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Abstract

State-of-the-art learning based boundary detection

methods require extensive training data. Since labelling ob-

ject boundaries is one of the most expensive types of annota-

tions, there is a need to relax the requirement to carefully

annotate images to make both the training more affordable

and to extend the amount of training data. In this paper we

propose a technique to generate weakly supervised annota-

tions and show that bounding box annotations alone suffice

to reach high-quality object boundaries without using any

object-specific boundary annotations. With the proposed

weak supervision techniques we achieve the top perform-

ance on the object boundary detection task, outperforming

by a large margin the current fully supervised state-of-the-

art methods.

1. Introduction

Boundary detection is a classic computer vision prob-

lem. It is an enabling ingredient for many vision tasks such

as image/video segmentation [1, 12], object proposals [17],

object detection [37], and semantic labelling [2]. Rather

than image edges, many of these tasks require class specific

objects boundaries. These are the external boundaries of

object instances belonging to a specific class (or class set).

State-of-the-art boundary detection is obtained via ma-

chine learning which requires extensive training data. Yet,

instance-wise boundaries are amongst the most expensive

types of annotations. Compared to two clicks for a bound-

ing box, delineating an object requires a polygon with

20~100 points, i.e. at least 10× more effort per object.

In order to make the training of new object classes af-

fordable, and/or to increase the size of the models we train,

there is a need to relax the requirement of high-quality im-

age annotations. Hence the starting point of this paper is the

following question: is it possible to obtain object-specific

boundaries without having any object boundary annotations

at training time?

In this paper we focus on learning object boundaries in a

weakly supervised fashion and show that high quality object

boundary detection can be obtained without using any class-

specific boundary annotations. We propose several ways of

generating object boundary annotations with different levels

(a) Image (b) SE(VOC) (c) Det.+SE (VOC)

(d) SE(BSDS) (e) SE (weak) (f) Det.+SE (weak)

Figure 1: Object-specific boundaries 1a differ from generic

boundaries (such as the ones detected in 1d). The proposed

weakly supervised approach drives boundary detection to-

wards the objects of interest. Example results in 1e and 1f.

Red/green indicate false/true positive pixels, grey is missing

recall. All methods shown at 50% recall.

of supervision, from just using a bounding box oriented

object detector to using the boundary detector trained on

generic boundaries. For generating weak object boundary

annotations we consider different sources, fusing unsuper-

vised image segmentation [11] and object proposal meth-

ods [32, 25] with object detectors [14, 27]. We show that

bounding box annotations alone suffice to achieve objects

boundary estimates with high quality.

We present results using a decision forest [9] and a con-

vnet edge detector [35]. We report top performance on

Pascal object boundary detection [16, 10] with our weak-

supervision approaches already surpassing previously re-

ported fully supervised results.

Our main contributions are summarized below:

• We introduce the problem of weakly supervised object-

specific boundary detection.

• We show that good performance can be obtained on

BSDS, PascalVOC12, and SBD boundary estimation using

only weak-supervision (leveraging bounding box detection

annotations without the need of instance-wise object bound-

ary annotations).

• We report best known results on PascalVOC12, and

SBD datasets. Our weakly supervised results alone improve

over the previous fully supervised state-of-the-art.

The rest of this paper is organized as follows. Section 3
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describes different types of boundary detection and the con-

sidered datasets. In Section 4 we investigate the robustness

to annotation noise during training. We leverage our find-

ings and propose several approaches for generating weak

boundary annotations in Section 5. Sections 6-9 report res-

ults using the two different classifier architectures.

2. Related work

Generic boundaries Boundary detection has been re-

gained attention recently. Early methods are based on

a fixed prior model of what constitutes a boundary (e.g.

Canny [6]). Modern methods leverage machine learning to

push performance. From well crafted features and simple

classifiers (gPb [1]), to powerful decision trees over fixed

features (SE [9], OEF [15]), and recently to end-to-end

learning via convnets (DeepEdge [3], N4 [13], HFL [4],

BNF [5], HED [35]). Convnets are usually pre-trained on

large classification datasets, so as to be initialized with reas-

onable features. The more sophisticated the model, the

more data is needed to learn it.

