
Learning Sparse High Dimensional Filters:

Image Filtering, Dense CRFs and Bilateral Neural Networks

Varun Jampani1, Martin Kiefel1,2 and Peter V. Gehler1,2

1Max Planck Institute for Intelligent Systems, Tübingen, 72076, Germany
2Bernstein Center for Computational Neuroscience, Tübingen, 72076, Germany

{varun.jampani, martin.kiefel, peter.gehler}@tuebingen.mpg.de

Abstract

Bilateral filters have wide spread use due to their edge-

preserving properties. The common use case is to manually

choose a parametric filter type, usually a Gaussian filter.

In this paper, we will generalize the parametrization and

in particular derive a gradient descent algorithm so the fil-

ter parameters can be learned from data. This derivation

allows to learn high dimensional linear filters that operate

in sparsely populated feature spaces. We build on the per-

mutohedral lattice construction for efficient filtering. The

ability to learn more general forms of high-dimensional fil-

ters can be used in several diverse applications. First, we

demonstrate the use in applications where single filter ap-

plications are desired for runtime reasons. Further, we

show how this algorithm can be used to learn the pair-

wise potentials in densely connected conditional random

fields and apply these to different image segmentation tasks.

Finally, we introduce layers of bilateral filters in CNNs

and propose bilateral neural networks for the use of high-

dimensional sparse data. This view provides new ways to

encode model structure into network architectures. A di-

verse set of experiments empirically validates the usage of

general forms of filters.

1. Introduction

Image convolutions are basic operations for many im-

age processing and computer vision applications. In this

paper we will study the class of bilateral filter convolu-

tions and propose a general image adaptive convolution that

can be learned from data. The bilateral filter [4, 42, 45]

was originally introduced for the task of image denoising

as an edge preserving filter. Since the bilateral filter con-

tains the spatial convolution as a special case, we will in the

following directly state the general case. Given an image

v = (v1, . . . ,vn),vi ∈ R
c with n pixels and c channels,

and for every pixel i, a d dimensional feature vector fi ∈ R
d

(e.g., the (x, y) position in the image fi = (xi, yi)
⊤). The

bilateral filter then computes

v′
i =

n∑

j=1

wfi,fjvj . (1)

for all i. Almost the entire literature refers to the bilat-

eral filter as a synonym of the Gaussian parametric form

wfi,fj = exp (− 1
2 (fi − fj)

⊤Σ−1(fi − fj)). The features

fi are most commonly chosen to be position (xi, yi) and

color (ri, gi, bi) or pixel intensity. To appreciate the edge-

preserving effect of the bilateral filter, consider the five-

dimensional feature f = (x, y, r, g, b)
⊤

. Two pixels i, j

have a strong influence wfi,fj on each other only if they

are close in position and color. At edges the color changes,

therefore pixels lying on opposite sides have low influence

and thus this filter does not blur across edges. This be-

haviour is sometimes referred to as “image adaptive”, since

the filter has a different shape when evaluated at different lo-

cations in the image. More precisely, it is the projection of

the filter to the two-dimensional image plane that changes,

the filter values wf ,f ′ do not change. The filter itself can be

of c dimensions wfi,fj ∈ R
c, in which case the multiplica-

tion in Eq. (1) becomes an inner product. For the Gaussian

case the filter can be applied independently per channel. For

an excellent review of image filtering we refer to [35].

The filter operation of Eq. (1) is a sparse high-

dimensional convolution, a view advocated in [7, 36]. An

image v is not sparse in the spatial domain, we observe

pixels values for all locations (x, y). However, when pix-

els are understood in a higher dimensional feature space,

e.g., (x, y, r, g, b), the image becomes a sparse signal, since

the r, g, b values lie scattered in this five-dimensional space.

This view on filtering is the key difference of the bilateral

filter compared to the common spatial convolution. An im-

age edge is not “visible” for a filter in the spatial domain

alone, whereas in the 5D space it is. The edge-preserving

behaviour is possible due to the higher dimensional opera-

tion. Other data can naturally be understood as sparse sig-

nals, e.g., 3D surface points.

14452

The contribution of this paper is to propose a general and

learnable sparse high dimensional convolution. Our tech-

nique builds on efficient algorithms that have been devel-

oped to approximate the Gaussian bilateral filter and re-uses

them for more general high-dimensional filter operations.

Due to its practical importance (see related work in Sec. 2)

several efficient algorithms for computing Eq. (1) have been

developed, including the bilateral grid [36], Gaussian KD-

trees [3], and the permutohedral lattice [2]. The design goal

for these algorithms was to provide a) fast runtimes and b)

small approximation errors for the Gaussian filter case. The

key insight of this paper is to use the permutohedral lattice

and use it not as an approximation of a predefined kernel

but to freely parametrize its values. We relax the separa-

ble Gaussian filter case from [2] and show how to compute

gradients of the convolution (Sec. 3) in lattice space. This

enables learning the filter from data.

This insight has several useful consequences. We discuss

applications where the bilateral filter has been used before:

image filtering (Sec. 4) and CRF inference (Sec. 5). Fur-

ther we will demonstrate how the free parametrization of

the filters enables us to use them in deep convolutional neu-

ral networks (CNN) and allow convolutions that go beyond

the regular spatially connected receptive fields (Sec. 6). For

all domains, we present various empirical evaluations with

a wide range of applications.

2. Related Work

We categorize the related work according to the three

different generalizations of this work.

Image Adaptive Filtering: The literature in this area is

rich and we can only provide a brief overview. Impor-

tant classes of image adaptive filters include the bilateral

filters [4, 45, 42], non-local means [13, 5], locally adap-

tive regressive kernels [44], guided image filters [24] and

propagation filters [38]. The kernel least-squares regression

problem can serve as a unified view of many of them [35].

