gayoung Lee

KAIST

gylee1103@gmail.com

Yu-Wing Tai

SenseTime Group Limited

yuwing@gmail.com

Junmo Kim

KAIST

junmo.kim@kaist.ac.kr

Abstract

Recent advances in saliency detection have utilized deep

learning to obtain high level features to detect salient re-

gions in a scene. These advances have demonstrated su-

perior results over previous works that utilize hand-crafted

low level features for saliency detection. In this paper, we

demonstrate that hand-crafted features can provide comple-

mentary information to enhance performance of saliency

detection that utilizes only high level features. Our method

utilizes both high level and low level features for saliency

detection under a unified deep learning framework. The

high level features are extracted using the VGG-net, and

the low level features are compared with other parts of an

image to form a low level distance map. The low level

distance map is then encoded using a convolutional neu-

ral network(CNN) with multiple 1 × 1 convolutional and

ReLU layers. We concatenate the encoded low level dis-

tance map and the high level features, and connect them

to a fully connected neural network classifier to evaluate

the saliency of a query region. Our experiments show that

our method can further improve the performance of state-

of-the-art deep learning-based saliency detection methods.

1. Introduction

Saliency detection aims to detect distinctive regions in

an image that draw human attention. This topic has re-

ceived a great deal of attention in computer vision and

cognitive science because of its wide range of applications

such as content-aware image cropping [22] and resizing [3],

video summarization [24], object detection [20], and person

re-identification [31]. Various papers such as DRFI [13],

GMR [30], DSR [17], RBD [32], HDCT [15], HS [29]

and GC [7] utilize low level features such as color, tex-

ture and location information to investigate characteristics

of salient regions including objectness, boundary convexity,

spatial distribution, and global contrast. The recent success

of deep learning in object recognition and classification [23]

brought to a revolution in computer vision. Inspired by the

(a) (b) (c) (d) (e) (f)
Figure 1: (a) Input images, (b) Ground truth masks, (c)

Fuzzy saliency masks from VGG16 features (HF setting,

described in Section 3.3), (d-f) Results of (d) MDF [16], (e)

MCDL [21], and (f) our method.

human visual system, deep learning builds hierarchical lay-

ers of visual representation to extract the high level features

of an image. Using extracted high level features, several re-

cent works [27, 16, 21] have demonstrated state-of-the-art

performance in saliency detection that significantly outper-

form previous works that utilized only low level features.

As discussed in [9], while high level features are good to

evaluate objectness in an image, they are relatively weak in

for determining precise localization. This is because mul-

tiple levels of convolutional and pooling layers “blur” the

object boundaries, and high level features from the output

of the last layer are too coarse spatially for the saliency de-

tection task. This problem is illustrated in Figure 1(c). To

generate a precise saliency mask, previous studies utilized

various methods including object proposal [27] and super-

pixel classification [16, 21]. Yet, it was still very hard to

differentiate salient regions from their adjacent non-salient

regions because their feature distances were not directly en-

coded.

In this paper, we introduce the encoded low level dis-

tance map (ELD-map), which directly encodes the feature

distance between each pair of superpixels in an image. Our

ELD-map encodes feature distance for various low level

features including colors, color distributions, Gabor filter

responses, and locations. Our ELD-map is unique in that it

uses deep learning as an auto-encoder to encode these low

level feature distances by multiple convolutional layers with

1× 1 kernels. The encoded feature distance map has strong
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Figure 2: Overall pipeline of our method. We compute the ELD-map from the initial feature distance map for each query

region and concatenate the high level feature from the output of the conv5 3 layer of the VGG16 model.

discriminative power to evaluate similarities between differ-

ent parts of an image with precise boundaries among super-

pixels. We concatenate our ELD-map and the output of the

last convolutional layer from the VGG-net (VGG16) [25]

to form a new feature vector which is a composite of both

high level and low level information. Using our new feature

vector, we can precisely estimate saliency of superpixels.

