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Abstract

We introduce a new technique that automatically gen-

erates diverse, visually compelling stylizations for a pho-

tograph in an unsupervised manner. We achieve this by

learning style ranking for a given input using a large

photo collection and selecting a diverse subset of matching

styles for final style transfer. We also propose an improved

technique that transfers the global color and tone of the

chosen exemplars to the input photograph while avoiding

the common visual artifacts produced by the existing style

transfer methods. Together, our style selection and transfer

techniques produce compelling, artifact-free results on a

wide range of input photographs, and a user study shows

that our results are preferred over other techniques.

1. Introduction

Photographers often stylize their images by editing their

color, contrast and tonal distributions – a process that

requires a significant amount of skill with tools like Adobe

Photoshop. Instead, casual users use preset style filters pro-

vided by apps like Instagram to stylize their photographs.

However, these fixed sets of styles do not work well for

every photograph and in many cases, produce poor results.

Example-based style transfer techniques [22, 3] can

transfer the look of a given stylized exemplar to another

photograph. However, the quality of these results is tied

to the choice of the exemplar used, and the wrong choices

often result in visual artifacts. This can be avoided in

some cases by directly learning style transforms from input-

stylized image pairs [5, 25, 12, 28]. However, these

approaches require large amounts of training data, limiting

them to a small set of styles.

Our goal is to make the process of image stylization

adaptive by automatically finding the “right” looks for

a photograph (from potentially hundreds or thousands of

different styles), and robustly applying them to produce a

diverse set of stylized outputs. In particular, we consider

stylizations that can be represented as global transforma-

tions of color and luminance. We would also like to do

this in an unsupervised manner, without the need for input-

stylized example pairs for different content and looks.

We introduce two datasets to derive our stylization

technique. The first is our manually curated target style

database, which consists of 1500 stylized exemplar images

that capture color and tonal distributions that we consider

as good styles. Given an input photograph, we would like

to automatically select a subset of these style exemplars

that will guarantee good stylization results. We do this by

leveraging our second dataset – a large photo collection

that contains millions of photographs and spans the range

of styles and semantic content that we expect in our in-

put photographs (e.g., indoor photographs, urban scenes,

landscapes, portraits, etc.). These datasets cannot be used

individually for stylization; the style dataset is small and

does not span the full content-style space, and the photo

collection is not curated and contains both good and poorly-

stylized images. The key idea of our work is that we can

use the large photo collection to learn a content-to-style

mapping and bridge the gap between the source photograph

and the target style database. We do this in a completely

unsupervised manner, allowing us to easily scale to a large

range of image content and photographic styles.

We segment the large photo collection into content-based

clusters using semantic features, and learn a ranking of

the style exemplars for each cluster by evaluating their

style similarities to the images in the cluster. At run time,

we determine the semantic clusters nearest to the input

photograph, retrieve their corresponding stylized exemplar

rankings, and sample this set to obtain a diverse subset of

relevant style exemplars.

We propose a new robust technique to transfer the global

color and tone statistics of the chosen exemplars to the

input photo. Doing this using previous techniques can

produce artifacts, especially when the exemplar and input

statistics are very disparate. We use regularized color and

tone mapping functions, and use a face-specific luminance

correction step to minimize artifacts in the final results.

We introduce a new benchmark dataset of 55 images

with manually stylized results created by an artist. We

compare our style selection method with other variants

as well as the artist’s results through a blind user study.

We also evaluate the performance of a number of current

statistics-based style transfer techniques on this dataset,
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and show that our style transfer technique produces better

results than all of them. To the best of our knowledge, this is

the first extensive quantitative evaluation of these methods.

The technical contributions of our work include:

1. A robust style transfer method that captures a wide

range of looks while avoiding image artifacts,

2. An unsupervised method to learn a content-specific

style ranking using semantic and style similarity,

3. A style selection method to sample the ranked styles to

ensure both diversity and quality in the results, and

4. A new benchmark dataset with professional styliza-

tions and a comprehensive user evaluation of various

style selection and transfer techniques.