Other than pure boundary detection, segmentation tech-

niques (such as F&H [11], gPb-owt-ucm [1], and MCG

[25]), can also be used to improve or to generate closed con-

tours.

A few works have addressed unsupervised detection of gen-

eric boundaries [19, 20]. PMI [19] detects boundaries by

modelling them as statistical anomalies amongst all local

image patches, reaching competitive performance without

the need for training. Recently [20] proposes to train edge

detectors using motion boundaries obtained from a large

corpus of video data in place of human supervision. Both

approaches reach similar detection performance.

Object-specific boundaries In many applications, there is

interest to focus on boundaries of specific object classes.

The class-specific object boundary detectors need then to be

trained or tuned to the classes of interest. This problem is

more recent and still relatively unexplored. [16] introduced

the SBD dataset to measure this task over the 20 pascal cat-

egories. [16] proposes to re-weight generic boundaries us-

ing the activation regions of a detector. [31] proposed to

train class-specific boundary detectors, and weighted them

at test time according to an image classifier. More recently

[4, 5] consider mixing a semantic labelling convnet with a

generic boundary detection convnet, to obtain class specific

boundaries.

Weakly supervised learning In this work we are inter-

ested in object-specific boundaries without using class spe-

cific boundary annotations. We only use bounding box

annotations, and in some experiments, generic boundaries

(from BSDS [1]). Multiple works have addressed weakly

supervised learning for object localization [23, 7], object

detection [26, 34], or semantic labelling [33, 36, 24]. To the

(a) BSDS [1] (b) VOC12 [10]

(c) COCO [21] (d) SBD [16]

Figure 2: Datasets considered.

best of our knowledge there is no previous work attempting

to learn object boundaries in a weakly supervised fashion.

3. Boundary detection tasks

In this work we distinguish three types of boundaries:

generic boundaries (“things” and “stuff”), instance-wise

boundaries (external object instance boundaries), and class

specific boundaries (object instance boundaries of a certain

semantic class). For detecting these three types of boundar-

ies we consider different datasets: BSDS500 [1, 22], Pascal

VOC12 [10], MS COCO [21], and SBD [16], where each

represents boundary annotations of a given boundary type

(see Figure 2).

BSDS We first present our results on the Berkeley Seg-

mentation Dataset and Benchmark (BSDS) [1, 22], the most

established benchmark for generic boundary detection task.

The dataset contains 200 training, 100 validation and 200
test images. Each image has multiple ground truth annota-

tions. For evaluating the quality of estimated boundaries

three measures are used: fixed contour threshold (ODS),

per-image best threshold (OIS), and average precision (AP).

Following the standard approach [9, 6] prior to evaluation

we apply a non-maximal suppression technique to bound-

ary probability maps to obtain thinned edges.

VOC For evaluating instance-wise boundaries we propose

to use the PASCAL VOC 2012 (VOC) segmentation dataset

[10]. The dataset contains 1 464 training and 1 449 valida-

tion images, annotated with contours for 20 object classes

for all instances. The dataset was originally designed for se-

mantic segmentation. Therefore only object interior pixels

are marked and the boundary location is recovered from the

segmentation mask. Here we consider only object bound-

aries without distinguishing the semantics, treating all 20

classes as one. For measuring the quality of predicted

boundaries the BSDS evaluation software is used. Follow-

ing [31] the maxDist (maximum tolerance for edge match)

is set to 0.01.

COCO To show generalization of the proposed method for

instance-wise boundary detection we use the MS COCO
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[75] DeepEdge

[75] N4 Fields
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[71] SE(F&H)

[69] HED(F&H)

[65] F&H

[64] SE(Canny)

[58] Canny

Figure 3: BSDS results. Canny and F&H points indicate the

boundaries used as noisy annotations. When trained over

noisy annotations, both SE and HED provide a large quality

improvement.

Family Method ODS OIS AP ∆AP%

Unsupervised
Canny 58 62 55 -

F&H 64 67 64 -

PMI 74 77 78 -

Trained

on

ground truth

gPb-owt-ucm 73 76 73 -

SE(BSDS) 74 76 79 -

HED(BSDS) noncons. 75 77 80 -

HED(BSDS) cons. 79 81 84 -

Trained

on

unsupervised

boundary

estimates

SE (Canny) 64 67 64 38

SE (F&H) 71 74 76 80

SE (SE (F&H)) 72 74 76 80

SE(PMI) 72 75 77 -

HED (F&H) 69 72 73 56

HED (SE (F&H)) 73 76 75 69

Table 1: Detailed BSDS results, see Figure 3 and Section 4.

