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Abstract

There is a great deal of interest in using large scale

brain imaging studies to understand how brain connectivity

evolves over time for an individual and how it varies over

different levels/quantiles of cognitive function. To do so,

one typically performs so-called tractography procedures

on diffusion MR brain images and derives measures of brain

connectivity expressed as graphs. The nodes correspond to

distinct brain regions and the edges encode the strength of

the connection. The scientific interest is in characterizing

the evolution of these graphs over time or from healthy in-

dividuals to diseased. We pose this important question in

terms of the Laplacian of the connectivity graphs derived

from various longitudinal or disease time points — quanti-

fying its progression is then expressed in terms of coupling

the harmonic bases of a full set of Laplacians. We derive

a coupled system of generalized eigenvalue problems (and

corresponding numerical optimization schemes) whose so-

lution helps characterize the full life cycle of brain connec-

tivity evolution in a given dataset. Finally, we show a set

of results on a diffusion MR imaging dataset of middle aged

people at risk for Alzheimer’s disease (AD), who are cog-

nitively healthy. In such asymptomatic adults, we find that

a framework for characterizing brain connectivity evolution

provides the ability to predict cognitive scores for individual

subjects, and for estimating the progression of participant’s

brain connectivity into the future.

1. Introduction

Large scale scientific initiatives such as the Human Con-

nectome Project (HCP) are beginning to provide exquisite

imaging data that may eventually enable a full structural

connectivity mapping of the human brain [28]. For instance,

diffusion magnetic resonance imaging (dMRI), an imaging

modality central to the aforementioned studies, captures in

a spatially localized (voxel-wise) manner, water diffusion

properties that can be used to infer the arrangement of net-

work pathways in the brain [23, 27]. After suitable pre-

processing, e.g., via so-called tractography procedures, we

obtain a unique view of the fiber bundle layout that connects

distinct brain regions [10] (see Fig. 1). From an analysis

perspective, once the spatial organization of these fiber bun-

dles is expressed as a graph whose nodes represent separate

brain regions and the edges denote the “strength” of con-

nection (e.g., number) of the connecting inter-region fibers,

a variety of analyses can be conducted [12, 13, 24, 34]. For

example, we may ask whether a specific edge of the graph

exhibits statistically different connectivity measurements

across clinically disparate groups: diseased and healthy. If

the results of this hypothesis test are statistically significant,

we can conclude that the corresponding fiber bundle (per-

taining to the edge) is possibly affected by the disease.

But more recently, there is increasing interest in iden-

tifying not just imaging based or structural connectivity

based biomarkers, rather to quantitatively characterize dis-

ease progression [3, 18, 31]. For example, studies may re-

cruit subjects for multiple visits over a period of time (which

varies from months to years) and acquire diffusion imaging

data at several time points. In such longitudinal datasets,

each subject (or sample) corresponds to multiple images

(or the corresponding brain connectivities) at different time

points. The scientific goal then is to identify the entire life

cycle of brain connectivity evolution — from when a mid-

dle aged participant was healthy to a stage where the indi-

vidual’s cognitive function has become much worse.

The standard approach to answering the question above

is to characterize change in brain connectivity at the level

of individual edges in the graph. There are two problems

with this proposal. First, treating individual edges as prim-

itives neglects the local context in which the edge exists in

the actual object of interest — i.e., the entire connectivity

graph of the individual. But from a technical perspective, a

second issue is perhaps more important. For n regions, we

obtain O(n2) edges. After learning a model (e.g., associa-
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Figure 1: (a) Diffusion tensor ellipsoids obtained from the dMRI data using non-linear estimation. (b) Anatomical regions in cortical and sub-cortical

gray matter are used to define the nodes in the brain network. (c) Fiber tracts (axonal pathways between brain regions) estimated via tractography are used

to define connectivity strength between various gray matter nodes in the brain. (d) The brain networks can be represented as symmetric adjacency matrices.

tion of the connection weights with age) for each edge and

estimating the significance of the fit (e.g., p-values), we can-

not simply report the edges with small p-values as relevant.

Since the analysis is being conducted for a large number

of edges, the likelihood of false positives is high, so a se-

vere multiple comparisons correction needs to be adopted.

This correction may often be too conservative, and we may

end up discarding connections that are, in fact, scientifically

meaningful; this is an undesirable consequence of treating

the edges individually. To avoid this problem, practitioners

often rely on summary measures of the connectivity graph

instead, such as clustering coefficients, small-worldness,

modularity and so on [2, 20]. This works well but is lim-

ited in that we cannot uncover spatially localized effects of

disease (or other covariates) on connectivity.