In contrast to the present work that learns the filter kernel

using supervised learning, all these filtering schemes use

a predefined kernel. Because of the importance of the bi-

lateral filtering to many applications in image processing,

much effort has been devoted to derive fast algorithms; most

notably [36, 2, 3, 21]. Surprisingly, the only attempt to learn

the bilateral filter we found is [25] that casts the learning

problem in the spatial domain by rearranging pixels. How-

ever, the learned filter does not necessarily obey the full re-

gion of influence of a pixel as in the case of a bilateral filter.

The bilateral filter also has been proposed to regularize a

large set of applications in [9, 8] and the respective opti-

mization problems are parametrized in a bilateral space. In

these works the filters are part of a learning system but un-

like this work restricted to be Gaussian.

Dense CRF: The key observation of [31] is that mean-

field inference update steps in densely connected CRFs with

Gaussian edge potentials require Gaussian bilateral filter-

ing operations. This enables tractable inference through the

application of a fast filter implementation from [2]. This

quickly found wide-spread use, e.g., the combination of

CNNs with a dense CRF is among the best performing seg-

mentation models [15, 49, 11]. These works combine struc-

tured prediction frameworks on top of CNNs, to model the

relationship between the desired output variables thereby

significantly improving upon the CNN result. Bilateral

neural networks, that are presented in this work, provide

a principled framework for encoding the output relation-

ship, using the feature transformation inside the network

itself thereby alleviating some of the need for later process-

ing. Several works [32, 17, 29, 49, 39] demonstrate how to

learn free parameters of the dense CRF model. However,

the parametric form of the pairwise term always remains a

Gaussian. Campbell et al. [14] embed complex pixel depen-

dencies into an Euclidean space and use a Gaussian filter for

pairwise connections. This embedding is a pre-processing

step and can not directly be learned. In Sec. 5 we will dis-

cuss how to learn the pairwise potentials, while retaining

the efficient inference strategy of [31].

Neural Networks: In recent years, the use of CNNs en-

abled tremendous progress in a wide range of computer vi-

sion applications. Most CNN architectures use spatial con-

volution layers, which have fixed local receptive fields. This

work suggests to replace these layers with bilateral filters,

which have a varying spatial receptive field depending on

the image content. The equivalent representation of the fil-

ter in a higher dimensional space leads to sparse samples

that are handled by a permutohedral lattice data structure.

Similarly, Bruna et al. [12] propose convolutions on irreg-

ularly sampled data. Their graph construction is closely re-

lated to the high-dimensional convolution that we propose

and defines weights on local neighborhoods of nodes. How-

ever, the structure of the graph is bound to be fixed and it

is not straightforward to add new samples. Furthermore,

re-using the same filter among neighborhoods is only pos-

sible with their costly spectral construction. Both cases are

handled naturally by our sparse convolution. Jaderberg et

al. [27] propose a spatial transformation of signals within

the neural network to learn invariances for a given task. The

work of [26] propose matrix backpropagation techniques

which can be used to build specialized structural layers such

as normalized-cuts. Graham et al. [23] propose extensions

from 2D CNNs to 3D sparse signals. Our work enables

sparse 3D filtering as a special case, since we use an algo-

rithm that allows for even higher dimensional data.

4453

Splat Convolve

Gauss Filter

Slice

Figure 1. Schematic of the permutohedral convolution. Left:

splatting the input points (orange) onto the lattice corners (black);

Middle: The extent of a filter on the lattice with a s = 2 neighbor-

hood (white circles), for reference we show a Gaussian filter, with

its values color coded. The general case has a free scalar/vector

parameter per circle. Right: The result of the convolution at the

lattice corners (black) is projected back to the output points (blue).

Note that in general the output and input points may be different.

3. Learning Sparse High Dimensional Filters

In this section, we describe the main technical contribu-

tion of this work, we generalize the permutohedral convo-

lution [2] and show how the filter can be learned from data.

Recall the form of the bilateral convolution from Eq. (1).

A naive implementation would compute for every pixel i all

associated filter values wfi,fj and perform the summation

independently. The view of w as a linear filter in a higher

dimensional space, as proposed by [36], opened the way

for new algorithms. Here, we will build on the permuto-

hedral lattice convolution developed in Adams et al. [2] for

approximate Gaussian filtering. The most common applica-

tion of bilateral filters use photometric features (XYRGB).

We chose the permutohedral lattice as it is particularly de-

signed for this dimensionality, see Fig. 7 in [2] for a speed

comparison.

3.1. Permutohedral Lattice Convolutions

We first review the permutohedral lattice convolution for

Gaussian bilateral filters from Adams et al. [2] and describe

its most general case. As before, we assume that every im-

age pixel i is associated with a d-dimensional feature vector

fi. Gaussian bilateral filtering using a permutohedral lattice

approximation involves 3 steps. We begin with an overview

of the algorithm, then discuss each step in more detail in the

next paragraphs. Fig. 1 schematically shows the three oper-

ations for 2D features. First, interpolate the image signal on

the d-dimensional grid plane of the permutohedral lattice,

which is called splatting. A permutohedral lattice is the tes-

sellation of space into permutohedral simplices. We refer

to [2] for details of the lattice construction and its proper-

ties. In Fig. 2, we visualize the permutohedral lattice in

the image plane, where every simplex cell receives a differ-

ent color. All pixels of the same lattice cell have the same

color. Second, convolve the signal on the lattice. And third,

retrieve the result by interpolating the signal at the original

d-dimensional feature locations, called slicing. For exam-

ple, if the features used are a combination of position and

color fi = (xi, yi, ri, gi, bi)
⊤, the input signal is mapped

(a) Sample Image (b) Position (c) Color (d) Position, Color

Figure 2. Visualization of the Permutohedral Lattice. (a) In-

put image; Lattice visualizations for different feature spaces: (b)