Underline indicates ground truth baselines, and bold are our

best weakly supervised results. (·) denotes the data used for

training. ∆AP% indicates the ratio between the same model

trained on ground truth, and the noisy input boundaries. The

closer to 100%, the lower the drop due to using noisy inputs

instead of ground truth.

(COCO) dataset [21]. The dataset provides semantic seg-

mentation masks for 80 object classes. For our experi-

ments we consider only images that contain the 20 Pascal

classes and objects larger than 200 pixels. The subset of

COCO that contains Pascal classes consists of 65 813 train-

ing and 30 163 validation images. For computational reas-

ons we limit evaluation to 5 000 randomly chosen images

of the validation set. The BSDS evaluation software is used

(maxDist = 0.01). Only object boundaries are evaluated

without distinguishing the semantics.

SBD We use the Semantic Boundaries Dataset (SBD) [16]

for evaluating class specific object boundaries. The dataset

consists of 11 318 images from the trainval set of the PAS-

CAL VOC2011 challenge, divided into 8 498 training and

2 820 test images. This dataset has object instance boundar-

ies with accurate figure/ground masks that are also labeled

with one of 20 Pascal VOC classes. The boundary detec-

tion accuracy for each class is evaluated using the official

evaluation software [16]. During the evaluation process all

internal object-specific boundaries are set to zero and the

maxDist is set to 0.02. We report the mean ODS F-measure

(F), and average precision (AP) across 20 classes.

Note that VOC and SBD datasets have overlap between

their train and test sets. When doing experiments across

datasets we make sure not to re-use any images included in

the test set considered.

Baselines For our experiments we consider two different

types of boundary detectors - SE [9] and HED [35] - as

baselines.

SE is at the core of multiple related methods (SCG, MCG,

OEF). SE [9] builds a “structured decision forest” which is

a modified decision forest, where the leaf outputs are local

boundary patches (16 × 16 pixels) that are averaged at test

time, and the split nodes are built taking into account the

local segmentation of the ground truth input patches. It

uses binary comparison over hand-crafted edge and self-

similarity features as split decisions. By construction this

method requires closed contours (i.e. segmentations) as

training input. This detector is reasonably fast to train/test

and yields good detection quality.

HED [35] is currently the top performing convnet for BSDS

boundaries. It builds upon a VGG16 network pre-trained on

ImageNet [30], and exploits features from all layers to build

its output boundary probability map. By also exploiting the

lower layers (which have higher resolution) the output is

more detailed, and the fine-tuning is more effective (since

all layers are guided directly towards the boundary detec-

tion task). To reach top performance, HED is trained using

a subset of the annotated BSDS pixels, where all annotat-

ors agree [35]. These are so called “consensus” annotations

[18], and correspond to sparse ∼15% of all true positives.

4. Robustness to annotation noise

We start by exploring weakly supervised training for

generic boundary detection, as considered in BSDS.

Model based approaches such as Canny [6] and F&H

[11] are able to provide low quality boundary detections.

We notice that correct boundaries tend to have consistent

appearance, while erroneous detections are mostly incon-

sistent. Robust training methods should be able to pick-up

the signal in such noisy detections.

SE In Figure 3 and Table 1 we report our results when

training a structured decision forest (SE) and a convnet

(HED) with noisy boundary annotations. By (·) we de-

note the data used for training. When training SE using

either Canny (“SE (Canny)”) or F&H (“SE (F&H)”) we ob-

serve a notable jump in boundary detection quality. Com-

paring SE trained with the BSDS ground truth (fully su-

pervised, SE (BSDS)), with the noisy labels from F&H,
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(a) Ground truth (b) F&H (c) F&H ∩ BBs (d) GrabCut ∩ BBs (e) SeSe ∩ BBs

(f) MCG ∩ BBs (g) cons. MCG ∩ BBs (h) SE(SeSe ∩ BBs) (i) cons. S&G∩BBs (j) cons. all methods ∩ BBs

Figure 4: Different generated boundary annotations. Cyan/black indicates positive/ignored boundaries.