2. Related Work

Example-based Style Transfer One popular approach for

image stylization is to transfer the style of an exemplar

image to the input image. This approach was pioneered by

Reinhard et al. [22] who transferred color between images

by matching the statistics of their color distributions. There

are several subsequent work [24, 19, 18, 21] that improves

this technique. There are several methods that compute

transfer functions from correspondences [11, 13, 1]. Please

refer to [26, 10] for a detailed survey of different color trans-

fer methods. We base our chrominance transfer function on

the work of Pitié et al. [18] but add a regularization term to

make it robust to large differences in the color distributions

being matched.

Style transfer techniques also match the contrast and

tone between images. Bae et al. [3] propose a two-scale

technique to transfer both global and local contrast. Aubry

et al. [2] demonstrate the use of local Laplacian pyramids

for contrast and tone transfer. Shih et al. [23] use a multi-

scale local contrast transfer technique to stylize portrait

photographs. We propose a parametric luminance reshaping

curve that is designed to be smooth and avoids artifacts

in the results. In addition, we propose a face luminance

correction method that is specifically designed to avoid

artifacts for portrait shots.

Learning-based Stylization and Enhancement Another

approach for image stylization is to use supervised methods

to learn style mapping functions from data consisting of

input-stylized image pairs. Wang et al. [25] introduce a

method to learn piece-wise smooth non-linear color map-

pings from image pairs. Yan et al. [28] uses deep neural

networks to learn local nonlinear transfer functions for a

variety of photographic effects. There are also several

automatic learning-based enhancement techniques. Kang et

al. [15] present a personalized image enhancement frame-

work using distance metric learning. It was extended by [6],

which proposes collaborative personalization. Bychkovsky

et al. [5] build a reference dataset of input-output image

pairs. Hwang et al. [12] propose a context-based local

image enhancement method. Yan et al. [27] account for

the intermediate decisions of a user in the editing process.

While these learning-based methods show impressive ad-

justment results, collecting training data and generalizing

them to a large number of styles is very challenging.

In contrast, our technique to learn content-specific style

rankings is completely unsupervised and easily generalizes

to a large number of content and style classes.

Our technique is similar in spirit to two papers that

leverage large image collections to restore/stylize the color

and tone of photographs. Dale et al. [7] find visually similar

images in a large photo collection, and use their aggregate

color and tone statistics to restore the input photograph.

This aggregation causes a regression to the mean that is

appropriate for image restoration but not stylization. Liu

et al. [17] use a user-specified keyword to search for images

that are used to stylize the input photo. The final results

are highly dependent on the choice of the keyword and it

can be challenging to predict the right keywords to stylize a

photograph. Our technique automatically predicts the right

styles for the input photograph.

3. Overview

Given an input photograph, I , our goal is to automati-

cally create a set of k stylized outputs O1, O2, · · · , Ok. In

particular, we focus on stylizations that can be represented

as global transformations of the input color and luminance

values. The styles we are interested in are captured by a

curated set of exemplar images S1, S2, · · · , Sn, (n >> k).
Using images as style examples makes it intuitive for users

to specify the looks they are interested in.

We use an example-based style transfer algorithm to

transfer the look of a given exemplar image to the input

photograph. While example-based techniques can produce

compelling results [10], they often cause visual artifacts

when there are strong differences in the input and exemplar

images being processed. In this work, we develop regular-

ized global color and tone mapping functions (Sec. 4) that

are expressive enough to capture a wide range of effects, but

sufficiently constrained to avoid such artifacts.

The quality of the stylized result O is also closely tied to

the choice of the exemplar S. Using an outdoor landscape

image, for example, to stylize a portrait could lead to poor

transfer results (see Fig. 1(b)). It is therefore important

to choose the “right” set of exemplar images based on

the content of the input photograph. We use a semantic

similarity metric – that we learned using a convolutional

neural network (CNN) – to match images with similar

content. Given this semantic similarity measure, one

approach would be to use it directly to find exemplar images

with content similar to an input photograph and stylize

it. However, the curated exemplar dataset is limited and

2471



(a) Input photograph (b) Random selection from the style database

(c) Semantic selection from the style database

(d) Semantic selection from the large photo collection

(e) Our style selection
Figure 1. Stylization results with different choices of the exemplar images. All exemplars are shown in insets in the top-left corner.

unlikely to contain style examples for every content class.

Using the semantic similarity metric to find the closest

stylized exemplar to an input photograph will not guarantee

a good match, and as illustrated in Fig. 1(c), could lead to

poor stylizations.

