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Abstract

Since scenes are composed in part of objects, accurate

recognition of scenes requires knowledge about both scenes

and objects. In this paper we address two related problems:

1) scale induced dataset bias in multi-scale convolutional

neural network (CNN) architectures, and 2) how to com-

bine effectively scene-centric and object-centric knowledge

(i.e. Places and ImageNet) in CNNs. An earlier attempt,

Hybrid-CNN[23], showed that incorporating ImageNet did

not help much. Here we propose an alternative method tak-

ing the scale into account, resulting in significant recogni-

tion gains. By analyzing the response of ImageNet-CNNs

and Places-CNNs at different scales we find that both op-

erate in different scale ranges, so using the same network

for all the scales induces dataset bias resulting in limited

performance. Thus, adapting the feature extractor to each

particular scale (i.e. scale-specific CNNs) is crucial to im-

prove recognition, since the objects in the scenes have their

specific range of scales. Experimental results show that

the recognition accuracy highly depends on the scale, and

that simple yet carefully chosen multi-scale combinations

of ImageNet-CNNs and Places-CNNs, can push the state-

of-the-art recognition accuracy in SUN397 up to 66.26%

(and even 70.17% with deeper architectures, comparable to

human performance).

1. Introduction

State-of-the-art in visual recognition is based on the

successful combination of deep representations and mas-

sive datasets. Deep convolutional neural networks (CNNs)

trained on ImageNet (i.e. ImageNet-CNNs) achieve impres-

sive performance in object recognition, while CNNs trained

on Places (Places-CNNs) do in scene recognition[23, 2].

However, CNNs also have limitations, such as the lack of

invariance to significant scaling. This problem is particu-

larly important in scene recognition, due to a wider range

of scales and a larger amount of objects per image.

As an alternative to Places-CNN holistic representation,

some recent works[4, 1, 21, 16] have shown that CNN fea-

tures extracted locally in patches can be also aggregated into

effective scene representations. Often, these approaches

combine multiple scales, that are pooled using VLAD[4]

or Fisher vector (FV)[21] encoding. Dixit et al[1] sug-

gested applying the pooling directly on the semantic rep-

resentation, arguing that semantic representations are more

invariant. Recently, Wu et al[16] proposed an architecture

in which dense sampling of patches is replaced by region

proposals and discrimintive patch mining. In general, these

works use ImageNet-CNN to extract the local activations

instead of Places-CNN, since local patches are closer to ob-

jects than to scenes. However, a largely overlooked aspect

in this multi-scale scenario is the role of the scale and its

relation with the feature extractor (i.e. CNN). One limita-

tion of current multi-scale approaches is the naive use of

CNNs by simply considering CNNs as general purpose fea-

ture extractors[10, 2]. Using the same fixed CNN model

for all the scales inevitably leads to dataset bias[13], since

the properties of the data vary at different scales, while the

feature extractor remains fixed.

Since objects are main components of scenes, knowl-

edge about objects may be helpful in scene recognition.

Although, Places-CNN itself develops suitable object mod-

els at intermediate layers[22], the information in ImageNet

might be valuable. However, in a previous attempt, a net-

work trained with the combined dataset ImageNet+Places

(Hybrid-CNN[23]) show that including ImageNet, far from

helpful was harmful. We will see how this problem is also

connected to scale-related dataset bias.

In this paper we will study these two problems (i.e.

dataset bias in patch-based CNNs under different scaling

conditions, and how to effectively combine Places and Im-

ageNet) and will see that they are related. Torralba and

Efros[13] studied the dataset bias as a cross-dataset gen-

eralization problem, in which the same classes may have

slightly different feature distributions in different datasets.

In our particular case, this bias in the feature distribution

is induced by scaling the image. If the scaling operation

is considerable, the characteristics of the data may change
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completely, switching from scene data to object data. Un-

derstanding and quantifying this bias can help us to de-

sign better multi-scale architectures, and even better ways to

combine object and scene knowledge. In particular, we pro-

pose multi-scale architectures with scale-specific networks

as a principled way to address scale-related dataset bias and

combine scene and object knowledge (i.e. Places and Ima-

geNet). In the next sections:

• We show that using a single CNN as a generic fea-

ture extractor from patches is quite limited, due to the

dataset bias induced by scale changes. We show how

networks trained on different datasets are suitable for

different scale ranges. In particular, ImageNet-CNN

and Places-CNN have very different optimal ranges,

due to their object-centric and scene-centric natures.