A more attractive solution is to think of the graphs as an

object and utilize a suitable parameterization of the graph.

One possibility is to use the Laplacians [19, 25], either at

the level of individual subjects or in terms of distinct parti-

tions of the full cohort progressively going from healthy to

diseased, i.e., the first partition is comprised of completely

healthy individuals whereas the k-th partition includes dis-

eased subjects. Then, if we look at the full set of bases of

the partition-specific Laplacian we can come up with ways

to characterize change in these bases as we move from the

healthy to the diseased partition. Of course, such a param-

eterization also enables longitudinal analysis. For example,

if we have data for multiple time-points for each partition,

we can track how the Laplacian bases evolve over time. To

achieve these goals, i.e., for analyzing changes across par-

titions of disease severity or partition-specific longitudinal

analysis, one requirement is the ability to derive a coupled

set of harmonic bases for a set of ordered Laplacians (lon-

gitudinally and cross-sectionally). This allows treating the

full data holistically while preserving the ordinal nature of

time and disease-induced cognitive decline. While a ma-

ture body of literature in numerical analysis provides so-

phisticated ways of deriving orthonormal set of bases for

any self-adjoint operator, it provides little guidance on how

to impose the coupling requirement, essential in this appli-

cation. For example, we find that for most of the widely

used eigenvalue decomposition methods [21, 32], it is non-

trivial to modify the numerical scheme to satisfy the consis-

tency requirement between consecutive set of eigen-bases.

Addressing this limitation is a goal of this paper.

Key contributions. With the foregoing motivation, the

core of this work deals with deriving efficient numerical op-

timization schemes to solve an ordinally and longitudinally

coupled set of a generalized eigenvalue problems. To our

knowledge, few publicly available alternatives currently ex-

ist [14, 15]. We provide (1) a novel formulation for esti-

mating harmonic bases of brain connectivity networks that

are smoothly varying in terms of both longitudinal as well

as cross-sectional ordering (induced by a separate covari-

ate such as cognitive performance). We provide an iterative

numerical scheme for solving the problem using stochas-

tic block coordinate descent based manifold optimization

techniques. (2) We show that such a framework provides

an exciting scientific tool in the following sense. Once the

model has been estimated, we can vary a single parameter

and “see” how the structural brain connectivity of an indi-

vidual evolves over time or as a function of disease (see Fig.

2 for a qualitative demonstration). This yields a valuable

mechanism for performing individual-level prediction. We

show how our algorithm is able to provide connectivity pre-

diction in a population of healthy controls who have some

known risk factors of AD. Even though these individuals

are asymptomatic, our approach is able to obtain a nominal

degree of accuracy in assigning the subject to distinct cog-

nitive quantiles. Demonstrating that we can, in fact, obtain

a better than chance accuracy where the disease signal is so

weak is the main contribution of this work.

2. Coupled harmonic bases for brain networks

Parameterization. Let us first describe a simple proce-

dure for parameterizing the brain connectivity network in
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Figure 2: Using coupled harmonic representations derived from brain

connectivity networks, we can turn a “knob” and see how a network

evolves as the cognitive stage changes from healthy to diseased.

terms of its bases for individual subjects. Let A be a n× n
weighted adjacency graph, A as in Fig. 1(d) representing

a brain connectivity between n regions of the brain for a

subject. We construct the Laplacian L, a commonly used

tool/parameterization for representing graphs, defined as

L = D −A, D(i, i) =

n∑

j=1

A(i, j),

where D is called the degree matrix. Based on spectral

graph theory, the eigenvectors corresponding to lower order

eigenvalues contain the ‘low frequency’ information which

reflects the latent structure of the Laplacian. The bases are

estimated by minimizing the following objective function

min
V ∈Rn×p

tr(V T
LV ), s.t. V

T
V = I, (1)

where tr(·) is the trace functional. The solution V to

the above numerical optimization problem consists of the

eigenvectors associated with the p smallest eigenvalues of

L which we solve to express a given brain connectivity net-

work via its Laplacian and/or its p eigenvectors/eigenvalues.

Now suppose we are given a longitudinal dMRI dataset

for N subjects with T time points: this provides NT brain

networks. We can parameterize all the networks simultane-

ously by minimizing the following objective function

min
V[i,j]∈Rn×p

N∑

i=1

T∑

j=1

tr(V T
[i,j]L[i,j]V[i,j])

s.t. V
T
[i,j]V[i,j] = I,

(2)

where L[i,j] denotes the Laplacian matrix of brain network

for subject i and time point j and V[i,j] denotes the set of p
eigenvectors for L[i,j].