SE (F&H) closes up to 80% of the gap between SE (F&H)
and SE (BSDS) (∆AP% column in Table 1).

Since the training data of our weak supervision contains

label noise (errors), we do not expect results to match the

fully supervised case. Still, SE (F&H) is only 3 AP percent

points behind from the fully supervised case (76 vs. 79).

We believe that the strong noise robustness of SE can be at-

tributed to the way it builds its leaves. The final output of

each leaf is the medoid of all segments reaching it. If the

noisy boundaries are randomly spread in the image appear-

ance space, the medoid selection will be robust.

HED The HED convnet [35] reaches top quality when

trained over consensus annotations. When using all annota-

tions (“non consensus”), its performance is comparable to

other convnet alternatives. When trained over F&H the re-

lative improvement is smaller than for the SE case, when

combined with SE (denoted “HED(SE (F&H))”) it reaches

69 ∆AP% . HED (SE (F&H)) provides better boundaries

than SE (F&H) alone, and reaches quality comparable to

the classic gPb method [1] (75 vs. 73).

On BSDS the unsupervised PMI methods provides better

boundaries than our weakly supervised variants. However

PMI cannot be adapted to provide object-specific boundar-

ies. For this we need to rely on methods than can be trained,

such as SE and HED.

Conclusion SE is surprisingly robust to annotation noise

during training. HED is also robust but to a lesser de-

gree. By using noisy boundaries generated from unsuper-

vised methods, we can reach a performance comparable to

the bulk of current methods.

5. Weakly supervised boundary annotations

Based on the observations in Section 4, we propose to

train boundary detectors using data generated from weak

annotations. Our weakly supervised models are trained in

a regular fashion, but use generated (noisy) training data as

input instead of human annotations.

We consider boundary annotations generated with three

different levels of supervision: fully unsupervised, using

only detection annotations, and using both detection annota-

tions and BSDS boundary annotations (e.g. using generic

boundary annotation, but zero object-specific boundaries).

In this section we present the different variants of weakly

supervised boundary annotations. Some of them are illus-

trated in Figure 4.

BBs We use the bounding box annotations to train a class-

specific object detector [27, 14]. We then apply this detector

over the training set (and possibly a larger set of images),

and retain boxes with confidence scores above 0.8. We

saw no noticeable difference when using directly the ground

truth annotations, see supplementary material for details.

F&H As a source of unsupervised boundaries we consider

the classical graph based image segmentation technique

proposed by [11] (F&H). To focus the training data on the

classes of interest, we intersect these boundaries with de-

tection bounding boxes from [27] (F&H ∩ BBs). Only the

boundaries of segments that are contained inside a bounding

box are retained.

GrabCut Boundaries from F&H will trigger on any kind

of boundary, including the internal boundaries of objects.

A way to exclude internal object boundaries, is to extract

object contours via figure-ground segmentation of the de-

tection bounding box. We use GrabCut [28] for this

purpose. We also experimented with DenseCut [8] and

CNN+GraphCut [29], but did not obtain any gain; thus we

report only GrabCut results.

For the experiments reported below, for GrabCut ∩ BBs a

segment is only accepted if a detection from [27] has the

intersection-over-union score (IoU) ≥ 0.7. If a detection

bounding boxes has no matching segment, the whole region

is marked as ignore (see Figure 4e) and not used during the

training of boundary detectors.

Object proposals Another way to bias generation of

boundary annotations towards object contours is to consider
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[48] Det. + SE(VOC)
[48] SB(VOC)
[44] SB(VOC) orig.
[43] SE(VOC) orig.
[43] SE(VOC)
[40] SE(BSDS)

Figure 5: VOC12 results, fully supervised SE models. (·)
denotes the data used for training. Continuous/dashed line

indicates models using/not using a detector at test time. Le-

gend indicates AP numbers.