In order to learn a content-specific style ranking,

we crawl a large collection of Flickr interesting photos

P1, P2, · · · , Pm, (m >> n) that cover a wide range of

different content with varying styles and levels of quality.

A straightforward way of stylizing an input photograph

could be to use the semantic similarity measure to directly

find matching images from this large collection and transfer

their statistics to the input photograph. However, this large

collection of photos is not manually curated, and contains

images of both good and bad quality. Performing style

transfer using the low-quality photographs in the database

can lead to poor stylizations, as shown in Fig. 1(d). While

these results can be improved by curating the photo collec-

tion, this is an infeasible task given the size of the database.

We leverage the large photo collection to learn a style

ranking for each content class in an unsupervised way. We

cluster the photo collection into a set of semantic classes

using the semantic similarity metric (Sec. 5.1). For each

image in a semantic class, we vote for the best matching

stylized exemplar using a style similarity metric (Sec. 5.2).

We aggregate these votes across all the images in the class

to build a content-specific ranking of the stylized exemplars.

At run time, we match an input photograph to its

closest semantic classes and use the pre-computed style

ranking for these classes to choose the exemplars. We

use a greedy sampling technique to ensure a diverse set

of examples (Sec. 5.3), and transfer the statistics of the

sampled exemplars to the input photograph using our robust

example-based transfer technique. As shown in Fig. 1(e),

our style selection technique chooses stylized exemplars

that are not necessarily semantically similar to the input

photograph, yet have the “right” color and tone statistics

to transfer, and produces results that are significantly better

than the approaches of directly searching for semantically

similar images in the style database or the photo collection.

Fig. 2 illustrates the overall framework of our stylization

system.

4. Robust Example-based Style Transfer

We stylize an input photograph, I , by applying global

transforms to match its color and tonal statistics to those

of a style example, S. This space of transformations

encompasses a wide range of stylizations that artists use,

including color mixing, hue and saturation shifts, and non-

linear tone adjustments. While a very flexible transfer

model can capture a wide range of photographic looks, it

is also important that it can be robustly estimated and does

not cause artifacts; this is particularly important in our case,

where the images being mapped may differ significantly

in their content. With this in mind, we design color and

contrast mapping functions that are regularized to avoid

artifacts.

To effectively stylize images with global transforms, we

first compress the dynamic ranges of the two images using a

γ (= 2.2) mapping and convert the images into the CIELab

colorspace (because it decorrelates the different channels
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Figure 2. The overall framework of our system.

well). Then, we stretch the luminance (L channel) to cover

the full dynamic range after clipping both the minimum

and the maximum 0.5 percent pixels of luminance levels,

and apply different transfer functions to the luminance and

chrominance components.

Chrominance Our color transfer method maps the statis-

tics of the chrominance channels of the two images. We

model the chrominance distribution of an image using a

multivariate Gaussian, and find a transfer function that

creates the output image O by mapping the Gaussian statis-

tics NS(µS ,ΣS) of the style exemplar S to the Gaussian

statistics NI(µI ,ΣI) of the input image I as:

cO(x) = T (cI(x)− µI) + µS s.t. TΣIT
⊤ = ΣS , (1)

where T is a linear transformation that maps chrominance

between the images and c(x) is the chrominance at pixel x.

Following Pitié and Kokaram [18], we solve for the color

transform using the following closed form solution:

T = Σ
−1/2
I

(

Σ
1/2
I ΣSΣ

1/2
I

)1/2

Σ
−1/2
I . (2)

This solution is unstable for low input covariance values,

leading to color artifacts when the input has low color

variation. To avoid this, we regularize this solution by

clipping diagonal elements of ΣI as:

Σ′
I = max(ΣI , λrI), (3)

and substitute it into Eq. (2). Here I is an identity matrix.

This formulation has the advantage that it only regularizes

colors channels with low variation without affecting the

others. We use a regularization of λr = 7.5.