2D position features: 0.01(x, y), (c) color features: 0.01(r, g, b)
and (d) position and color features: 0.01(x, y, r, g, b). All pixels

falling in the same simplex cell are shown with the same color.

into the 5D cross product space of position and color and

then convolved with a 5D tensor. The result is then mapped

back to the original space. In practice we use a feature scal-

ing Df with a diagonal matrix D and use separate scales

for position and color features. The scale determines the

distance of points and thus the size of the lattice cells. More

formally, the computation is written by v′ = SsliceBSsplatv

and all involved matrices are defined below. For notational

convenience we will assume scalar input signals vi, the vec-

tor valued case is analogous, the lattice convolution changes

from scalar multiplications to inner products.

Splat: The splat operation (cf. left-most image in Fig. 1)

finds the enclosing simplex in O(d2) on the lattice of a

given pixel feature fi and distributes its value vi onto the

corners of the simplex. How strong a pixel contributes to

a corner j is defined by its barycentric coordinate ti,j ∈ R

inside the simplex. Thus, the value lj ∈ R at a lattice point

j is computed by summing over all enclosed input points;

more precisely, we define an index set Ji for a pixel i, which

contains all the lattice points j of the enclosing simplex

ℓ = Ssplatv; (Ssplat)j,i = ti,j , if j ∈ Ji, otherwise 0. (2)

Convolve: The permutohedral convolution is defined on

the lattice neighborhood Ns(j) of lattice point j, e.g., only

s grid hops away. More formally

ℓ′ = Bℓ; (B)j′,j = wj,j′ , if j′ ∈ Ns(j), otherwise 0. (3)

An illustration of a two-dimensional permutohedral filter is

shown in Fig. 1 (middle). Note that we already presented

the convolution in the general form that we will make use

of. The work of [2] chooses the filter weights such that

the resulting operation approximates a Gaussian blur, which

is illustrated in Fig. 1. Further, the algorithm of [2] takes

advantage of the separability of the Gaussian kernel. Since

we are interested in the most general case, we extended the

convolution to include non-separable filters B.

Slice: The slice operation (cf. right-most image in Fig. 1)

computes an output value v′i′ for an output pixel i′ again

based on its barycentric coordinates ti,j and sums over the

corner points j of its lattice simplex

v′ = Ssliceℓ
′; (Sslice)i,j = ti,j , if j ∈ Ji, otherwise 0 (4)

4454

The splat and slice operations take a role of an interpo-

lation between the different signal representations: the ir-

regular and sparse distribution of pixels with their associ-

ated feature vectors and the regular structure of the permu-

tohedral lattice points. Since high-dimensional spaces are

usually sparse, performing the convolution densely on all

lattice points is inefficient. So, for speed reasons, we keep

track of the populated lattice points using a hash table and

only convolve at those locations.

3.2. Learning Permutohedral Filters

The fixed set of filter weights w from [2] in Eq. 3 are

designed to approximate a Gaussian filter. However, the

convolution kernel w can naturally be understood as a gen-

eral filtering operation in the permutohedral lattice space

with free parameters. In the exposition above we already

presented this general case. As we will show in more de-

tail later, this modification has non-trivial consequences for

bilateral filters, CNNs and probabilistic graphical models.

The size of the neighborhood Ns(k) for the blur in

Eq. 3 compares to the filter size of a spatial convolu-

tion. The filtering kernel of a common spatial convolution

that considers s points to either side in all dimensions has

(2s+ 1)
d
∈ O(sd) parameters. A comparable filter on the

permutohedral lattice with an s neighborhood is specified

by (s+ 1)
d+1

− sd+1 ∈ O(sd) elements (cf. Supplemen-

tary material). Thus, both share the same asymptotic size.

By computing the gradients of the filter elements we en-

able the use of gradient based optimizers, e.g., backprop-

agation for CNN in the same way that spatial filters in a

CNN are learned. The gradients with respect to v and the

filter weights in B of a scalar loss L are:

∂L

∂v
= S′

splatB
′S′

slice

∂L

∂v′
, (5)

∂L

∂(B)i,j
=

(

S′
slice

∂L

∂v

)

i

(Ssplatv)j . (6)

Both gradients are needed during backpropagation and in

experiments, we use stochastic backpropagation for learn-

ing the filter kernel. The permutohedral lattice convolution

is parallelizable, and scales linearly with the filter size. Spe-

cialized implementations run at interactive speeds in image

processing applications [2]. Our implementation in caffe

deep learning framework [28] allows arbitrary filter param-

eters and the computation of the gradients on both CPU and

GPU. The code is available online1.