Family Method Data
Without BBs With BBs

F AP ∆AP F AP ∆AP

GT SE VOC 43 35 - 48 41 -

Other

GT

SE COCO 44 37 2 49 42 1

SE
BSDS

40 29 -6 47 39 -2

MCG 41 28 -7 48 39 -2

Weakly

super-

vised

SE

F&H ∩ BBs 40 29 -6 46 36 -5

GrabCut ∩ BBs 41 32 -3 47 39 -2

SeSe ∩ BBs 42 35 0 46 39 -2

SeSe+ ∩ BBs 43 36 +1 46 39 -2

MCG ∩ BBs 43 34 -1 47 39 -2

MCG+ ∩ BBs 43 35 0 48 40 -1

Unsuper-

vised

F&H
-

34 15 -20 41 25 -16

PMI 41 29 -6 47 38 -3

Table 2: VOC results for SE models, see Figures 5 and 6.

Bold indicates our best weakly supervised results.

object proposals. SeSe [32] is based on the F&H [11] seg-

mentation (thus it is fully unsupervised), while MCG [25]

employs boundaries estimated via SE (BSDS) (thus uses

generic boundary annotations).

Similar to GrabCut∩BBs, SeSe∩BBs and MCG∩BBs

are generated by matching proposals to bounding boxes (if

IoU ≥ 0.9). BBs come from [14] with the corresponding

object proposals. When more than one proposal is matched

to a detection bounding box we use the union of the pro-

posal boundaries as positive annotations. This maximizes

the recall of boundaries, and somewhat imitates the mul-

tiple human annotators in BSDS. We also experimented us-

ing only the highest overlapping proposal, but the union

provides marginally better results; thus we report only the

latter. Since proposals matching a bounding box might have

boundaries outside it, we consider them all since the bound-

ing box itself might not cover well the underlying object.

Consensus boundaries As pointed out in Table 1, HED

requires consensus boundaries to reach good performance.
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[48] Det. + SE(VOC)
[47] Det. + SE(BSDS)
[47] Det. + PMI
[47] Det. + SE(GrabCut BBs)
[46] Det. + SE(SeSe

+
BBs)

[43] SE(VOC)
[43] SE(SeSe

+
BBs)

[41] SE(GrabCut BBs)
[41] PMI
[40] SE(BSDS)

Figure 6: VOC12 results, weakly supervised SE models.

(·) denotes the data used for training. Continuous/dashed

line indicates models using/not using a detector at test time.

Legend indicates AP numbers.

Thus rather than taking the union between proposal bound-

aries, we consider using the consensus between object pro-

posal boundaries. The boundary is considered to be present

if the agreement is higher than 70%, otherwise the bound-

ary is ignored. We denote such generated annotations as

“cons.”, e.g. cons. MCG ∩ BBs (see Figure 4g).

Another way to generate sparse (consensus-like) boundar-

ies, is to threshold the boundary probability map out of

SE (·) model. SE (SeSe ∩ BBs) uses the top 15% quantile

per image as weakly supervised annotations.

Finally, other than consensus between proposals, we can

also do consensus between methods. cons. S&G ∩

BBs is the intersection between SE (SeSe ∩ BBs), SeSe

and GrabCut boundaries (fully unsupervised); while

cons. all methods∩BBs is the intersection between MCG,

SeSe and GrabCut (uses BSDS data).

Datasets Since we generate boundary annotations in a

weakly supervised fashion, we are able to generate bound-

aries over arbitrary image sets. In our experiments we con-

sider SBD, VOC (segmentation), and VOC+ (VOC plus im-

ages from Pascal VOC12 detection task). Methods using

VOC+are denoted using ·+ (e.g. SE (SeSe+ ∩ BBs)).

6. Structured forest VOC boundary detection

In this section we analyse the variants of weakly super-

vised methods for object boundary detection proposed in

Section 5 as opposed to the fully supervised ones. From

now on we are interested in external boundaries of objects.

Therefore we employ the Pascal VOC12, treating all 20 Pas-

cal classes as one. See details of the evaluation protocol in

Section 3. We start by discussing results using SE; convnet

results are presented in Section 7.
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[62] HED(VOC)
[59] Det. + HED(VOC)
[53] HED(cons. all methods BBs)
[53] Det. + HED(cons. all methods BBs)
[53] Det. + HED(BSDS)
[52] Det. + HED(cons. S&G BBs)
[51] HED(cons. S&G BBs)
[48] Det. + SE(VOC)
[48] HED(BSDS)
[47] Det. + SE(BSDS)

Figure 7: VOC12 HED results. (·) denotes the data used

for training. Continuous/dashed line indicates models us-

ing/not using a detector at test time. Legend indicates AP

numbers.