Without any post-processing, this method generates an ac-

curate saliency map with precise boundaries.

In summary, our paper offers the following contribu-

tions:

• We introduce the ELD-map which shows that low level

features can play complementary roles to assist high

level features with the precise detection of salient re-

gions.

• Compared with previous works that utilized either high

level or low level features, but not both, our work

demonstrates consistent improvements across different

benchmark datasets.

• Because high level features can be reused for differ-

ent query regions in an image, our method runs fast.

The testing time in the ECSSD dataset [29] takes only

around 0.5 seconds per an image.

2. Related Works

In this section, representative works in salient region de-

tection are reviewed. We refer readers to [4] and [5] for a

survey and a benchmark comparison of the state-of-the-art

salient region detection algorithms.

Recent trends in salient region detection utilize learning-

based approaches, which were first introduced by Liu

et al. [19]. Liu et al. were also the first group to

released a benchmark dataset (MSRA10K) with ground

truth evaluation. Following this work, several represen-

tative benchmarks with ground truth evaluation were re-

leased. These benchmarks include ECSSD [29], Judd [14],

THUR15K [6], DUTOMRON [30], PASCAL-S [18], and

FT [1]. They cover rich variety of images containing dif-

ferent scenes and subjects. In addition, each one exhibits

different characteristics. For example, the ground truth of

the MSRA10K dataset are binary mask images which were

manually segmented by human, while the ground truth of

the FT [1] dataset were determined by human fixation.

Discriminative Regional Feature Integration(DRFI) [13],

Robust Background Detection(RBD) [32], Dense

and Sparse Reconstruction(DSR) [17], Markov

Chain(MC) [12], High Dimensional Color Trans-

form(HDCT) [15], and Hierarchical Saliency(HS) [29] are

the top 6 models for salient region detection reported in the

benchmark paper [5]. These algorithms consider various

heuristic priors such as the global contrast prior [29] and the

boundary prior [13] and often generate high-dimensional

features to increase discriminative power [15, 13] to

distinguish salient regions from non-salient regions. These

methods are all based on hand-crafted low level features

without deep learning.

Deep learning has emerged in the field of saliency de-

tection last year. Several methods that utilize deep learn-

ings for saliency detection were simultaneously proposed.

This includes Multiscale Deep Feature(MDF) [16], Multi-

Context Deep Learning(MCDL) [21], and Local Estimation

and Global Search(LEGS) [27]. They utilized high level

features from the deep convolutional neural network (CNN)

and demonstrated superior results over previous works that

utilized only low level features. MDF and MCDL utilize su-

perpixel algorithms, and query each region individually to

assign saliency to superpixels. For each query region, MDF

generates three input images that cover different scopes of

an input image, and MCDL uses sliding windows with deep

CNN to compute the deep features of the center superpixel.

LEGS first generates an initial rough saliency mask from

deep CNN and refines the saliency map using an object pro-

posal algorithm.

Compared to the aforementioned methods, our work uti-
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Figure 3: Visualization of the construction process for the

initial low level feature distance map. Each grid cell, which

represents uniformly divided area of an image, is described

by the features of the superpixel that occupies the largest

area of the grid cell. Using the features, we construct an

N × N ×K feature distance map. The computed features

and distances are summarized in Table 1 and Table 2

lizes high level and low level features simultaneously. The

high level features evaluate the objectness in an image with

coarse spatial location and the low level features evaluate

similarities between the different superpixels in an image.

Our high level and low level features are combined and

evaluated by a multi-level fully connected neural network

classifier, that seamlessly considers both high level and low

level features to assign saliency to query superpixels. Ex-

periments demonstrate that our method significantly outper-

forms previous methods that utilize either low level features

or high level features, but not both.

3. Algorithms

The overall pipeline of our method is illustrated in Fig-

ure 2. First, the process for construction of the ELD-map

is described. Then, we describe how the high level features

were extracted and integrated with the ELD-map for salient

region classification. At the end of this section, we report

the results of our self evaluations to analyze the effects of

the ELD-map and the high level features in our saliency de-

tection framework.