However, this formulation ignores a couple of key prop-

erties of our analysis goal (conceptually shown in Fig. 3).

(1) Each subject has multiple time points which means that

not all networks in the population are ‘independent’. There

are strong dependencies among the networks derived from

a single person observed over time. (2) The subjects can,

if desired, be partitioned into distinct groups if a covari-

ate of interest for the subjects is close enough (i.e., similar

cognitive scores or a measure of pathology such as amyloid

protein load may have roughly similar connectivity strength

[6]). This suggests that the bases that we find must also

be related, or coupled, while still respecting, to the extent

possible, their original Laplacians. If we consider the popu-

lation of networks as a system, the recovery of the full set of

bases must ensure a notion of consistency among {V[i,j]},

governed by either the cognitive score grouping or longitu-

dinal ordering described above.

We now present our proposed framework for adding con-

straints in (2) that will ensure that the full set of Laplacians

are treated jointly. Without loss of generality, we can work

with the example dataset scenario presented in Fig. 3.

2.1. Longitudinal coupling

In this section, we introduce basis coupling constraints

that model the relationships (blue arrows in Fig. 3) be-

tween temporally consecutive bases. Suppose we consider

the bases V[•,j] and V[•,j+1] for two consecutive time points

j and j + 1 for a specific subject. Since these are derived

from the Laplacians of the same subject, we impose a ho-

mology constraint between the latent structures. In other

words, we expect that V[•,j] and V[•,j+1] differ only by a

small degree of rotation. Specifically, we impose

V[•,j+1] = R
•

[j,j+1]V[•,j], (3)

where R•

[j,j+1] ∈ SO(n) which is a group of n× n orthog-

onal matrices with determinant = +1. This is, in fact, a Pro-

crustes problem [30] of aligning the bases which provides

the longitudinal evolution process of the set of bases as a

sequence of rotation matrices. Note that the rotation matrix

which aligns V[•,j+1] to V[•,j] is simply R•

[j+1,j] = R•
T

[j,j+1].

Now, for eigenvectors V[•,j] and V[•,j+1], we see that

V
T
[•,j]V[•,j] = V

T
[•,j]R

•

[j+1,j]V[•,j+1] = I, (4)

V
T
[•,j+1]V[•,j+1] = V

T
[•,j+1]R

•

[j,j+1]V[•,j] = I. (5)

Multiplying the above two equations we have

(

V
T
[•,j]R

•

[j+1,j]V[•,j+1]

)(

V
T
[•,j+1]R

•

[j,j+1]V[•,j]

)

= I

=⇒ V
T
[•,j] (R

•

[j+1,j]V[•,j+1]V
T
[•,j+1]R

•
T

[j+1,j])
︸ ︷︷ ︸

M ′

[j+1,j]

V[•,j] = I.

Thus, we have now added a constraint on V[•,j] that ad-

dresses the coupling between j and j + 1 as

V
T
[•,j]M

′

[j+1,j]V[•,j] = I. (6)

Note that for j /∈ {1, T}, each V[•,j] is tied to V[•,j−1] and

V[•,j+1]. Thus, the coupling matrices for those two relation-

ships are M ′

[j−1,j] and M ′

[j+1,j] respectively. To account for

both relations, we take the average coupling matrix as [7]:

M[•,j] =
M ′

[j−1,j] +M ′

[j+1,j]

2
. (7)
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Figure 3: The graph representation of the coupled data matrices. The

nodes in each row (cross-sectional) are coupled horizontally in red while

the nodes in each column (longitudinal) are coupled vertically in blue.

For the boundary values of j = 1 and j = T , M[•,1] =
M ′

[2,1] and M[•,T ] = M ′

[T,T−1] respectively. Thus, for a

subject i, we derive the following optimization model for

discovering longitudinally coupled bases for the brain con-

nectivity Laplacians,

min
V[i,j]∈Rn×p

tr(V T
[i,j]L[i,j]V[i,j]), s.t. V

T
[i,j]M[i,j]V[i,j] = I.

(8)

Recall that the above constraint is the so-called generalized

Stiefel constraint [1] with the mass matrix M[i,j]. This is

also known as the generalized eigenvalue problem that finds

the first p smallest eigenvalues and the respective eigenvec-

tors of L[i,j] for the mass matrix M[i,j]. We can finally ex-

tend this implementation for all subjects as follows,

min
V[i,j]∈Rn×p

N∑

i=1

T∑

j=1

tr(V T
[i,j]L[i,j]V[i,j])

s.t. V
T
[i,j]M[i,j]V[i,j] = I.