Family Method Data
Without BBs With BBs

F AP ∆AP F AP ∆AP

GT
SE

VOC
43 35 - 48 41 -

HED 62 61 26 59 58 17

Other

GT
HED

BSDS 48 41 6 53 48 7

COCO 59 60 25 56 55 14

Weakly

super-

vised

SE MCG ∩ BBs 43 34 -1 47 39 -2

HED

SE(SeSe ∩ BBs) 45 37 3 49 40 -1

MCG ∩ BBs 50 44 9 48 42 1

cons. S&G ∩ BBs 51 46 +11 52 47 +8

cons. MCG ∩ BBs 53 50 15 52 49 8

cons. all methods∩BBs 53 50 +15 53 50 +9

Table 3: VOC results for HED models, see Figure 7. Bold

indicates our best weakly supervised results.

6.1. Training models with ground truth

SE Figure 5 and Table 2 show results of SE trained over the

ground truth of different datasets (dashed lines). Our results

of SE (VOC) are on par to the ones reported in [31]. The

gap between SE (VOC) and SE (BSDS) reflects the differ-

ence between generic boundaries and boundaries specific to

the 20 VOC object categories (see also Figure 1).

SB To improve object-specific boundary detection, the

situational boundary method SB [31], trains 20 class-

specific SE models. These models are combined at test time

using a convnet image classifier. The original SB results

and our re-implementation SB (VOC) are shown in Figure

5. Our version obtains better results (4 percent points gain

in AP) due to training the SE models with more samples per

image, and using a stronger image classifier [30].

Detector + SE Rather than training and testing with 20 SE

models plus an image classifier, we propose to leverage the

same training data using a single SE model together with a

detector [14]. By computing a per-pixel maximum among

all detection bounding boxes and their score, we construct

an “objectness map” that we multiply with the boundary

probability map from SE. False positive boundaries are thus

down-scored, and boundaries in high confidence regions for

the detector get boosted. The detector is trained with the

same per object boundary annotations used to train the SE

model, no additional data is required.

Our Det.+SE (VOC) obtains the same detection quality

as SB (VOC) while using only a single SE model. These

are the best reported results on this task (top of Table 2),

when using the fully supervised training data.

At the cost of more expensive training and test, one could

in principle also combine object detection with the situ-

ational boundary method [31], this is out of scope of this

paper and considered as future work.

6.2. Training models using weak annotations

Given the reference performance of Det.+SE (VOC),
can we reach similar boundary detection quality without us-

ing the boundary annotations from VOC?

SE (·) First we consider using a SE model alone at test

time. Using only the BSDS annotations leads to rather low

performance (see SE (BSDS) in Figure 6). PMI shows a

similar gap. The same BSDS data can be used to generate

MCG object proposals over the VOC training data, and a de-

tector trained on VOC bounding boxes can generate bound-

ing boxes over the same images. We combined them to-

gether to generate boundary annotations via MCG ∩ BBs,

as described in Section 5. The weak supervision from the

bounding boxes can be used to improve the performance of

SE (BSDS). By extending the training set to additional pas-

cal images (SE (MCG+ ∩ BBs) in Table 2) we can reach the

same performance as when using the VOC ground truth.

We also consider variants that do not leverage the BSDS

boundary annotations, such as SeSe and GrabCut. SeSe

provides essentially the same result as MCG. Note that

both MCG and SeSe are tuned on VOC. Comparing to

GrabCut ∩ BBs, a “pascal-agnostic” method, we can see

that this bias has a minor impact.

Det.+SE (·) Applying object detection at test time

squashes the differences among all weakly supervised

methods. Det.+PMI shows strong results, but (since not

trained on boundaries) fails to reach high precision. The

high quality of Det.+BSDS indicates that BSDS annota-

tions, despite being in principle “generic boundaries” in

practice reflect well object boundaries, at least in the prox-

imity of an object. This is further confirmed in Section 7.