3.1. Construction of the ELDmap

Our algorithm utilizes a superpixel-based approach for

saliency detection. To segment an image into superpixels,

the SLIC[2] algorithm is used. The major benefits of using

the SLIC algorithm for superpixel segmentation are that the

segmented superpixels are roughly regular and that it pro-

vides control on the number of superpixels.

After superpixel segmentation, the initial hand-crafted

low level features of each superpixel are calculated, and the

superpixel representation is converted into a regular grid

representation as illustrated in Figure 3. To be more spe-

cific, we assign superpixels to grid cells according to their

occupying area in each cell. This regular grid representation

is efficient for CNN architecture because we can convert im-

ages with different resolutions and aspect ratios into a fixed

size distance map without resizing and cropping.

In our implementation, the size of the regular grid

was set to 23 × 23. We index the superpixels as S =

Features of a superpixel (f(rc)) Feature Index

Average RGB value 1-3

Average LAB value 4-6

Average HSV value 7-9

Gabor filter response 10-33

Maximum Gabor response 34

Center location 35-36

RGB color histogram 37-61

LAB color histogram 62-86

HSV color histogram 87-110

Table 1: The list of extracted features of a superpixel.

Distance map features #f(·) Feature Index

f(cij)− f(rq) 1-36 1-36

χ2 distance(f(cij), f(rq)) 37-110 37-45

f(cij) 1-9 46-54

Table 2: The list of feature distances used for computing the

initial low level feature distance map. f(rq) is the extracted

features of a query superpixel, rq , and f(cij) is the extracted

features of a grid cell cij , where f(cij) := f(r∗c ). Details

are described in Section 3.1.

{r1, ..., rM}, and the grid cells of the regular grid as G =
{c11, c12, ..., cNN}, N = 23. We denote the computed fea-

ture descriptor of each superpixel region as f(rc). The col-

lected features for each superpixel are summarized in Ta-

ble 1. Our hand-crafted features are all low level features

related to colors (average colors in RGB, LAB, and HSV

spaces, and their local color histograms), textures (Gabor

filter responses [28] averaged over pixels in each region),

and locations (center location of a superpixel). We normal-

ize the pixel coordinates so that the range of coordinates

was within [0, 1] and include the maximum over 24 values

for the Gabor filter response in each region. Each grid cell

descriptor is equal to the descriptor of the superpixel which

occupies the largest area inside that grid cell, i.e., f(cij) :=
f(r∗c ), where r∗c = argmaxrc #pixels(rc ∩ cij).

Similar to MCDL[21] and MDF[16], we query the

saliency score of each region individually. For each query

region, we compute a low level feature distance map that

modelled the feature distances between the queried super-

pixel f(rq) and grid cells f(cij) in the regular grid. For

the mean color value and Gabor response, we simply com-

pute the differences within them where negative values are

allowed, and use the Chi-square (χ2) distance for color his-

tograms between r∗c and rq . We attach the average colors

of f(cij) at the end of the distance measurements as a ref-

erence point, and find that this improved the performance.

Table 2 summarizes the computed feature distances of the

initial feature distance map where the number of the initial

features (K) is 54. After computing the distances, the size

of the initial feature distance map becomes 23× 23× 54.
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The initial feature distance map is then encoded to a

compact but accurate feature distance map using the mul-

tiple 1 × 1 convolutional and ReLU layers, as illustrated

in Figure 2. The multiple 1 × 1 convolutional and ReLU

layers work as a fully connected layer across channels to

find the best nonlinear combination of feature distances that

better describe the similarities and dissimilarities between

a query superpixel and the other regions of an image. Be-

cause the dimension of the initial map is reduced, we call

this distance map as an encoded low level distance map

(ELD-map). In our implementation, the size of the ELD-

map was 23 × 23 × 3. In the self-evaluation experiment in

Table 3, we find that encoding the low level feature distance

map with the deep CNN with 1×1 kernel enhances the per-

formance of our method. The effects of the encoding will

be discussed in Section 3.3.