• We evaluate two strategies to alleviate the dataset

bias by using scale-specific networks: hybrid

Places/ImageNet architectures and fine tuning. By

combining after reducing the dataset bias, our method

is also a more effective way to combine Places and

ImageNet. Extensive experiments with different scale

combinations and hybrid variations (optionally fine

tuned) lead to some variations achieving state-of-the-

art performance in scene recognition.

2. Objects and scenes

2.1. Objects in object datasets and scene datasets

The knowledge learned by CNNs lies in the data seen

during training, and will be of limited use if tested in a dif-

ferent type of data. Thus, CNNs trained with ImageNet are

limited when used for scene recognition due to this train-

ing/test bias, while Places-CNNs perform better in this task.

While this is essentially true, objects and scenes are closely

related, so knowledge about objects can be still helpful to

recognize scenes, if used properly.

Understanding the characteristics of the datasets in-

volved is essential to better explain the causes of dataset

bias. In our case, we want to analyze the properties of ob-

jects found in scene and object datasets. We focus on two

aspects related with the objects: scales and density.

To evaluate the dataset bias we use SUN397[18, 17]

as target dataset. Since Places contains scene data, with

205 scene categories overlapping with SUN397, and signif-

icantly more data, we can expect a low dataset bias. Thus

we focus on ImageNet (in particular ILSVRC2012), which

contains mostly object data. Fortunately, both ImageNet

and SUN have a fraction of images with region annota-

tions and labels, so we can collect some relevant statis-

tics and compare their distributions (we used the LabelMe

toolbox[14]). Since we will use this information to interpret

the variations in recognition accuracy in next experiements,
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Figure 1. Characteristics of objects in ILSVRC2012 (object data)

and SUN397 (scene data): (a) distribution of objects sizes (nor-

malized), (b) number of objects per scene, and (c) examples of

objects by increasing normalized size.

we focus on the 397 categories of the SUN397 benchmark

(rather than the 908 categories of the full SUN database).

Scale. Fig. 1a shows the distribution of object sizes, and

Fig. 1c some examples of objects of different normalized

sizes. We normalized the size of the object relative to the

equivalent training crop. While objects in ImageNet are

mostly large, often covering the whole image, objects in

SUN397 are much smaller, corresponding to the real distri-

bution in scenes. Thus Fig. 1a shows an obvious mismatch

between both datasets.

Density. Fig. 1b shows the distribution of object anno-

tations per scene image. We can observe that images in

ImageNet usually contain just one big object, while images

in SUN397 typically contain many small objects.

2.2. Dataset bias in object recognition

In order to study the behaviour of ImageNet-CNNs and

Places-CNNs in object recognition, we need object data

extracted from scenes datasets. We selected 100 images

per category from the 75 most frequent object categories

in SUN397, so we can have enough images to train SVM

classifiers. We took some precautions to avoid selecting too

small objects.

In contrast to most object and scene datasets, in this case

we have the segmentation of the object within the scene,

so we can use it to create variations over the same objects.

Thus we defined two scales:

• Original scale: the scale of the object in original scene.
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• Canonical scale: the object is centered and rescaled to

fill the crop (keeping the aspect ratio). So in this case

its normalized size is 1.

Then we created four variations (see Fig. 2): original

masked, original with background, canonical masked and

canonical with background. In particular, to study the re-

sponse to different scaling, the canonical variant is scaled

in the range 10%-100%. Note how scaling the variant with

background shifts progressively the content of the crop from

object to scene.

2.3. Scale sensitivity and object density

We trained a SVM classifier with 50 images per class,

and tested on the remaining 50 images. The input feature

was the output of the fc7 activation. The results are shown

in Fig. 3. We use two variants: objects masked and objects

with background (see Fig. 2). Regarding objects masked,

where the background is removed, we can see that in gen-

eral the performance is optimal when the object is near full

size, above 70-80%. This is actually the most interest-

ing region, with ImageNet-CNN performing slightly bet-

ter than Places-CNN. This is interesting, since Places-CNN

was trained with scenes containing more similar objects to

the ones in the test set, while ImageNet-CNN was trained

with the less related categories found in ILSVRC2012 (e.g.

dogs, cats). However, as we saw in Fig. 1a, objects in

ILSVRC2012 cover a large portion of the image in con-

trast to smaller objects in SUN397, suggesting that a more

similar scale in the training data may be more important

than more similar object categories. As the object becomes

smaller, the performance of both models degrades similarly,

again showing a limited robustness to scale changes.