Compared to Det.+BSDS our weakly supervised annota-

tion variants further close the gap to Det.+SE (VOC) (es-

pecially in high precision area), even when not using any

BSDS data.

Conclusion Based only on bonding box annotations, our

weakly supervised boundary annotations enable the Det.+

188



Image Ground truth SE(BSDS) SB(VOC) Det.+SE (VOC) Det.+SE (weak) Det.+HED (weak)

Figure 8: Qualitative results on VOC. (·) denotes the data used for training. Red/green indicate false/true positive pixels, grey

is missing recall. All methods are shown at 50% recall. Det.+SE (weak) refers to the model Det.+SE (SeSe+ ∩ BBs) Det.+
HED (weak) refers to Det.+HED (cons. S&G ∩ BBs). Object-specific boundaries differ from generic boundaries (such as

the ones detected by SE(BSDS)). By using an object detector we can suppress non-object boundaries and focus boundary

detection on the classes of interest. The proposed weakly supervised techniques allow to achieve high quality boundary

estimates that are similar to the ones obtained by fully supervised methods.

Method Family Data
Without BBs With BBs

F AP ∆AP F AP ∆AP

SE

GT COCO 40 32 - 45 37 -

Other GT BSDS 34 23 -9 43 33 -4

Weakly

supervised

SeSe+ ∩ BBs 40 31 -1 44 35 -2

MCG+ ∩ BBs 39 30 -2 44 35 -2

HED

GT COCO 60 59 27 56 55 18

Other GT BSDS 44 34 2 49 42 5

Weakly

supervised

cons. S&G∩BBs 47 39 7 48 42 5

cons. all methods∩BBs 49 43 +11 50 44 +7

Table 4: COCO results, curves in supplementary material.

Bold indicates our best weakly supervised results.

SE model to match the fully supervised case, improving

over the best reported results on the task. We also observe

that BSDS data allows to train models that describe well

object boundaries.

7. Convnet VOC boundary detection results

This section analyses the performance of the HED [35]

trained with the weakly supervised variants proposed in

Section 5. We use our re-implementation of HED which is

on par performance with the original (see Figure 3). We use

the same evaluation setup as in the previous section. Figure

7 and Table 3 show the results.

HED (·) The HED(VOC) model outperforms the SE(VOC)

model by a large margin. We observe in the test images that

HED manages to suppress well the internal object boundar-

ies, while SE fails to do so due to its more local nature. Note

that HED also leverages the ImageNet pre-training [35].

Even though trained on the generic boundaries

HED(BSDS) achieves high performance on the object

boundary detection task. HED(BSDS) is trained on the

“consensus” annotations and they are closer to object-like

boundaries as the fraction of annotators agreeing on the

presence of external object boundaries is much higher than

for non-object or internal object boundaries.

For training HED, in contrast to SE model, we do not

need closed contours and can use the consensus between

different weak annotation variants. This results in bet-

ter performance. Using the consensus between boundar-

ies of MCG proposals HED(cons. MCG ∩ BBs) improves

AP by 6% compared to using the union of object proposals

HED(MCG ∩ BBs) (see Table 3) .

The HED models trained with weak annotations outper-

form the fully supervised SE(VOC) and do not reach the

performance of HED(VOC). As has been shown in Section

4 the HED detector is less robust to noise than SE.

Det.+HED (·) Combining an object detector with

HED(VOC) (see Det.+HED (VOC) in Figure 7) is not

beneficial to the performance as the HED detector already

has notion of objects and their location due to pixel-to-pixel

end-to-end learning of the network.

For HED models trained with the weakly supervised

variants, employing an object detector at test time brings

only a slight improvement of the performance in the high

precision area. The reason for this is that we already use

information from the bounding box detector to generate the

annotation and the convnet method is able to learn it during

training.

Det.+HED (MCG ∩ BBs) outperforms Det.+
HED (BSDS) (see Table 3). Note that the HED

trained with the proposed annotations, generated

without using boundary ground truth, performs on par

with the HED model trained on generic boundaries

(Det.+HED (cons. S&G∩BBs) and Det.+HED (BSDS)in
Figure 7).