(9)

We point out that for each i and j, the above model is equiv-

alent to (8).

2.2. Crosssectional coupling

In this section, we present the appropriate constraints

that will encode cross-sectional dependencies among the

eigenvectors {V[i,j]}. Let us say the population can be par-

titioned into K distinct groups (columns in Fig. 3) where

each group/column is cognitively equivalent based on some

battery of tests. Such partitions may also be derived by cer-

tain measures of pathology. For each group, we first con-

struct an average Laplacian X[i,•] at a fixed time point. This

average Laplacian serves as a representative of that spe-

cific group. In principle, we can work with individual level

Laplacians L, however, since the goal is to formulate the

coupling of bases with respect to the covariates, the averag-

ing helps us reduce the individual level variability and pro-

vides a more succinct picture of the network evolution along

the trajectory of that covariate (e.g., cognitive scores).

Let us consider three such average Laplacians X[i−1,•],

X[i,•] and X[i+1,•] from three consecutive/ordered parti-

tions. The corresponding eigenvectors will be V[i−1,•],

V[i,•] and V[i+1,•]. Since these bases are derived from par-

titions with disjoint/distinct groups of subjects, we cannot

assume a homological relationship between them. Since

the coupling constraints will be added only between adja-

cent partitions it is nonetheless reasonable to assume that

the bases will not change drastically affecting the full con-

nectivity network. We encode this requirement as a sparsity

constraint on the difference of the bases, e.g., via ℓ0 norm.

We use the relaxed ℓ1 alternative,

g(V[i,•]) = λ
(
||V[i−1,•] − V[i,•]||1 + ||V[i,•] − V[i+1,•]||1

)

(10)

where λ > 0 is the regularization parameter which controls

only the magnitude of the cross-sectional coupling.

Intuitively, it enforces similarities in certain dimensions

of the cross-sectional bases while allowing the others to

vary freely. In other words, we preserve some structural

consistencies across the groups while still allowing the

group-wise bases to be different. Note that for i = 1 and

i = K, the regularization terms will only contain the first

term and the second term of (10) respectively. The cross-

sectionally coupled bases (V[i,•]) can then be estimated by

minimizing the following,

min
V[i,•]∈Rn×p

tr(V T
[i,•]X[i,•]V[i,•]) + λg(V[i,•])

s.t. V
T
[i,•]M[i,•]V[i,•] = I.

(11)

Putting it all together, we have the following coupled gen-

eralized eigenvalue formulation,

min
V[i,j]

K∑

i=1

T∑

j=1

tr(V T
[i,j]X[i,j]V[i,j]) + λ

K−1∑

i=1

T∑

j=1

||V[i+1,j] − V[i,j]||1

s.t. V
T
[i,j]M[i,j]V[i,j] = I; V[i,j] ∈ R

n×p
.

(12)

We have now imposed both the longitudinal and cross-

sectional basis coupling: for all partitions and time points.

3. Optimization scheme for coupled bases

In this section, we present an efficient numerical proce-

dure for solving (12). Recall that the constraints involving

the mass matrix form the generalized Stiefel manifold. We

first present a few relevant technical details of the Stiefel

manifold for completeness.

The set GFn,p = {u ∈ L(Rn,Rp) : rank(u) = n}
of n−frames in R

p is called the Stiefel manifold. When

p = n, GFn,n := GFn is the General Linear group or the

set of n × n matrices with nonzero determinant. In other

words, a Stiefel manifold is the set of n × p orthonormal

matrices (with a Riemannian structure). L(Rn,Rp) is the

vector space of linear maps form R
n to R

p with the space
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Algorithm 1 Stochastic block coordinate descent in GFn,p

1: Given: f : GFn,p → R, V ∈ GFn,p(M), M ∈ R
n×n

2: while Convergence criteria not met do

3: S := Subproblem row indices

4: P0 := Initial feasible submatrix (19)

5: G := Subdifferential of f w.r.t. P0 (20)

6: W := Descent curve in the direction of −G on

GFs,p(MSS) at P0 (22)

7: τ := Step size under strong Wolfe conditions [17]

8: P := Feasible point W (τ) of subproblem with suffi-

cient decrease in f
9: V ′(P ) := Update new feasible point (23)

10: end while

R
n×p of n × p matrices. Additional details on these topics

such as tangent space, exponential map and retraction, are

available in [1].