Luminance We match contrast and tone using histogram

matching between the luminance channels of the input

and style exemplar images. Direct histogram matching

typically results in arbitrary transfer functions and may

produce artifacts due to non-smooth mapping or excessive

stretching/compressing of the luminance values. Instead,

we design a new parametric model of luminance mapping

that allows for strong expressiveness and regularization

simultaneously. Our transfer function is defined as:

lO(x) = g(lI(x)) =
arctan(mδ ) + arctan( lI(x)−m

δ )

arctan(mδ ) + arctan( 1−m
δ )

, (4)

where lI(x) and lO(x) are the input and output luminance

respectively, and m and δ are the two parameters of the

mapping function. m determines the inflection point of the

mapping function and δ determines the degree of luminance

stretching around the inflection point. This parametric func-

tion can represent a diverse set of tone mapping curves and

we can easily control the degree of stretching/compressing

of tone. Since the derivative of Eq. (4) is always positive

and continuous, it is guaranteed to be a smooth and mono-

tonically increasing curve. This ensures that this mapping

function generates a proper luminance mapping curve for

any set of parameters.

We extract a luminance feature, L, that represents the

luminance histogram with uniformly sampled percentiles

of the luminance cumulative distribution function (we use

32 samples). We estimate the tone-mapping parameters by

minimizing the cost function:

(m̂, δ̂) = argminm,δ‖g(LI)− L̃‖2,

s.t. L̃ = LI + (LS − LI)
τ

min(τ,|LS−LI |∞) , (5)

where LI and LS represent the input and style luminance

features, respectively. L̃ is an interpolation of the input and

exemplar luminance features and represents how closely we

want to match the exemplar luminance distribution. We set

τ to 0.4 and minimize this cost using parameter sweeping

in a branch-and-bound scheme.

Fig. 3 compares the quality of our style transfer method

against three recent methods: the N-dimensional histogram

matching technique of Pitié et al. [19], the linear Monge-

Kantarovich solution of Pitié and Kokaram [18], and the

three-band method of Bonneel et al. [4]. While each

of these algorithms has its strengths, only our method

consistently produces visually compelling results without

any artifacts. We further evaluate all these methods via a

comprehensive user study in Sec. 6.

Face exposure correction In the process of transferring

tonal distributions, our luminance mapping method can

over-darken some regions. When this happens to faces,

it detracts from the quality of the result, as humans are

sensitive to facial appearance. We fix this using a face-

specific luminance correction. We detect face regions in
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(a) Input (c) PDF (d) MK (e) SMH (f) Ours
Figure 3. Examples of our style transfer results compared with

previous statistics-based transfer methods. Exemplars are shown

in insets in the top-left corner of input images.

(a) Input photograph (b) Our stylization (c) Our stylization
and face correction

Figure 4. Face exposure correction.

the input image, given by center p and radius r, using

the Haar cascade classifier implemented in the OpenCV. If

the median luminance in a face region, l̄, is lower than a

threshold lth, we correct the luminance as:

l̂(x) = (1− w(x)) · l(x) + w · l(x)γ if l̄ < l th,

w(x) = exp(−αr‖(x− p)/r‖2) exp(−αc‖c− c̄‖2),

γ = max(γ th, l̄/l th). (6)

This technique applies a simple γ-correction to the lu-

minance, where γ th determines the maximum level of

exposure correction. We would like to apply it to the entire

face; however, the face region is given by a coarse box

and applying the correction to the entire box will produce

artifacts. Instead we interpolate the corrected luminance

with the original luminance using weights w(x). We

compute these weights based on spatial distance from the

face center, and chrominance distance from the median face

chrominance value, c̄ (to capture the color of the skin).

αr and αc are normalization parameters that control the

weights of the spatial and chrominance kernels respectively.

We set {lth, γ th, αr, αc} to {0.5, 0.5, 0.45, 0.001}. Fig. 4

shows an example of our face exposure correction results.

5. Content-aware Style Selection

Given the target style database1, we can use the method

described in Sec. 4 to transfer the photographic style of a

style exemplar to an input photograph. However, as noted in

Sec. 3 and illustrated in Fig. 1, it is important that we choose

the right set of style exemplars. Motivated by the fact

that images with different semantic content require different

styles, we attempt to learn the set of good styles (or their

1a curated dataset of 1500 exemplar style images

Figure 5. Examples of semantic clusters.

ranking) for each type of semantic content separately.