4. Single Bilateral Filter Applications

In this section we will consider the problem of joint bi-

lateral upsampling [30] as a prominent instance of a single

bilateral filter application. See [37] for a recent overview

1http://bilateralnn.is.tuebingen.mpg.de

Upsampling factor Bicubic Gaussian Learned

Color Upsampling (PSNR)

2x 24.19 / 30.59 33.46 / 37.93 34.05 / 38.74

4x 20.34 / 25.28 31.87 / 35.66 32.28 / 36.38

8x 17.99 / 22.12 30.51 / 33.92 30.81 / 34.41

16x 16.10 / 19.80 29.19 / 32.24 29.52 / 32.75

Depth Upsampling (RMSE)

8x 0.753 0.753 0.748

Table 1. Joint bilateral upsampling. (top) PSNR values corre-

sponding to various upsampling factors and upsampling strate-

gies on the test images of the Pascal VOC12 segmentation / high-

resolution 2MP dataset; (bottom) RMSE error values correspond-

ing to upsampling depth images estimated using [18] computed on

the test images from the NYU depth dataset [40].

of other bilateral filter applications. Further experiments on

image denoising and 3D body mesh denoising are included

in the supplementary material, together with details about

exact experimental protocols and more visualizations.

4.1. Joint Bilateral Upsampling

A typical technique to speed up computer vision algo-

rithms is to compute results on a lower scale and upsample

the result to the full resolution. This upsampling step may

use the original resolution image as a guidance image. A

joint bilateral upsampling approach for this problem setting

was developed in [30]. We describe the procedure for the

example of upsampling a color image. Given a high reso-

lution gray scale image (the guidance image) and the same

image on a lower resolution but in colors, the task is to up-

sample the color image to the same resolution as the guid-

ance image. Using the permutohedral lattice, joint bilateral

upsampling proceeds by splatting the color image into the

lattice, using 2D position and 1D intensity as features and

the 3D RGB values as the signal. A convolution is applied

in the lattice and the result is read out at the pixels of the

high resolution image, that is using the 2D position and in-

tensity of the guidance image. The possibility of reading out

(slicing) points that are not necessarily the input points is an

appealing feature of the permutohedral lattice convolution.

4.1.1 Color Upsampling

For the task of color upsampling, we compare the Gaus-

sian bilateral filter [30] against a learned generalized fil-

ter. We experimented with two different datasets: Pascal

VOC2012 segmentation [19] using train, val and test splits,

and 200 higher resolution (2MP) images from Google im-

age search [1] with 100 train, 50 validation and 50 test im-

ages. For training we use the mean squared error (MSE)

criterion and perform stochastic gradient descent with a mo-

mentum term of 0.9, and weight decay of 0.0005, found us-

ing the validation set. In Table 1 we report result in terms of

PSNR for the upsampling factors 2×, 4×, 8× and 16×. We

compare a standard bicubic interpolation, that does not use a

4455

(a) Input (b) Guidance (c) Ground Truth (d) Bicubic Interpolation (e) Gauss Bilateral (f) Learned Bilateral

Figure 3. Guided Upsampling. Color (top) and depth (bottom) 8× upsampling results using different methods (best viewed on screen).

guidance image, the Gaussian bilateral filter case (with fea-

ture scales optimized on the validation set), and the learned

filter. All filters have the same support. For all upsam-

pling factors, joint bilateral Gaussian upsampling outper-

forms bicubic interpolation and is in turn improved using a

learned filter. A result of the upsampling is shown in Fig. 3

and more results are included in the supplementary mate-

rial. The learned filter recovers finer details in the images

4.1.2 Depth Upsampling

The work [18] predicts depth estimates from single RGB

images, we use their results as another joint upsampling

task. We use The dataset of [40] that comes with pre-

defined train, validation and test splits. The approach

of [18] is a CNN model that produces a result at 1/4th of the

input resolution due to down-sampling operations in max-

pooling layers. Furthermore, the authors downsample the

640 × 480 images to 320 × 240 as a pre-processing step

before CNN convolutions. The final depth result is bicu-

bic interpolated to the original resolution. It is this inter-

polation that we replace with a Gaussian and learned joint

bilateral upsampling. The features are five-dimensional po-

sition and color information from the high resolution input

image. The filter is learned using the same protocol as for

color upsampling minimizing MSE prediction error. The

quantitative results are shown in Table 1, the Gaussian filter

performs equal to the bicubic interpolation (p-value 0.311),

the learned filter is better (p-value 0.015). Qualitative re-

sults are shown in Fig 3, both joint bilateral upsampling

respect image edges in the result. For this [20] and other

tasks specialized interpolation algorithms exist, e.g., decon-

volution networks [48]. Part of future work is to equip these

approaches with bilateral filters.

5. Learning Pairwise Potentials in Dense CRFs

The bilateral convolution from Sec. 3 generalizes the

class of dense CRF models for which the mean-field in-

ference from [31] applies. The dense CRF models have

found wide-spread use in various computer vision applica-

tions [43, 10, 49, 47, 46, 11]. Let us briefly review the dense

CRF and then discuss its generalization.

5.1. Dense CRF Review

Consider a fully pairwise connected CRF with discrete

variables over each pixel in the image. For an image with n

pixels, we have random variables X = {X1, X2, . . . , Xn}
with discrete values {x1, . . . , xn} in the label space xi ∈
{1, . . . ,L}. The dense CRF model has unary potentials

ψu(x) ∈ R
L, e.g., these can be the output of CNNs. The

pairwise potentials in [31] are of the form ψij
p (xi, xj) =

µ(xi, xj)k(fi, fj) where µ is a label compatibility ma-

trix, k is a Gaussian kernel k(fi, fj) = exp(−(fi −
fj)

⊤Σ−1(fi − fj)) and the vectors fi are feature vectors,

just alike the ones used for the bilateral filtering, e.g.,

(x, y, r, g, b). The Gibbs distribution for an image v thus

reads p(x|v) ∝ exp(−
∑

i ψu(xi) −
∑

i>j ψ
ij
p (xi, xj)).