Our main strategy is to perform block coordinate descent

over GFn,p to solve for {V[i,j]} for each matrix X[i,j] given

in (12). Specifically, our algorithm iteratively decreases the

objective value of the problem by finding the next feasible

point in a curve which lies in the generalized Stiefel mani-

fold GFn,p described in the constraints of (8), by adapting

the scheme in [4, 9, 33]. This process is invoked as a mod-

ule within our full pipeline.

Next, we show the entire framework of our algorithm

which solves for all V[i,j] of the model (12) by iteratively

solving for each V[i,j] while fixing the other decision vari-

ables V[i′,j′], ∀i
′ 6= i&j′ 6= j. In each iteration, we also

update the mass matrix M[i,j] using the most recent bases.

Stochastic block coordinate descent in GFn,p. For

simplicity, let us focus on a single arbitrary partition and its

Laplacian X , mass matrix M and the eigenvectors V and

setup the following coupled model as in (11):

min
V ∈Rn×p

tr(V T
XV ) + λg(V )

s.t. V
T
MV = I,

(13)

where the regularization term g(V ) from (10). First, we

show how to solve (13) on a subset of the dimensions.

This is a very common procedure in a coordinate descent

method where the dimensions can be computed nearly in-

dependently to allow parallelization and make large-scale

implementation possible. Specifically, we construct a sub-

problem for each submatrix VS· ∈ R
s×p where S is a sub-

set of s row indices of V . We choose this submatrix as

the free variable which we ultimately solve for while fixing

the complementary submatrix VS̄· for the rows S̄ called the

fixed variable which we essentially treat as constants. As-

suming w.l.o.g. that VS· contains the first s rows of V and

its complement VS̄· contains the leftover indices, the con-

straint V TMV = I in (13) can be reorganized as

[
VS·

VS̄·

]T [
MSS MT

S̄S

MS̄S MS̄S̄

] [
VS·

VS̄·

]

= I. (14)

Rearranging it to move all the fixed variables on one side

results in

V
T
S·MSSVS· + V

T
S̄·MS̄SVS· + V

T
S·M

T
S̄SVS̄· =: Ĥ, (15)

for a constant matrix Ĥ . With the full-rank assumption on

MSS , completing the square results the following:
(

M
1
2
SS

VS·+M
− 1

2
SS

M
T
S̄SVS̄·

)T(

M
1
2
SS

VS·+M
− 1

2
SS

M
T
S̄SVS̄·

)

= H

(16)

for a new constant matrix H = Ĥ+V T
S̄·
MS̄SM

−1
SS

MSS̄VS̄·.

Since we assume that M is positive definite, MSS is also

positive definite and invertible.

Now, given an orthogonal subproblem decision matrix

P , the next feasible iterate can be provided as

VS· = M
− 1

2
SS

PH
1
2 −M

−1
SSM

T
S̄SVS̄·, (17)

which satisfies the constraints in (14). Note that by using

a retraction, we can smoothly map the tangent vectors to

the manifold and preserve the key properties of the expo-

nential function necessary to perform feasible descent on

the manifold. For the Stiefel manifold, a computationally

efficient retraction comes from the Cayley transform which

can be extended to the generalized Stiefel manifold shown

by Equation (1.2) and Lemma 4.1 of [33]. Consequently,

we can eliminate the extra computation of the matrix square

roots and simplify (17) to the following:

VS· = P −M
−1
SSM

T
S̄SVS̄·. (18)

If PTMSSP = H for MSS ≻ 0 and non-singular H , the

above equation satisfies the subproblem constraint. Thus,

given the previous V , the descent curve starts at the point:

P0 = VS· +M
− 1

2
SS

M
T
S̄SVS̄·. (19)

So far, we have shown how to setup the initial point for

the line search step. Next, we describe how to compute the

descent curve of the subproblem on the generalized Stiefel

manifold for the line search on the manifold. The first step

is to find the gradient of the objective function of (13) which

is f(V ) = V TXV + λ g(V ). Thus, for f(U) and V (P )
where the next feasible point V as a function of P as in (18),

the gradient of f ◦ V (P ) w.r.t. P is

∂ (f ◦ V (P ))

∂P
= 2(XSSVS· +XSS̄VS̄·) + λg

′(V (P )), (20)

where g′(V (P )) is the subgradient of the regularization

term (10). Next, we project the descending subgradi-

ent −G′ at P0 onto the tangent space of the manifold

GFi,p(MSS) by constructing a skew-symmetric matrix:

Q = GP
T
0 − P0G

T
, (21)
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Algorithm 2 Coupled bases framework using SBCD