The qualitative results are presented in Figure 8 and sup-

port the quantitative evaluation.

Conclusion Similar to other computer vision tasks deep

convnet methods show superior performance. Due to the
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Family Method mF mAP

Other GT Hariharan et al. [16] 28 21

SE

GT

SB(SBD) orig. [31] 39 32

SB(SBD) 43 37

Det.+SE (SBD) 51 45

Other

GT

Det.+SE (BSDS) 51 44

Det.+MCG (BSDS) 50 42

Weakly

super-

vised

SB(SeSe ∩ BBs) 40 34

SB (MCG ∩ BBs) 42 35

Det.+SE (SeSe ∩ BBs) 48 42

Det.+SE (MCG ∩ BBs) 51 45

HED

GT
HED (SBD) 44 41

Det.+HED (SBD) 49 45

Other

GT

HED(BSDS) 38 32

Det.+HED (BSDS) 49 44

Weakly

super-

vised

HED(cons. MCG ∩ BBs) 41 37

HED (cons. S&G ∩ BBs) 44 39

Det.+HED (cons. MCG ∩ BBs) 48 44

Det.+HED (cons. S&G ∩ BBs) 52 47

Table 5: SBD results. Results are mean F(ODS)/AP across

all 20 categories. (·) denotes the data used for training. See

also Figure 9. Bold indicates our best weakly supervised

results.
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Figure 9: SBD results per class. (·) denotes the data used

for training. Det.+HED (weak) refers to the model Det.+
HED (cons. S&G ∩ BBs).

pixel-to-pixel training and global view of the image the con-

vnet models have a notion of object and its location which

allows to omit the use of the detector at test time. With our

weakly supervised boundary annotations we can gain fair

performance without using any instance-wise object bound-

ary or generic boundary annotations and leave out object

detection at test time by feeding object bounding box in-

formation during training.

8. COCO boundary detection results

Additionally we show the generalization of the proposed

weakly supervised variants for object boundary detection

on the COCO dataset. We use the same evaluation protocol

as for VOC. For weakly supervised cases the results are

shown with the models trained on VOC, without re-training

on COCO.

The results are summarized in Table 4. On the COCO

benchmark for both SE and HED the models trained on the

proposed weak annotations perform as well as the fully su-

pervised SE models. Similar to the VOC benchmark the

HED model trained on ground truth shows superior per-

formance.

9. SBD boundary detection results

In this section we analyse the performance of the pro-

posed weakly supervised boundary variants trained with SE

and HED on the SBD dataset [16]. In contrast to the VOC

benchmark we move from object boundaries to class spe-

cific object boundaries. We are interested in external bound-

aries of all annotated objects of the specific semantic class

and all internal boundaries are ignored during evaluation

following the benchmark [16]. The results are presented

in Figure 9 and in Table 5.

Fully supervised Applying SE model plus object detection

at test time outperforms the class specific situational bound-

ary detector (for both [31] and our re-implementation) as

well as the Inverse Detectors [16]. The model trained with

SE on ground truth performs as well as the HED detector.

Both of the models are good at detecting external object

boundaries; however SE, being a more local, triggers more

on internal boundaries than HED. In the VOC evaluation

detecting internal object boundaries is penalized, while in

SBD these are ignored. This explains the small gap in the

performance between SE and HED on this benchmark.

Weakly supervised The models trained with the proposed

weakly-supervised boundary variants perform on par with

the fully supervised detectors, while only using bounding

boxes or generic boundary annotations. We show in Table

5 the top result with the Det. + HED(cons. S&G∩BBs)

model, achieving the state-of-the-art performance on the

SBD benchmark. As Figure 9 shows our weakly super-

vised approach considerably outperforms [31, 16] on all 20

classes.

Conclusion

The presented experiments show that when using the

bounding box annotations for training an object detector,

one can also train a high quality object boundary detector

without additional annotation effort.

Using boxes alone, our proposed weak-supervision tech-

niques improve over previously reported fully supervised

results for object-specific boundaries. When using generic

boundary or ground truth annotations, we also achieve the

top performance on the object boundary detection task, out-

performing previously reported results by a large margin.

To facilitate future research all the resources of this pro-

ject - source code, trained models and results - will be made

publicly available.
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