Because of dense connectivity, exact MAP or marginal in-

ference is intractable. The main result of [31] is to derive

the mean-field approximation of this model and to relate it

to bilateral filtering which enables tractable approximate in-

ference. Mean-field approximates the model p with a fully

factorized distribution q =
∏

i qi(xi) and solves for q by

minimizing their KL divergence KL(q||p). This results

in a fixed point equation which can be solved iteratively

t = 0, 1, . . . to update the marginal distributions qi,

qt+1
i (xi) =

1

Zi

exp{−ψu(xi)−
∑

l∈L

∑

j 6=i

ψij
p (xi, l)q

t
j(l)

︸ ︷︷ ︸

bilateral filtering

}.

(7)
for all i. Here, Zi ensures normalizations of qi.

5.2. Learning Pairwise Potentials

The proposed bilateral convolution generalizes the class

of potential functions ψij
p , since they allow a richer class of

kernels k(fi, fj) that furthermore can be learned from data.

So far, all dense CRF models have used Gaussian potential

functions k, we replace it with the general bilateral convo-

lution and learn the parameters of kernel k, thus in effect

learn the pairwise potentials of the dense CRF. This retains

4456

(a) Input (b) Ground Truth (c) CNN (d) +looseMF

Figure 4. Segmentation results. An example result for semantic

(top) and material (bottom) segmentation. (c) depicts the unary

results before application of MF, (d) after two steps of loose-MF

with a learned CRF. More examples with comparisons to Gaussian

pairwise potentials can be found in the supplementary material.

the desirable properties of this model class – efficient infer-

ence through mean-field and the feature dependency of the

pairwise potential. In order to learn the form of the pairwise

potentials k we make use of the gradients for filter param-

eters in k and use back-propagation through the mean-field

iterations [17, 34] to learn them.

The work of [32] derived gradients to learn the feature

scaling D but not the form of the kernel k, which still was

Gaussian. In [14], the features fi were derived using a non-

parametric embedding into a Euclidean space and again a

Gaussian kernel was used. The computation of the embed-

ding was a pre-processing step, not integrated in a end-to-

end learning framework. Both aforementioned works are

generalizations that are orthogonal to our development and

can be used in conjunction.

5.3. Experimental Evaluation

We evaluate the effect of learning more general forms

of potential functions on two pixel labeling tasks, seman-

tic segmentation of VOC data [19] and material classifica-

tion [11]. We use pre-trained models from the literature and

compare the relative change when learning the pairwise po-

tentials, as in the last Section. For both the experiments,

we use multinomial logistic classification loss and learn the

filters via back-propagation [17]. This has also been un-

derstood as recurrent neural network variants, the following

experiments demonstrate the learnability of bilateral filters.

5.3.1 Semantic Segmentation

Semantic segmentation is the task of assigning a semantic

label to every pixel. We choose the DeepLab network [15],

a variant of the VGGnet [41] for obtaining unaries. The

DeepLab architecture runs a CNN model on the input im-

age to obtain a result that is down-sampled by a factor of

8. The result is then bilinear interpolated to the desired res-

olution and serves as unaries ψu(xi) in a dense CRF. We

use the same Pott’s label compatibility function µ, and also

use two kernels k1(fi, fj) + k2(pi, pj) with the same fea-

tures fi = (xi, yi, ri, gi, bi)
⊤ and pi = (xi, yi)

⊤ as in [15].

+ MF-1step + MF-2 step + loose MF-2 step

Semantic segmentation (IoU) - CNN [15]: 72.08 / 66.95

Gauss CRF +2.48 +3.38 +3.38 / +3.00

Learned CRF +2.93 +3.71 +3.85 / +3.37

Material segmentation (Pixel Accuracy) - CNN [11]: 67.21 / 69.23

Gauss CRF +7.91 / +6.28 +9.68 / +7.35 +9.68 / +7.35

Learned CRF +9.48 / +6.23 +11.89 / +6.93 +11.91 / +6.93

Table 2. Improved mean-field inference with learned poten-

tials. (top) Average IoU score on Pascal VOC12 validation/test

data [19] for semantic segmentation; (bottom) Accuracy for all

pixels / averaged over classes on the MINC test data [11] for ma-

terial segmentation.

Thus, the two filters operate in parallel on color & posi-

tion, and spatial domain respectively. We also initialize the

mean-field update equations with the CNN unaries. The

only change in the model is the type of the pairwise poten-

tial function from Gauss to a generalized form.

We evaluate the result after 1 step and 2 steps of mean-

field inference and compare the Gaussian filter versus the

learned version (cf. Tab. 2). First, as in [15] we observe that

one step of mean field improves the performance by 2.48%

in Intersection over Union (IoU) score. However, a learned

potential increases the score by 2.93%. The same behaviour

is observed for 2 steps: the learned result again adds on top

of the raised Gaussian mean field performance. Further, we

tested a variant of the mean-field model that learns a sepa-

rate kernel for the first and second step [34]. This “loose”

mean-field model leads to further improvement of the per-

formance. It is not obvious how to take advantage of a loose

model in the case of Gaussian potentials.

5.3.2 Material Segmentation

We adopt the method and dataset from [11] for material seg-

mentation task. Their approach proposes the same architec-

ture as in the previous section; a CNN to predict the material

labels (e.g., wool, glass, sky, etc.) followed by a densely

connected CRF using Gaussian potentials and mean-field

inference. We re-use the pre-trained CNN and choose the

CRF parameters and Lab color/position features as in [11].

Results for pixel accuracy and class-averaged pixel accu-

racy are shown in Table 2. Following the CRF validation

in [11], we ignored the label ‘other’ for both the training

and evaluation. For this dataset, the availability of training

data is small, 928 images with only sparsely segment anno-

tations. While this is enough to cross-validate few hyper-

parameters, we would expect the general bilateral convolu-

tion to benefit from more training data. Visuals are shown in

Fig. 4 and more are included in the supplementary material.