Focusing now on the objects with background variant,

the performance is worse than when the object is isolated

from the background. This behaviour suggests that the

background may introduce some noise in the feature and

lead to poorer performance. In the range close to full object

size, both ImageNet-CNN and Places-CNN have similar

performance. However, as the object becomes smaller, and

the content is more similar to scenes, Places-CNN has much

better performance than ImageNet-CNN, arguably due to

the fact it has learn contextual relations between objects and

global scene properties. In any case, scales with low accu-

racy are probably too noisy and not suitable for our purpose.

3. Multi-scale architecture with scale-specific

networks

3.1. Overview

For scene recognition we introduce our multi-scale ar-

chitecture, which combines several networks that operate

in parallel over patches extracted from increasingly larger
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Figure 3. Object recognition accuracy on SUN397 (75 categories).

versions of the input image. We use a standard multi-

scale architecture combining several AlexNet CNNs (Caffe-

Net[5] in practice) where 227x227 patches are extracted

from each full image. For faster processing, instead of ex-

tracting patches independently we use a fully convolutional

network. In contrast to recent works[4, 3, 21, 1], we adopt

simple max pooling to aggregate patch features into image

features.

The previous analysis and experimental results on ob-

ject recognition evidence the limitations of using either

ImageNet-CNNs or Places-CNNs to deal with such a broad

range of scales, and will be confirmed in the next sections

by the experiments on scene data. For these reasons, we

propose a hybrid architecture introducing two simple, yet

crucial modifications in the architecture (discussed previ-

ously in Section 2.2).

• Instead of using naively the same CNN model for all

the scales, we select the most suitable one for each

(ImageNet-CNN, Places-CNN or fine tuned).

• Optionally we fine tune each CNN model to further

adapt it to the range of each scale. This requires resiz-

ing the image to target size and extracting patches for

training.

3.2. Differences with previous works

Our architecture is similar to others proposed in previous

multi-scale approaches[4, 21, 1], with the subtle difference

of using scale-specific networks in a principled way to al-

leviate the dataset bias induced by scaling. The main em-

phasis in these works is on the way multi-scale features are

combined, implemented as either VLAD or FV encoding,

while leaving the CNN model fixed. While adding a BOW

encoding layer can help to alleviate somewhat the dataset

bias, the main problem is still the rigid CNN model. In con-

trast, our method addresses better the dataset bias related
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(a)

(b)
Figure 2. The two variants used in the object recognition experiments: object masked (top row) and object with background (bottom row)

with two examples of (a) armchair and (b) streetlight. Left crops show the object in the original scale in the scene. Right crops show the

object scaled progressively from the canonical size (100%) down to 10%. All the images are centered in the object of interest.

Figure 4. Multi-scale architecture combining scale-specific networks (spliced architecture). ImageNet-CNNs and Places-CNNs are com-

bined according to the scale of the input patches. This can effectively alleviate the dataset bias by adapting test data to the underlying

training data. Intra-scale features are obtained using max pooling within each scale, and then concatenated into a single multi-scale feature.

with scale and achieves significantly better performance, by

simply adapting the CNN model to the target scale, even

without relying to sophisticated pooling methods.

We can also regard our approach as a way to combine the

training data available in Places and ImageNet. This was ex-

plored previously by Zhou et al[23], who trained a Hybrid-

CNN using the AlexNet architecture and the combined

Places+ImageNet dataset. However, Hybrid-CNN performs

just slightly better than Places-CNN on MIT Indoor 67 and

worse on SUN397. We believe that the main reason was that

this way of combining data from ImageNet and Places ig-

nores the fact that objects found in both datasets in two dif-

ferent scale ranges (as shown in Fig. 1). In contrast, our ar-

chitecture combines the knowledge in a scale-adaptive way

via either ImageNet-CNN or Places-CNN. Wu et al[16] use

Hybrid-CNN on patches at different scales. Again, the main

limitation is that the CNN model is fixed, not adapting to the

scale-dependent distributions of patches.

4. Experiments on scene recognition

In this section we perform experiments directly over

scene data, to evaluate the relation beween scale, training

dataset and dataset bias by analyzing the scene recognition

performance. Then we combine and evaluate multi-scale

architectures.