1: Given:

f : GFn,p → R, V[:,:] ∈ GFn,p(M[:,:]), M[:,:] ∈ R
n×n

2: while Convergence criteria not met do

3: for i = 1, ..., K do

4: for j = 1, ..., T do

5: V[i,j] := Free variable

6: V[i,j] := SBCD(V[i,j]) (Alg. 1)

7: end for

8: for j = 1, ..., T do

9: R[i,j] := Rotation matrix (3)

10: end for

11: for j = 1, ..., T do

12: M[i,j] := Mass matrix (6), (7)

13: end for

14: end for

15: end while

which conveniently allows the Cayley transform as in [33]

to smoothly map from the tangent space to the generalized

Stiefel manifold to create the descent curve W as a function

of τ :

W (τ) =
(

I +
τ

2
QMSS

)−1 (

I −
τ

2
QMSS

)

P0. (22)

We can linearly search over the descent curve to find the

new point P = W (τ) for some τ which results sufficient

decrease in f . Thus, the next feasible decision variable

V ′ ∈ R
n×p as a function of P is

V
′(P ) =

[
P −M−1

SS
MT

S̄S
VS̄·

VS̄·

]

(23)

so we can finally assign the current V with V ′. By the con-

struction of the coupled bases model (13), V ′ is updated to

minimize the objective function while it remains coupled

with the other longitudinal and cross-sectional bases con-

nected to V . The pseudo-code of the algorithm is in Alg. 1.

Iterative SBCD in GFn,p for bases coupling. With the

stochastic block gradient descent (SBCD) method roughly

similar to [16] as a solver for a single coupled basis, we now

setup the framework to solve for all coupled bases. Specif-

ically, given multiple matrices X[i,j] for i = 1, . . . ,K and

j = 1, . . . , T , we set up grid-like iterations as shown in

Alg. 2 where we iteratively pass through all possible pairs

of i and j. In each iteration, we set V[i,j] for the current

pair of i and j to be the free variable and set V[i′,j′] of the

remaining i′ 6= i and j′ 6= j to be the fixed variables. We

solve for only the free variable V[i,j] using SBCD iteratively

for all i and j.

Since (13) imposes the longitudinal coupling based on

the mass matrices that are precomputed from the bases

available at that iteration, they might not reflect the most

accurate longitudinal relations precomputed mass matrices

involving rotation matrices of the bases. Therefore, we must

update the mass matrices so that they reflect the most accu-

rate bases (encoding the naturally derived longitudinal tra-

jectory) by recomputing the rotation matrices of the newly

updated bases. Thus, the mass matrix computation step im-

mediately follows the bases update step. We repeat these

steps iteratively until convergence criteria are met.

4. Experiments

Data and scientific goal. Our dataset focuses on

a cohort of middle aged individuals who are at risk for

Alzheimer’s disease (AD) due to a positive family history

(at least one parent with confirmed diagnosis of AD). Our

data corresponds to at least three longitudinal scans of these

subjects. The participants are cognitively healthy but some

AD related brain changes, while subtle, have already begun.

Note that in the analysis of anatomical changes in standard

magnetic resonance images (not brain connectivity as we

do here), numerous findings suggest that accurate quantifi-

cation of brain “changes”, e.g., via tensor based morphom-

etry, is often more sensitive than the analysis of individual

images independently [8]. But in the context of AD (and

for other brain disorders) most, if not all, such studies focus

on data that cover the full spectrum of the disease (healthy

to AD) – the disease effects of those data are much stronger

and arguably easier to detect than those in the setting we

consider here. We expect that estimating the longitudinal

change process in connectivity accurately via the coupled

harmonic bases model will enable identifying a disease sig-

nal even in the pool of healthy (but at-risk) individuals.

Workflow for deriving brain connectivity networks.

There are three key steps in deriving brain connectivity net-

works for a given population study. (a) Coordinate system.

For population level analysis of brain images, one typically

needs to register all the images onto a standard coordinate

system in a way that avoids any unwanted biases. We fol-

low recommended procedures for deriving an unbiased co-

ordinate system for the 3D+time regime as follows [11].

We first estimate a subject-specific average that is tempo-

rally unbiased. The subject specific averages are then used

to generate an unbiased population level average template

space, the process is summarized in Fig. 4. (b) Edges.

We use tractography for deriving edges of the in vivo brain

(structural) networks. The key ingredient needed for these

algorithms is the orientational information of white matter

fibers passing through a voxel, inferred by fitting a tissue

model to the acquired MR signal from diffusion weighted

imaging. Our data was acquired at a single shell diffusion

weighting of b = 1000 s/mm2. Although limited in its abil-

ity to resolve crossing fiber tissue, for this data the most re-

liable model that can be fit is the so called diffusion tensor.