To achieve this, we prepare a large photo collection

consisting of one million photographs downloaded from

Flickr’s daily interesting photograph collection2. As noted

in Sec. 3, the curated style dataset does not contain

examples for all content classes and cannot be directly

used to stylize a photograph. However, by leveraging the

large photo collection, we can learn style rankings of the

curated style dataset even for content classes that are not

represented in it.

5.1. Semantic clustering

Inspired by recent breakthroughs in the use of CNN [16],

we represent the semantic information of an image using

a CNN feature, trained on the ImageNet dataset [8]. We

modified the CaffeNet [14] to have fewer nodes in the

fully-connected layers3 and fine-tuned the modified net-

work. This results in a 512-dimensional feature vector

for each image. We empirically found that this smaller

CNN captures more style diversity in each content cluster

compared to the original CaffeNet or AlexNet [8] which

sometimes “oversegments” content into clusters with low

style variation.

We perform k-means clustering on the CNN feature

vectors for each image in the large photo collection to obtain

semantic content clusters. A small number of clusters

leads to different content classes being grouped in the same

cluster, while a large number of clusters lead to the style

variations of the same content class of images being split

into different clusters. In our experiments, we found that

using 1000 clusters was a good balance between these two

aspects.

Fig. 5 shows images from four different semantic clus-

ters. The images in a single cluster share semantically

similar content but have diverse appearances (including

both good and bad styles). These intra-class style variations

allow us to learn the space of relevant styles for each class.

5.2. Style ranking

To choose the best style example for each semantic

cluster, we compute style similarity between each style

example and the images in a cluster, and use this measure

2https://www.flickr.com/services/api/flickr.interestingness.getList.html
3We reduced the number of nodes in the FC6 layer from 4096 to 512

and removed the FC7 layer.
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(a) Input photograph (b) Three nearest semantic clusters (c) Five exemplars chosen by our style selection method

(d) Images in the cluster with the highest votes for the chosen exemplars in (c)

(e) Stylization results by transferring the styles of the exemplars in (c)
Figure 6. Intermediate steps of style selection. The input (a) can be semantically different from the selected exemplars (c) (second and third

example especially). However, the cluster images with the highest votes for these style exemplars (d), are both semantically similar to the

input and stylistically similar to the chosen exemplars. This ensures input-exemplar compatibility and leads to artifact-free stylizations (e).

to rank the styles for that cluster. As explained in Sec. 4,

we represent a photograph’s style using chrominance and

luminance statistics. Following this, we define the style

similarity measure between cluster photograph P and style

image S as:

R(P, S) = exp
(

−De(LP ,LS)2

λl

)

exp
(

−Dh(NP ,NS)2

λc

)

, (7)

where De represents the Euclidean distance between the

two luminance features, and λl and λc are normalization

parameters. We set λl = 0.005 and λc = 0.05 to generate

all our results. Dh is the Hellinger distance [20] defined as:

Dh (NP ,NS) = 1− |ΣPΣS |1/4

|Σ̄|1/2
exp

(

− 1
8 µ̄

⊤Σ̄−1µ̄
)

s.t µ̄ = |µP − µS |+ ǫ, Σ̄ = ΣP+ΣS

2 , (8)

where NP = (µP ,ΣP ) are the multivariate Gaussian

statistics of chrominance channel for an image. We chose

the Hellinger distance to measure the overlap between two

distributions because it strongly penalizes large differences

in covariance even if the means are close enough. ǫ = 1 is

added to the difference between the means to additionally

penalize small covariance images.

We measure the compatibility of a stylized exemplar

S, with a semantic cluster CK , by aggregating the style

similarity measure over all the images in the cluster as

R̄K(S) =
∑

P∈CK
R(P, S). (9)

For each semantic cluster, we compute R̄ for all the style

exemplars and determine the style example ranking by

sorting R̄ in decreasing order. This voting scheme measures

how often a particular exemplar’s color and tonal statistics

occurs in the semantic cluster. Poorly stylized cluster

images are implicitly filtered out because they do not vote

for any style exemplar. Meanwhile, well stylized images in

the cluster vote for their corresponding exemplars, giving

us a “histogram” of the style exemplars for that cluster.