6. Bilateral Neural Networks

Probably the most promising opportunity for the gener-

alized bilateral filter is its use in Convolutional Neural Net-

4457

(a) Sample tile images

3×
64
×
64

C
o
n
v
.
+

R
e
L
U

32
×
64
×
64

C
o
n
v
.
+

R
e
L
U

16
×
64
×
64

C
o
n
v
.
+

R
e
L
U

2×
64
×
64

(b) NN architecture (c) IoU versus Epochs

Figure 5. Segmenting Tiles. (a) Example tile input images; (b)

the 3-layer NN architecture used in experiments. “Conv” stands

for spatial convolutions, resp. bilateral convolutions; (c) Training

progress in terms of validation IoU versus training epochs.

works. Since we are not restricted to the Gaussian case any-

more, we can run several filters sequentially in the same

way as filters are ordered in layers in typical spatial CNN

architectures. Having the gradients available allows for end-

to-end training with backpropagation, without the need for

any change in CNN training protocols. We refer to the

layers of bilateral filters as “bilateral convolution layers”

(BCL). As discussed in the introduction, these can be under-

stood as either linear filters in a high dimensional space or a

filter with an image adaptive receptive field. In the remain-

der we will refer to CNNs that include at least one bilateral

convolutional layer as a bilateral neural network (BNN).

What are the possibilities of a BCL compared to a stan-

dard spatial layer? First, we can define a feature space

fi ∈ R
d to define proximity between elements to perform

the convolution. This can include color or intensity as in

the previous example. We performed a runtime compari-

son between our current implementation of a BCL and the

caffe [28] implementation of a d-dimensional convolution.

For 2D positional features (first row), the standard layer

is faster since the permutohedral algorithm comes with an

overhead. For higher dimensions d > 2, the runtime de-

pends on the sparsity; but ignoring the sparsity is quickly

leading to intractable runtimes. The permutohedral lattice

convolution is in effect a sparse matrix-vector product and

thus performs favorably in this case. In the original work [2]

it was presented as an approximation to the Gaussian case,

here we take the viewpoint of it being the definition of the

convolution itself.

Next we illustrate two use cases of BNNs and compare

against spatial CNNs. The supplementary material contains

further explanatory experiments with examples on MNIST

digit recognition.

Dim.-Features d-dim caffe BCL

2D-(x, y) 3.3 ± 0.3 / 0.5± 0.1 4.8 ± 0.5 / 2.8 ± 0.4

3D-(r, g, b) 364.5 ± 43.2 / 12.1 ± 0.4 5.1 ± 0.7 / 3.2 ± 0.4

4D-(x, r, g, b) 30741.8 ± 9170.9 / 1446.2 ± 304.7 6.2 ± 0.7 / 3.8 ± 0.5

5D-(x, y, r, g, b) out of memory 7.6 ± 0.4 / 4.5 ± 0.4

Table 3. Runtime comparison: BCL vs. spatial convolution.

Average CPU/GPU runtime (in ms) of 50 1-neighborhood filters

averaged over 1000 images from Pascal VOC. All scaled features

(x, y, r, g, b) ∈ [0, 50). BCL includes splatting and splicing oper-

ations which in layered networks can be re-used.

6.1. An Illustrative Example: Segmenting Tiles

In order to highlight the model possibilities of using

higher dimensional sparse feature spaces for convolutions

through BCLs, we constructed the following illustrative

problem. A randomly colored foreground tile with size

20 × 20 is placed on a random colored background of size

64 × 64. Gaussian noise with std. dev. 0.02 is added and

color values normalized to [0, 1], example images are shown

in Fig. 5(a). The task is to segment out the smaller tile.

Some example images. A pixel classifier can not distinguish

foreground from background since the color is random. We

train CNNs with three conv/relu layers and varying filters

of size n×n, n ∈ {9, 13, 17, 21} but with The schematic of

the architecture is shown in Fig 5(b) (32, 16, 2 filters).

We create 10k training, 1k validation and 1k test im-

ages and, use the validation set to choose learning rates. In

Fig. 5(c) we plot the validation IoU against training epochs.

Now, we replace all spatial convolutions with bilat-

eral convolutions for a full BNN. The features are fi =
(xi, yi, ri, gi, bi)

⊤ and the filter has a neighborhood of 1.

The total number of parameters in this network is around

40k compared to 52k for 9 × 9 up to 282k for a 21 × 21
CNN. With the same training protocol and optimizer, the

convergence rate of BNN is much faster. In this example as

in semantic segmentation discussed in the last section, color

is a discriminative information for the label. The bilateral

convolutions “see” the color difference, the points are al-

ready pre-grouped in the permutohedral lattice and the task

remains to assign a label to the two groups.

6.2. Character Recognition

The results for tile, semantic, and material segmenta-

tion when using general bilateral filters mainly improved

because the feature space was used to encode useful prior

information about the problem (similar RGB of close-by

pixels have the same label). Such prior knowledge is often

available when structured predictions are to be made but the

input signal may also be in a sparse format to begin with.

Let us consider handwritten character recognition, one of

the prime cases for CNN use.

The Assamese character dataset [6] contains 183 differ-

ent Indo-Aryan symbols with 45 writing samples per class.

4458

(a) Sample Assamese character images (9 classes, 2 samples each)

(b) LeNet training (c) DeepCNet training

Figure 6. Character recognition. (a) Sample Assamese character

images [6]; and training progression of various models with (b)

LeNet and (c) DeepCNet base networks.