3.2. Integration with High Level Features

We extract the high level features using the VGG16

model pretrained by the ImageNet Dataset [23]. The

VGG16 [25] won the ImageNet2014 CLS-LOC task.

We used the VGG16 model distributed by Caffe Model

Zoo [11] without finetuning. We resize the input images

to 224 × 224 to fit to the fixed input size of the VGG16

model and extract a “conv5 3” feature map, which is gener-

ated after passing the last convolutional layer. The extracted

features has 512 channels and 14× 14 resolution. To fit the

features to our GPU memory, we attach an additional con-

volutional layer with a 1×1 kernel for feature selection and

dimensionality reduction as in GoogleNet [26].

For each input image, we process it with the pre-trained

deep CNN only once and reuse the extracted high level fea-

ture map for all queried regions. Therefore, our compu-

tational cost is small even when we use a very deep and

powerful model such as the VGG16 model. Although other

parts of our algorithm, including generating the ELD-map

and applying fully-connected layers, should be repeated

each time, the cost from these parts is much smaller than

running the VGG16 model.

Before applying the fully-connected layers to classify

the queried region, we concatenate the ELD-map and

“conv5 3” feature map after flattening each map. After-

wards, two fully-connected layers with 1024 nodes generate

a saliency score for the queried region using the concate-

nated features. We use the cross entropy loss for softmax

classifier to evaluate the outputs:

L = −
1∑

j=0

1(y=j) log(
ezj

ez0 + ez1
) (1)

where 0 and 1 denote non-salient and salient region labels

respectively, and z0 and z1 are the score of each label of

training data. Since the ELD-map features and the high

(a) (b) (c) (d) (e) (f)

Figure 4: Visual comparisons of results in our self-

evaluation experiments. (a) Input images, (b) Ground truth

masks, (c-f) the results of our algorithm (c) using both ELD-

map and high level features (ELD-HF) (d) using both non-

encoded low level distance map and high level features (LD-

HF) (e) using only encoded low level distance map (ELD)

(f) using only high level features (HF). Details of each ex-

periment are described in Table 3.

(a) ECSSD (b) PASCAL-S

Figure 5: Precision-Recall graphs of the controlled experi-

ments described in Table 3

(a) ECSSD (b) PASCAL-S

Figure 6: Precision-Recall graphs of the controlled experi-

ments to show the effect of the statistical features.

level features are fixed in length, their spatial correlation

can be learnt from training data automatically in the fully

connected layers.

3.3. Analysis of the Effects of the Encoded Low level
Distance map

Although theoretically neural networks can model any
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Setting

Description

Encoded Low level

Distance map

Non-encoded Low level

Distance map

High level features

from VGG16

f-measure on

ECSSD

f-measure on

PASCAL-S

ELD-HF Use Not Use Use 0.867 0.770

LD-HF Not Use Use Use 0.835 0.735

ELD Use Not Use Not Use 0.790 0.682

HF Not Use Location Only Use 0.768 0.693

Table 3: The detail of settings of the controlled experiments. Using both ELD-map and high level features from VGG16

shows the best performance.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7: Comparisons of the discriminative power of different features and our ELD-map feature space. (a) Input images,

the query superpixels are highlighted. (b)-(g) are the distance maps of the different features between the query superpixel and

other superpixels in an image. (b)-(c) Distance maps of average color of (b) R-channel (RGB color space), and (c) L-channel

(LAB color space). (d) Differences of the first Gabor filter responses. (e) Differences of the maximum gabor filter responses.