The principal eigenvector of the diffusion tensor in a voxel
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Figure 4: Unbiased estimation of the global coordinate system for

the longitudinally acquired imaging data. Visits are averaged first which

are then used to estimate the global average. Each of the curved black

lines represents a combination of rigid, affine and non-linear diffeomor-

phic transformations. These transformations and the spatial averages are

estimated iteratively. Diffusion tensors are directly registered using log-

Euclidean framework [35].

provides a proxy to the predominant orientation of the white

matter fibers in that voxel. Using this information, we re-

peated probabilistic tractography twenty times [5]. The nor-

malized standard deviation of the eigenvectors of the tensor

(also known as fractional anisotropy) in the tracts passing

between two regions serves as the edge strength between

nodes in our experiments. (c) Nodes. The third key compo-

nent is the node definition. For defining nodes, we relied on

expert neuroanatomy groups who have carefully delineated

the boundaries of regions in the brain based on their knowl-

edge (including histological studies). We used the gray mat-

ter atlas defined on a DTI template [29] which provides 160

distinct regions in the brain.

Covariates for creating sub-cohorts/partitions. We

partition the full cohort using two key ordinal covariates:

Rey Auditory Verbal Learning Test (RAVLT) [22] and Mini

Mental State Exam (MMSE) [26]. These are cognitive per-

formance scores based on tests that assess the cognitive

functioning of the subjects and common in preclinical as-

sessments of AD. Note that there is a systematic effect of

age and gender on these scores. To control for these nui-

sance variables, we perform regression against these vari-

ables and derive z-scores for both RAVLT and MMSE.

This imposes an implicit ordering of the subjects for the

two measures, after the effect of age and sex has been ac-

counted for. We derive K partitions of the z-scores to

“stage” the cognitive status (and the subjects) into distinct

cognitive quantiles. This implies that even within the full

set of “healthy” individuals, subjects that fall within the

same quantile are similar. If this staging is finer, we have

fewer samples in each partition. We used K ∈ {2, 3, 4}
partitions to keep the individual-level variance manageable

while still allowing us to identify the general connectivity

evolution patterns. Although we assume that all participants

are recruited into the study concurrently (which may not

be true), since they are assigned to distinct cognitive quan-

tiles, estimating their longitudinal trajectories is reasonable

(also, since the entire cohort is middle aged). In case of

uneven distribution along the time axis, standard imputa-

tion strategies may be needed. Here, we only utilized data

where all three time points were available to keep the pre-

sentation simple and avoid concerns related to the potential

effect/bias of the specific imputation methods. Once the

subjects are assigned to the appropriate partitions based on

their z-scores (columns in Fig. 3), we can derive the average

Laplacians, formulate the system as (12) and solve for the

coupled bases.

Design. We use 68 subjects with three longitudinal time

points and partition them for different K based on RAVLT

and MMSE z-scores. Then, for each setting, we compute

four sets of bases: (a) non-coupled (2), (b) longitudinally

coupled (9), (c) cross-sectionally coupled ((12) with matrix

M = I) and (d) longitudinally+cross-sectionally coupled

(12). Thus, each partition now has a set of longitudinal

bases (vertical direction in Fig. 3). For a novel test sub-

ject, we can calculate the corresponding connectivity graph

and compare to each of the K partitions. The quantile of

the closest partition is the label of this new subject. First,

to measure the overall accuracy of this procedure, we use

21 ‘held out’ test subjects, which were not used to com-

pute the four sets of bases to avoid overfitting, where each

subject has three longitudinal scans available. So, we have

total of 21 × 3 = 63 distinct Laplacians. We perform two

classification tasks. First, we only predict the quantiles of

the Laplacians at the first (or baseline) time point. Next,

we predict all 63 Laplacians which is expected to be much

harder since the quantiles of the subsequent time points are

not used in deriving the partitions. Nonetheless, we expect

that if our coupled bases are accurate, the information from

the first time point should, in principle, affect subsequent

time points in a way that allows our model to still predict

the label correctly. We evaluated p ∈ {n/4, n/2, 3n/4} and

chose p = n/4 since the residual is extremely small beyond

n/2. We used |S| = 40, but for larger datasets, it can be

set to be larger if computationally feasible while also con-

sidering the approximation/speed trade-off. Lastly, we used

λ ∈ {1, 20, 50}.