Some sample character images are shown in Fig. 6(a). This

dataset has been collected on a tablet PC using a pen input

device and has been pre-processed to binary images of size

96× 96. Only about 3% of the pixels contain a pen stroke,

which we will denote by vi = 1.

A CNN is a natural choice to approach this classifica-

tion task. We experiment with two CNN architectures for

this experiment that have been used for this task, LeNet-7

from [33] and DeepCNet [16, 22]. The LeNet is a shal-

lower network with bigger filter sizes whereas DeepCNet is

deeper with smaller convolutions. Both networks are fully

specified in the supplementary. In order to simplify the

task for the networks we cropped the characters by plac-

ing a tight bounding box around them and providing the

bounding boxes as input to the networks. We will call

these networks “Crop-”LeNet, resp. DeepCNet. For train-

ing, we randomly divided the data into 30 writers for train-

ing, 6 for validation and the remaining 9 for test. Fig.6(b)

and Fig. 6(c) show the training progress for various LeNet

and DeepCNet models respectively. DeepCNet is a better

choice for this problem and for both cases pre-processing

the data by cropping improves convergence.

The input is spatially sparse and the BCL provides a nat-

ural way to take advantage of this. For both networks we

create a BNN variant (BNN-LeNet and BNN-DeepCNet)

by replacing the first layer with a bilateral convolutions us-

ing the features fi = (xi, yi)
⊤ and we only consider the

foreground points vi = 1. The values (xi, yi) denote the

position of the pixel with respect to the top-left corner of

the bounding box around the character. In effect the lattice

is very sparse which reduces runtime because the convolu-

tions are only performed on 3% of the points that are actu-

ally observed. A bilateral filter has 7 parameters compared

to a receptive field of 3 × 3 for the first DeepCNet layer

and 5 × 5 for the first LeNet layer. Thus, a BCL with the

same number of filters has fewer parameters. The result of

LeNet

Crop-

LeNet

BNN-

LeNet

DeepC-

Net

Crop-

DeepCNet

BNN-

DeepCNet

Validation 59.29 68.67 75.05 82.24 81.88 84.15

Test 55.74 69.10 74.98 79.78 80.02 84.21

Table 4. Results on Assamese character images. Total recogni-

tion accuracy for the different models.

the BCL convolution is then splatted at all points (xi, yi)
and passed on to the remaining spatial layers. The conver-

gence behaviour is shown in Fig.6 and again we find faster

convergence and also better validation accuracy. The em-

pirical results of this experiment for all tested architectures

are summarized in Table 4, with BNN variants clearly out-

performing their spatial counterparts.

The absolute results can be vastly improved by making

use of virtual examples, e.g., by affine transformations [22].

The purpose of these experiments is to compare the net-

works on equal grounds while we believe that additional

data will be beneficial for both networks. We have no rea-

son to believe that a particular network benefits more.

7. Conclusion

We proposed to learn bilateral filters from data. In hind-

sight, it may appear obvious that this leads to performance

improvements compared to a fixed parametric form, e.g.,

the Gaussian. To understand algorithms that facilitate fast

approximate computation of Eq. (1) as a parameterized im-

plementation of a bilateral filter with free parameters is the

key insight and enables gradient descent based learning. We

relaxed the non-separability in the algorithm from [2] to al-

low for more general filter functions. There is a wide range

of possible applications for learned bilateral filters [37] and

we discussed some generalizations of previous work. These

include joint bilateral upsampling and inference in dense

CRFs. We further demonstrated a use case of bilateral con-

volutions in neural networks.

The bilateral convolutional layer allows for filters whose

receptive field change given the input image. The feature

space view provides a canonical way to encode similar-

ity between any kind of objects, not only pixels, but e.g.,

bounding boxes, segmentation, surfaces. The proposed fil-

tering operation is then a natural candidate to define a filter

convolutions on these objects, it takes advantage of sparsity

and scales to higher dimensions. Therefore, we believe that

this view will be useful for several problems where CNNs

can be applied. An open research problem is whether the

sparse higher dimensional structure also allows for efficient

or compact representations for intermediate layers inside

CNN architectures.

Acknowledgments We thank Sean Bell for help with the mate-

rial segmentation experiments. We thank the anonymous reviewers, J.

Wulff, L. Sevilla, A. Srikantha, C. Lassner, A. Lehrmann, T. Nestmeyer,

A. Geiger, D. Kappler, F. Güney and G. Pons-Moll for their feedback.

4459

References

[1] Google Images. https://images.google.com/. [Online; ac-

cessed 1-March-2015].

[2] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. In Computer

Graphics Forum, volume 29, pages 753–762. Wiley Online

Library, 2010.

[3] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaussian

kd-trees for fast high-dimensional filtering. In ACM Transac-

tions on Graphics (TOG), volume 28, page 21. ACM, 2009.

[4] V. Aurich and J. Weule. Non-linear Gaussian filters perform-

ing edge preserving diffusion. In DAGM, pages 538–545.

Springer, 1995.

[5] S. P. Awate and R. T. Whitaker. Higher-order image statistics

for unsupervised, information-theoretic, adaptive, image fil-

tering. In Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 44–51, 2005.

[6] K. Bache and M. Lichman. UCI machine learning repository,

2013.

[7] D. Barash. Fundamental relationship between bilateral filter-

ing, adaptive smoothing, and the nonlinear diffusion equa-

tion. Pattern Analysis and Machine Intelligence (T-PAMI),

24(6):844–847, 2002.