(f)-(g) Chi-square distance maps of (f) L-channel histogram (LAB color space), and (g) H-channel histogram (HSV color

space). (h)-(j) our Encoded Low level Distance map (ELD-map).

complex function[10], practically they may suffer from lim-

ited training data and limited computational resources. For

instance, overfitting and underfitting frequently occur be-

cause of a small dataset and the complexity of desired fea-

tures. It is also common for CNN to generate feature maps

with much lower resolution than original input images. By

providing strongly relevant information, the encoded low

level distance map(ELD-map) complements the features

from deep CNN and guides the classifier to learn properly.

ELD-map has two main advantages: (1) it can easily gener-

ate the fine-grained dense saliency mask, and (2) it provides

additional low level feature distances, which can be hard to

learn for CNN, such as Chi-square distance between his-

tograms.

We performed multiple controlled experiments to

demonstrate the effects of the ELD-map in our algorithm.

We conducted the experiments using four different settings:

The ELD-HF setting uses both the ELD-map and the high

level feature map from the VGG16 model. The LD-HF

setting utilizes both the low level feature distances and the

high level feature map, but does not encode the low level

distances with the 1 × 1 convolutional network. The ELD

setting uses only ELD-map without high level features from

the VGG16 model. The HF setting uses the high level fea-

ture map from VGG16 model and the location distance be-

tween the query region and other regions to notify which

region is queried. We ran all models until the training data

loss converged.

The results of the controlled experiments are shown in

Figure 4. The model using only the high level feature map

from the deep CNN detected the approximate location of

the salient objects but was unable to capture detailed loca-

tion because the high level feature maps had lower resolu-

tion than the resolution of the original input images. On the

other hand, the model with only the low level features failed

to distinguish the salient object in the first row. With both

the low level feature distances and the high level feature

map, the models could correctly capture salient objects and

their exact boundaries. Also, we found that the ELD-map

often helps to find salient objects that are difficult to detect

using only CNN as shown in the second row. We spec-

ulate that the ELD-map can provide additional information

which is hard to be accurately modeled by the convolutional

layers. Some of the hand-crafted features of our method are

statistical features, e.g. histogram, and we use χ2 distance to

measure the distance between histograms that would be dif-

ficult to learn by CNN. To demonstrate the effects of the sta-

tistical features, we re-train our network with the histogram

features removed from our network. The comparisons are

shown in Fig. 6. Clearly, the histogram features improve the

performance of our work. Similarly, for features in other

color space, e.g. LAB and HSV, it may require more layers
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ASD PASCAL-S ECSSD DUT-OMRON THUR15K

Ours 0.924 0.771 0.867 0.719 0.731

MCDL 0.928 0.737 0.837 0.703 0.686

MDF 0.931 0.759 0.831 0.694 0.670

LEGS 0.905 0.749 0.831 0.669 0.664

DRFI 0.919 0.692 0.787 0.665 0.670

DSR 0.886 0.645 0.737 0.626 0.611

GMR 0.909 0.664 0.740 0.610 0.597

HDCT 0.884 0.604 0.705 0.609 0.602

HS 0.902 0.637 0.731 0.616 0.585

Table 4: The F-measure scores of salient region detec-

tion algorithms on five popular datasets. The best score is

marked in bold.

to model such transformation, but we can easily adopt them

from hand-crafted features.

Table 3 summarizes the controlled experiments for the

self-evaluation of our method. It also shows the quanti-

tative comparisons in terms of f-measure on the ECSSD

and the PASCAL-S datasets. The corresponding quantita-

tive comparisons in terms of the Precision-Recall graphs are

presented in Figure 5. The model utilizing both ELD-map

and high level features exhibits the best performance. By

comparing ELD-HF and LD-HF settings, we found that it

is useful to apply 1 × 1 kernels among the low level fea-

tures.