4.1. Datasets

We evaluate the proposed architectures with three widely

used scene benchmarks. 15 scenes[6] is a small yet popular

dataset with 15 natural and indoor categories. Models are

trained with 100 images per category. MIT Indoor 67[9]

contains 67 categories of indoor images, with 80 images
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per category available for training. Indoor scenes tend to

be rich in objects, which in general makes the task more

challenging, but also more amenable to architectures using

ImageNet-CNNs on patches. SUN397[18, 19] is a larger

scene benchmark (at least considered as such before Places)

containing 397 categories, including indoor, man-made and

natural categories. This dataset is very challenging, not only

because of the large number of categories, but also because

the more limited amount of training data (50 images per

category) and a much larger variability in objects and lay-

out properties. It is widely accepted as the reference bench-

mark for scene recognition. We consider seven scales in our

experiments, obtained by scaling images between 227x227

and 1827x1827 pixels.

4.2. Single scale

4.2.1 Accuracy

Average accuracy is a reasonable metric to evaluate a deep

representation in the context of a classification task. For

the different scales, we extracted fc7 activations locally in

pacthes as features, and then trained SVMs. In addition to

the seven scales evaluated, we included 256x256 pixels as

a baseline, since off-the-shelf ImageNet-CNN and Places-

CNN are trained on this scale. The results for the three

datasets are shown in Fig. 5, with similar patterns. Places-

CNN achieves the best performance when is applied glob-

ally at scene level (227x227 or 256x256), while rapidly de-

grades for more local scales. ImageNet-CNN exhibits a

very different behaviour, with a more modest performance

at global scales, and achieving optimal performance on

patches at intermediate scales, and outperforming Places-

CNN at most local scales. These curves somewhat repre-

sent the operational curve of CNNs and the scale. In partic-

ular, the performance of ImageNet-CNN can be increases

notably just by using an appropriate scale.

An interesting observation is that there is one point

(around 643 or scale 0.35) that splits the range into two

parts, one dominated by ImageNet-CNN and another one

dominated by Places-CNN, which we can loosely identify

as object range and scene range. We will use this observa-

tion later in Section 4.4 to design spliced architectures.

4.2.2 Effect of fine tuning

A popular way to deal with dataset bias in CNNs is fine

tuning, which basically continues training on a pretrained

model with the target dataset data. Similarly in our case, we

expect that fine tuning can modify somehow the weights

and thus adapt to the objects or at least the scales in the

target dataset. However, in practice that is often not pos-

sible because of the limited data, overfitting and difficulty

of setting the training process itself. In our case, fine tun-

ing on scales where patches are very local is very difficult
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Figure 5. Scene recognition accuracy for different scales: (a) 15

scenes, (b) MIT Indoor 67, and (c) SUN397.

due since the patch often contains objects or parts while la-

bels indicates scenes categories. In addition, the number of

patches is huge, so only a tiny fraction of them can be used

in practice, rendering fine tuning not very effective.

We evaluated fine tuning on MIT Indoor 67. For scales

with few patches, and thus limited training data, we only

fine tune the fully connected layers. For larger images we

can collect more patches, up to 500K patches (randomly se-

lected). Fig. 5b shows the results. Interestingly, there is

a moderate gain in those range of scales where the original

CNNs perform poorly, i.e. global scales for ImageNet-CNN

and local scales for Places-CNN, while marginal or no gain

in ranges where they have already good performance. Thus,

fine tuning has certain “equalizing” effect over the accuracy

vs scale curve. but limited overall improvement. In partic-

ular the gain is such that now Places-CNN (fine tuned) has

the best performance in the whole range of scales.
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Fine tuning has impact mostly on the top layers, obtain-

ing a similar effect to adding a BOW pooling layer. How-

ever, the effectiveness is limited, since intermediate layers

remain biased to the (pre-)training data.

4.2.3 Discriminability and redundancy

Accuracy provides a good indirect measure of the utility of

the feature for a given target task (e.g. scene recognition)

via a classifier (e.g. SVM). Here we also consider two in-

formation theoretic metrics measuring directly the discrim-

inability and redundancy of the deep feature[8]. We define

the discriminability of a feature x = (x1,··· ,x4096) with re-

spect to a set of classes C = {1, · · · ,M}

D (x, C) =
1

|C| |S|

∑

c∈C

∑

xi∈x

I (xi; c)

where I (xi; c) is the filter xi and the class c. In order to

evaluate how redundant is the feature (compared with other

filters), we use the redundancy of a feature x, defined as

R (x) =
1

|S|
2

∑

xj∈x

∑

xi∈x

I (xi;xj)

In the next experiment we compute D (x, C) and R (x)
of the fc7 activation for ImageNet-CNN and Places-CNN

in MIT Indoor 67. While we can find similarities with

the accuracy curve, a direct comparison is not easy, since

more discriminability not always means higher accuracy.