Results. We show the prediction accuracies of our al-

gorithm in Table 1. We run the classification tasks for

K ∈ {2, 3, 4} respectively. We compare the similarities

of the bases of each test subject (using ℓ2 norm) to the set

of bases in each partition to locate the closest one, which is

the assigned quantile label of the test subject. In Table 1, we

show the accuracy results for RAVLT and MMSE using four

setups (columns 2 through 5): (a) non-coupled, (b) longitu-

dinally coupled, (c) cross-sectionally coupled and (d) both
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K
Non-coupled Longitudinal Cross-section Coupled

j=1 {1, 2, 3} 1 {1, 2, 3} 1 {1, 2, 3} 1 {1, 2, 3}

R:2 33.33 34.92 42.86 42.86 66.67 60.32 71.43 71.43

R:3 38.10 33.33 52.38 36.51 57.14 44.44 57.14 55.56

R:4 28.57 28.57 23.81 30.16 30.16 23.81 47.62 34.92

M:2 42.86 41.27 28.57 30.16 57.14 39.68 76.19 71.43

M:3 42.86 38.10 47.62 49.21 47.62 46.03 47.62 50.79

M:4 34.92 28.57 23.81 14.29 19.05 12.70 47.62 28.57

Table 1: Prediction accuracy (%) of RAVLT (R:K ∈ {2, 3, 4} quan-

tiles) and MMSE (M:K ∈ {2, 3, 4} quantiles) on j = 1 time point and

j = {1, 2, 3}. Best results are in red.

longitudinally and cross-sectionally coupled. For RAVLT,

first, we discuss the simplest setting for K = 2 (R:2 in Ta-

ble 1). Here, the performance estimates suggest that the

first three setups are unable to identify the signal whereas

our proposed coupled setup offers accuracy estimates ap-

proaching 70%. This trend of the coupled setup improving

the accuracy of the non-coupled or partially coupled setup

continues for K = 3 (R:3) and K = 4 (R:4). We observe

a very similar trend for the MMSE quantile prediction task

suggesting that capturing the full set of longitudinal data in

terms of its coupled bases offers significant advantages for

predicting subject-level cognitive status.

Discussion. We briefly elaborate on the relevance of

these findings. Recall that our dataset is preclinical, i.e., all

subjects are healthy. This means that the brain connectivity

changes that we seek to capture using our proposed formu-

lation are extremely subtle. To appreciate the small effect

sizes in this dataset, we show in Fig. 5 the actual brain con-

nectivity adjacency matrices for K = 3 from the RAVLT

based staging. The numbers at the top of each matrix image

is the total sum of edge weights in the graph. As expected,

when we move from left to right (and top to bottom), the

overall connectivity progressively becomes weaker but the

changes are extremely small and nearly impossible to pick

up in a statistically significant way if this analysis were con-

ducted on an edge-by-edge manner. Despite the fact that

the overall changes are in the 0.5-1.0% range over the en-

tire set of 12720 edges, our coupled harmonic bases setup

is still able to offer better than chance prediction accuracy.

Achieving this capability in a preclinical population is the

main scientific result of our experimental evaluations.

Finally, we note that our model recovers disease effects

at the level of individual tracts reliably: it specifically iden-

tified the top 50 fiber tracts with the most changes in con-

nectivity strength across RAVLT progression (illustrative

results are described in detail in the supplement).

5. Conclusion

The goal of this paper is to characterize the evolutionary

patterns of brain connectivity networks derived from a lon-

gitudinal set of middle-aged healthy individuals who are at

risk for Alzheimer’s disease. The changes in brain connec-

Figure 5: Average adjacency matrices for each of the three stages

(columns) based on RAVLT total z-scores and each of the three time points

(rows). The total magnitude of connectivity strengths (sum of the total

edge weights) are shown in the respective titles of the matrices. Even

though there is a trend of decrease in the overall connectivity strength along

the cognitive staging, the effect sizes are extremely small 0.5 − 1.0%. In

the case of individual edges the effects are even smaller.

tivity are extremely small during the preclinical stages and

existing approaches do not seem to be sensitive enough. We

presented a framework which treats the entire set of graph

Laplacians of the brain connectivity networks as a system

by explicitly considering the coupling between different

cognitive as well as the longitudinal (temporal) stages. Our

experimental results provide evidence that such a coupled

bases approach can indeed provide better insights into the

brain network changes across the clinical stages. While the

technical development of our framework was motivated by

the neuroimaging application, the resultant numerical op-

timization schemes can be widely applicable for incorpo-

rating relevant couplings into generalized eigenvalue prob-

lems which are pervasive in many other areas of com-

puter vision and machine learning. The extended version

of this paper, the supplement and the code are available at

http://pages.cs.wisc.edu/˜sjh/.
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