Figure 7 shows the initial hand-crafted distance features

and ELD-map. For the ELD-map, which is originally the

23 × 23 size grid, we visualized each superpixel using the

feature value of the closest grid cell according to the lo-

cation of the center pixel. Each hand-crafted feature has

its own weakness but it captures different aspects of sim-

ilarities or dissimilarities between superpixels. Our 1 × 1
kernels work as fully-connected layers among low level

feature distances and generate a powerful feature distance

map by combining all of the original feature distances non-

linearly. This nonlinear mapping is data-driven which is

directly learnt from training data automatically. We can

see the strong discriminative power of feature distances in

ELD-map. While the third channel (j) is related to the posi-

tion of the query region, the other two channels (h-i) seem

to indicate the differences of appearance such as color and

texture. Therefore, the ELD-map helps to group regions

that belong to the same object, because regions which have

the similar color and texture have similar values in the two

channels of the ELD-map regardless of their position.

4. Experiment and Discussion

We evaluated the performance of our algorithm using

various datasets. The MSRA10K [19] is a dataset with

10,000 images which includes the ASD dataset [1]. Most

images in this dataset contains single object. The PASCAL-

S [18] is generated from the PASCAL VOC dataset [8] and

contains 850 natural images. The ECSSD [29] contains

1,000 images which have semantic meaning in their ground

ASD PASCAL-S ECSSD DUT-OMRON THUR15K

Ours 0.035 0.121 0.080 0.091 0.095

MCDL 0.035 0.142 0.102 0.089 0.102

MDF 0.051 0.142 0.108 0.092 0.127

LEGS 0.063 0.155 0.119 0.133 0.125

DRFI 0.085 0.196 0.166 0.155 0.150

DSR 0.080 0.205 0.173 0.139 0.142

GMR 0.075 0.217 0.189 0.189 0.181

HDCT 0.119 0.229 0.199 0.164 0.177

HS 0.111 0.262 0.228 0.227 0.218

Table 5: The Mean Absolute Error(MAE) of salient re-

gion detection algorithms on five popular datasets. The best

score is marked in bold.

truth segmentation. It also contains images with complex

structures. The DUT-OMRON [30] has 5,168 high qual-

ity images and the THUR15K [6] contains 6,232 images of

specific classes.

We trained our model using 9,000 images from the

MSRA10K dataset after excluding the same images in ASD

dataset. We did not use validation set and trained the model

until its training data loss converges. From each image, we

use about 30 salient superpixels and 70 non-salient super-

pixels; around 0.9 million input data are generated. The

layers of VGG16 model are fixed by setting the learning rate

equal to zero. For other layers, we initialize the weights by

the “xavier” (caffe parameter), and we set the base learn-

ing rate equal to 0.001. We use stochastic gradient descent

method with momentum 0.9 and decrease running rate 90%

when training loss does not decrease. Training our model

takes 3 hours for 100,000 iterations with mini-batch size

128.

Our results were compared with MCDL [21], MDF [16],

LEGS [27], DRFI [13], DSR [17], GMR [30], HDCT [15],

and HS [29], which are the state-of-the-art algorithms.

DRFI, DSR, GMR, HDCT and HS use low level features

and MCDL, MDF and LEGS utilize deep CNN for high

level context. We obtained the result images from the

project site of each algorithm or the benchmark evalua-

tion [5]. The results which were not provided were gen-

erated from the authors’ source codes published in the

web. The comparisons on Precision-Recall(PR) graph and

Mean Absolute Error(MAE) graph are presented in Fig-

ure 8. Maximum F-measure scores and MAE values are

also described in Table 4 and Table 5. We used the eval-

uation codes used in the benchmark paper [5]. The PR

graph and f-measure score tend to be more informative than

ROC curve because salient pixels are usually less than non-

salient [5]. Following the criteria by Achanta et. al. [1],

we moved the threshold from 0 to 255 to generate binary

masks(M ). Using the ground truth(G), the precision and

recall is calculated as follows:

Precision =
|M

⋂
G|

|M |
, Recall =

|M
⋂
G|

|G|
(2)
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(a) ASD (b) PASCAL-S (c) ECSSD (d) DUT-OMRON (e) THUR15K

Figure 8: From top to bottom, Precision-Recall (PR) graph, F-measure score with different thresholds and Mean Absolute

Error (MAE) of various algorithms on five popular datasets.