Figs. 2 and 6 show the results of each stage of our

stylization pipeline. As these figures illustrate, our semantic

similarity term is able to find clusters with semantically

similar content (see Fig. 6(b)). Our technique does not

require the selected style exemplars to be semantically

similar to the input image (see Fig. 6(c)). While this might

seem counter-intuitive, the final stylized results do not

suffer from any artifacts because the highly-ranked styles

have the same style characteristics as a large number of

“auxiliary exemplars” in the training photo collection that,

in turn, share the same content as the input (see Fig. 6(d)).

This is an important property of our style selection scheme,

and is what allows it to generalize a small style dataset to

arbitrary content.

5.3. Style sampling

Given an input photograph, we can extract its semantic

feature and assign it to the nearest semantic cluster. We

can retrieve the pre-computed style ranking for this cluster

and use the top k style images to create a set of k stylized

renditions of the input photograph. However, this strategy

could lead to outputs that are similar to each other. In order

to improve the diversity of styles in the final results, we

propose the following multi-cluster style sampling scheme.

Adjacent semantic clusters usually share similar high-

level semantics but different low-level features such as

object scale, color, and tone. Therefore we propose using

multiple nearest semantic clusters to capture more diversity.

We merge the style lists for the chosen semantic clusters and

order them by the aggregate similarity measure (Eq. (9)). To

avoid redundant styles, we sample this merged style list in

order (starting with the top-ranked one) and discard styles

that are within a specified threshold distance from the styles
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that have already been chosen.

We define a new similarity measure for this sampling

process that computes the squared Fréchet distance [9]:

Df (NP ,NQ) =
√

‖µP − µQ‖2 + tr[ΣP +ΣQ − 2(ΣPΣQ)1/2].

We use this distance because it measures optimal transport

between distributions and is more perceptually linear. We

use three semantic clusters and set the threshold to 7.5.

6. Results and Discussion

We have tested our automatic stylization results on a

wide range of input images, and show a subset of our results

in Figs. 1, 2, 6, and 7. Please refer to the supplementary

material and video for more examples, comparisons, and

a real-time demo of our technique. As can be seen from

these results, our stylization method can robustly capture

fairly aggressive visual styles without creating artifacts, and

is able to generate diverse stylization results. Figs. 1, 2, 6,

and 7 also show the automatically chosen style examples

that were used to stylize the input photographs. As ex-

pected, in most cases, the style examples chosen have dif-

ferent semantics from the input image, but the stylizations

are still of high-quality. This verifies the advantage of our

method when given only a limited set of stylized exemplars.

User study Due to the subjective nature of image styliza-

tion, we validated our stylization technique through user

studies that evaluate our style selection and style transfer

strategies. For the study, we created a benchmark dataset

of 55 images – 50 images were randomly chosen from the

FiveK dataset [5] and the rest were downloaded from Flickr.

We resized all test images to 500-pixels wide on the long

edge and stored them using an 8-bit sRGB JPEG format.

We asked a professional artist to create five diverse

stylizations for every image in our benchmark dataset as a

baseline for evaluation. The artist was told to only use tools

that globally edit the color and tone; he used the ‘Levels’,

‘Curves’, ‘Exposure’, ‘Color Balance’, ‘Hue/Saturation’,

‘Vibrance’, and ‘Black and White’ tools in Adobe Photo-

shop. Creating five different looks for every photograph is

challenging even for professional artists. Instead, our artist

first constructed 27 different looks, each of which evoked

a particular theme (like ‘old photo’, ‘sunny’, ‘romantic’,

etc.), applied all of them to all the images in the dataset,

and picked the five diverse styles that he preferred the most.

We performed two user studies. In Study 1, we evaluated

two style selection methods, our style selection and direct

semantic search which directly searches for semantically

similar images in the style database. We also explored

directly searching in the photo collection using semantic

similarity, but its results were consistently poor, which led

us to drop this selection method in the larger study. To

assess the effect of the size of the style database on the

selection algorithm, we tested against two style databases:

the full database with 1500 style exemplars, and a small

database with 50 style exemplars randomly chosen from the

full database.

We compared five different groups of stylization results

including: the reference dataset retouched by a professional

(henceforth, PRO), our style selection with the full style

database (OURS 1500) and the small style database (OURS

50), direct semantic search on the full style database

(DIRECT 1500) and the small style database (DIRECT 50).