[8] J. T. Barron, A. Adams, Y. Shih, and C. Hernández. Fast

bilateral-space stereo for synthetic defocus. CVPR, 2015.

[9] J. T. Barron and B. Poole. The Fast Bilateral Solver. ArXiv

e-prints, Nov. 2015.

[10] S. Bell, K. Bala, and N. Snavely. Intrinsic images in the wild.

ACM Transactions on Graphics (TOG), 33(4):159, 2014.

[11] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material

recognition in the wild with the materials in context database.

Computer Vision and Pattern Recognition (CVPR), 2015.

[12] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. arXiv

preprint arXiv:1312.6203, 2013.

[13] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. In Computer Vision and Pattern Recog-

nition (CVPR), volume 2, pages 60–65, 2005.

[14] N. D. Campbell, K. Subr, and J. Kautz. Fully-connected

CRFs with non-parametric pairwise potential. In Computer

Vision and Pattern Recognition (CVPR), pages 1658–1665,

2013.

[15] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected CRFs. In International

Conference on Learning Representations (ICLR), 2015.

[16] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column

deep neural networks for image classification. In Computer

Vision and Pattern Recognition (CVPR), pages 3642–3649,

2012.

[17] J. Domke. Learning graphical model parameters with ap-

proximate marginal inference. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 35(10):2454–

2467, 2013.

[18] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Neural Information Processing Systems (NIPS), pages 2366–

2374, 2014.

[19] M. Everingham, L. V. Gool, C. Williams, J. Winn, and

A. Zisserman. The PASCAL VOC2012 challenge results.

2012.

[20] D. Ferstl, M. Ruether, and H. Bischof. Variational depth su-

perresolution using example-based edge representations. In

International Conference on Computer Vision (ICCV), 2015.

[21] E. S. Gastal and M. M. Oliveira. Adaptive manifolds for

real-time high-dimensional filtering. ACM Transactions on

Graphics (TOG), 31(4):33, 2012.

[22] B. Graham. Spatially-sparse convolutional neural networks.

arXiv preprint arXiv:1409.6070, 2014.

[23] B. Graham. Sparse 3D convolutional neural networks. In

British Machine Vision Conference (BMVC), 2015.

[24] K. He, J. Sun, and X. Tang. Guided image filtering. Pattern

Analysis and Machine Intelligence (T-PAMI), 35(6):1397–

1409, 2013.

[25] H. Hu and G. de Haan. Trained bilateral filters and appli-

cations to coding artifacts reduction. In Image Processing,

2007. IEEE International Conference on, volume 1, pages

I–325.

[26] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In In-

ternational Conference on Computer Vision (ICCV), 2015.

[27] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

Neural Information Processing Systems (NIPS), 2015.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, pages

675–678. ACM, 2014.

[29] M. Kiefel and P. V. Gehler. Human pose estimation with

fields of parts. In European Conference on Computer Vision

(ECCV), pages 331–346. Springer, 2014.

[30] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.

Joint bilateral upsampling. ACM Transactions on Graphics

(TOG), 26(3):96, 2007.

[31] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected CRFs with Gaussian edge potentials. Neural In-

formation and Processing Systems (NIPS), 2011.

[32] P. Krähenbühl and V. Koltun. Parameter learning and con-

vergent inference for dense random fields. In International

Conference on Machine Learning (ICML), pages 513–521,

2013.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[34] Y. Li and R. Zemel. Mean-field networks. In ICML Work-

shop on Learning Tractable Probabilistic Models, 2014.

[35] P. Milanfar. A tour of modern image filtering. IEEE Signal

Processing Magazine, 2, 2011.

[36] S. Paris and F. Durand. A fast approximation of the bilat-

eral filter using a signal processing approach. In European

Conference on Computer Vision (ECCV), pages 568–580.

Springer, 2006.

4460

[37] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilat-

eral filtering: Theory and applications. Now Publishers Inc,

2009.

[38] J.-H. Rick Chang and Y.-C. Frank Wang. Propagated im-

age filtering. In Computer Vision and Pattern Recognition

(CVPR), pages 10–18, 2015.

[39] A. G. Schwing and R. Urtasun. Fully connected deep struc-

tured networks. arXiv preprint arXiv:1503.02351, 2015.

[40] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

European Conference on Computer Vision (ECCV), pages

746–760. Springer, 2012.

[41] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[42] S. M. Smith and J. M. Brady. SUSAN – a new approach to

low level image processing. Int. J. Comput. Vision, 23(1):45–

78, May 1997.

[43] D. Sun, J. Wulff, E. B. Sudderth, H. Pfister, and M. J. Black.

A fully-connected layered model of foreground and back-

ground flow. In Computer Vision and Pattern Recognition

(CVPR), pages 2451–2458, 2013.

[44] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression

for image processing and reconstruction. Image Processing,

IEEE Transactions on, 16(2):349–366, 2007.

[45] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Computer Vision, 1998. Sixth International

Conference on, pages 839–846. IEEE, 1998.

[46] V. Vineet, G. Sheasby, J. Warrell, and P. H. Torr. Posefield:

An efficient mean-field based method for joint estimation of

human pose, segmentation and depth. In EMMCVPR, 2013.

[47] V. Vineet, J. Warrell, and P. H. Torr. Filter-based mean-field

inference for random fields with higher order terms and prod-

uct label-spaces. In European Conference on Computer Vi-

sion (ECCV), 2012.

[48] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus.

Deconvolutional networks. In Computer Vision and Pattern

Recognition (CVPR), pages 2528–2535, 2010.

[49] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random

fields as recurrent neural networks. International Conference

on Computer Vision (ICCV), 2015.

4461