We also reported the F-Measure score which is a bal-

anced measurement between precision and recall as fol-

lows:

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
(3)

where β2 is typically set to 0.3. We visualized f-measure

score for the different thresholds and reported the maximum

f-measure score which well describes the overall detection

performance [5]. In our algorithm, making binary masks us-

ing the high threshold around 240 generated good f-measure

score.

The overlapping-based evaluations give higher score to

methods which assign high saliency score to salient pixel

correctly. However, the evaluation on non-salient regions

can be unfair especially for the methods which success-

fully detect non-salient regions, but missed the detection

of salient regions [5]. Therefore, we also calculated the

mean absolute error(MAE) for fair comparisons as sug-

gested by [5]. The MAE evaluates the detection accuracy

as follow:

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|S(x, y)−G(x, y)| (4)

where W and H are width and height of an image, S is

(a) (b) (c) (d) (e)

Figure 10: Failure cases of our algorithm. (a) Input im-

ages, (b) Ground truths, Results of (c) our method, (d)

MCDL [21], (e) MDF [16].

the estimated saliency map and G is the ground truth binary

mask.

In Figure 8, the PR-graph indicates our algorithm

achieves the better performance than the previous works

including MDF and MCDL which also utilize CNN mod-

els. Our algorithm shows the lowest MAE and the high-

est maximum F-measure score on most of the datasets. Vi-

sual comparisons of various methods are shown in Figure 9.
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Figure 9: Visual comparisons of our results and the state-of-the-art methods on difficult scenes. (a) original image, (b) ground

truth, (c) Ours (d) MCDL [21] (e) MDF [16] (f) LEGS [27] (g) DRFI [13], (h) DSR [17], (i) GMR [30], (j) HDCT [15] (k)

HS [29]. From the top to the bottom, row 1-2 are the images with a low-contrast salient object, row 3-4 are with complicated

background, row 5-6 are with multiple salient objects and row 7 is with a salient object touching the image boundaries.

We visualize the results from various difficult cases includ-

ing low-contrast objects (row 1-3), complicate backgrounds

(row 4-6), small salient objects (row 7-8), multiple salient

objects(row 9-10) and touching boundary examples (row

11-12). Our algorithm shows especially good performance

on images with low-contrast salient objects and complicated

backgrounds, and also works well on other difficult scenes.

In Figure 10, we reported some failure cases. The first

and the second results contain correct salient objects but

also highlight non-salient regions. The third and fourth

examples have the extremely difficult scenes with a small,

low-contrast and boundary touching the salient object. Be-

cause these kinds of data are not provided much by the train-

ing data, MSRA10K, we may further improve the perfor-

mance with richer training data. For these difficult scenes,

MCDL [21] and MDF [16] also fail to find the salient ob-

jects precisely.

The running time of our algorithm was measured from

the ECSSD dataset, where tested images were of size 400×
300. We used a server machine with intel i7 CPU, 8GB

RAM and GTX Titan-Black for testing. Our model, devel-

oped by C++ and based on Caffe [11] library, took around

0.5 seconds per image. The training of our deep CNN took

around 3 hours under the same environment. The short

training time and testing time is also an advantage of our

method. This is due to the sharing of our high level features

which only need to be computed once for a whole image.

5. Conclusion

In this paper, we have introduced a new method to inte-

grate the low-level and the high-level features for saliency

detection. The Encoded Low-level Distance map (ELD-

map) has stronger discriminative power than the original

low-level feature distances to measure similarities or dis-

similarities among superpixels. When concatenated with

the high-level features from the deep CNN model (VGG16),

our method shows the state-of-the-art performance in terms

of both visual qualities and quantitative comparisons. As

a future work, we are planning to explore more various

CNN architectures to further improve the performance of

our work.
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