For both our style selection and direct semantic search, we

apply the same style sampling in Sec. 5.3 to achieve the

similar levels of style diversity and create the results using

the same style transfer technique (Sec. 4). Please see the

supplementary material for all these results.

For each image in the benchmark dataset, we showed

users five groups of five stylized results (one set each from

OURS 1500, OURS 50, DIRECT 1500, DIRECT 50, and

PRO). Users were asked to rate the stylization quality of

each group of results on a five-point Likert scale ranging

from 1 (worst) to 5 (best). A total of 37 users participated in

this study, and a total of 1498 different image groups were

rated, giving us an average of 27.24 ratings per group.

Fig. 8(a) shows the result of Study 1. In this study,

OURS 1500 (3.820 ± 0.403) outperforms all the other

techniques. We reported the mean of all user ratings and

the standard deviation of the average scores of each of the

55 benchmark images. DIRECT 1500 (3.169 ± 0.444)

is substantially worse than OURS 1500. When the style

database becomes smaller, the performance of direct search

drops dramatically (2.421 ± 0.436 for DIRECT 50) while

our style selection stays stable (3.620 ± 0.413 for OURS

50). We believe that this is a result of our novel two-step

style ranking algorithm that is able to learn the mapping

between semantic content and style even with very few style

examples. On the other hand, direct search fails to find

good semantic matches when the size of the style database

is reduced significantly. Interestingly, we found that even

when direct search finds a semantically meaningful match,

this does not guarantee a good style transfer result. An

example of this is shown in Fig. 9, where the green in the

background of the exemplar image influences the global

statistics and causes the girl’s skin to take on an undesirable

green tone. Our technique aggregates style similarity across

many images giving it robustness to such scenarios.

It is also worth noting that PRO (2.881 ± 0.480) got a

lower mean score than {OURS 1500, OURS 50, DIRECT

1500} with the largest standard deviation of scores. We

attribute this to two reasons. First, the artist-created filters

do not adapt to the content of the image in the same way

our example-based style transfer technique does. Second,

image stylization tends to be subjective in nature; some of

users might be uncomfortable with the aggressive styliza-

tions of a professional, while our style selection is learned
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Figure 7. Our stylization results. The left most images are input photographs and the right images are our automatically stylized results.
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Figure 8. Results of our two user studies.

from a more ‘natural’ style database and does not have the

same level of stylization.

In Study 2, we compare our style transfer technique

with four different statistics-based style transfer techniques:

MK, which computes an affine transform in CIELab [18],

SMH, which combines three different affine transforms in

different luminance bands with a non-linear tone curve [4],

PDF, which use 3-d histogram matching in CIELab [19],

and PHR, which progressively reshapes the histograms to

make them match [21]. We used our implementation for

the MK method and used the original authors’ code for the

other methods. Style exemplars are chosen by our style

selection and these methods are used only for the transfer.

We showed users an input photograph, an exemplar, and a

randomly arranged set of five stylized images created using

the techniques, and asked them to rate the results in terms of

style transfer and visual quality on a five-point Likert scale

ranging from 1 (worst) to 5 (best). 27 participants from the

same pool as (Study 1) participated in this study; they rated

1554 results in total giving us 5.65 ratings per input-style

pair and 28.25 rating per input.

Fig. 8(b) shows the result of Study 2. In this study, OURS

(4.002±0.336) records the best rating, while MK (3.730±
0.440) is ranked second. SHM (2.949 ± 0.545), PDF

(2.494± 0.577), and PHR (2.286± 0.452) are less favored

by users. These three techniques have more expressive

color transfer models leading to over-fitting and poor results

(a) Input (b) Exemplar (c) Stylization result
Figure 9. Failure case of direct search.

in many cases. This demonstrates the importance of the

style transfer technique for high-quality stylization; our

technique balances expressiveness and robustness well.

7. Conclusion

In this work, we have proposed an automatic technique

to stylize photographs based on their content. Given a set

of target photographic styles, we leverage a large collection

of photographs to learn a content-specific style ranking in a

completely unsupervised manner. At run-time, we use the

learned content-specific style ranking to adaptively stylize

images based on their content. Our technique produces

a diverse set of compelling, high-quality stylized results.

We have extensively evaluated both style selection and

transfer components of our technique and studies show that

users clearly prefer our results over other variations of our

pipeline.
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