If we observe the discriminability of ImageNet-CNN (see

Fig. 6a), the curve follows a similar pattern to the accuracy,

with a peak around the scales where the accuracy was best,

and bad discriminability at global scales. Places-CNN ex-

tracts the most discriminative features at more global scales.

Comparing ImageNet-CNN and Places-CNN, the former

obtains more discriminative features yet also more redun-

dant. Too local scales (e.g. 1827x1827) increase signifi-

cantly the redundancy of the feature and the noise

4.3. Two scales

In the next experiment we evaluated pairwise combina-

tions of CNNs used at different scales. This dual architec-

ture consists simply of two CNNs processing images at dif-

ferent scales. We then concatenate the two resulting fc7

activations into a 8192-dim feature and then train the SVM.

The results in Fig. 7 show that the dual architectures with

best performance are hybrid combinations of Places-CNN

extracting features at global scales (typically 227x227) with

ImageNet-CNN extracting features from patches at more

local scales. The result is a considerable boost in the per-

formance, achieving a remarkable accuracy of 64.10% on

SUN397 using only two AlexNet CNNs.
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Figure 6. Discriminability (a) and redundancy (b) of fc7 feature in

MIT Indoor 67.

Note that this way of combining ImageNet and Places

data is much more effective than Hybrid-CNN[23] (see Ta-

ble 1). Our dual architecture does not mix object and scene

knowledge (obtained from ImageNet and Places, respec-

tively) and adapts the learned models to scales with sim-

ilar properties. Dixit et al[1] combine Places-CNN with

a four-scales architecture built on top of ImageNet-CNN.

Similarly to our framework, Places-CNN operates at scene

scale while ImageNet-CNN operates at object scales. Note,

however, that we obtain comparable performance on MIT

Indoor 67 and significantly better on SUN397, using just

two networks instead of five.

4.4. Multiple scales

Finally, we consider the combination of all the scales to

see whether more complex architectures could be helpful in

terms of accuracy. In this experiment we evaluate the con-

catenation of all the fc7 features of each of the seven scale-

specific networks. In this case we use PCA to reduce the

dimension of each features vector so the combined dimen-

sion is approximately 4096. We achieve 74.33% (all scales

using ImageNet-CNN) and 78.21% (all scales using Places-

CNN) accuracy for MIT Indoor 67, and 58.71% and 63.81%

for SUN397, respectively. Note that both are better than the

corresponding dual architecture, yet below the correspond-

ing dual hybrids (78.28% and 64.10%). This suggests than
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Figure 7. Accuracy in dual architectures combining two networks (only ImageNet-CNNs, only ImageNet-CNNs and hybrid combinations):

(a) 15 scenes, (b) SUN397 and, (c) MIT Indoor 67 (and fine tuned versions). Diagonals of only ImageNet-CNNs and only Places-CNNs

variations show single scale accuracy.

including more scales while keeping the same CNN model

is marginally helpful and increases significantly the extrac-

tion cost and the noise in the representation.

So the key is to find an appropriate combination of

Places-CNNs and ImageNet-CNNs. While in dual archi-

tectures evaluating all the combinations is very costly, with

seven networks the combinations is impractical. Since the

optimal ranges of both are complementary, we can design

the full hybrid architecture as global scales using Places-

CNN and local scales using ImageNet-CNN, just as shown

in Fig. 4. We can consider only one free parameter which

is the splicing point. The results for SUN397 are shown

in Fig. 8. As expected, we can reach slightly better per-

formance (80.97% and 65.38%) than in dual architectures.

The performance of hybrid spliced is also significantly bet-

ter than a 7 network architecture with a fixed CNN model.

Finally we also evaluate a double full architecture, in

which both full ImageNet-CNN and full Places-CNN are

combined in a complex 14 CNNs architecture by concate-

nating the previous features. This combination does not

help in MIT Indoor 67, and slightly in SUN397, reaching

an accuracy of 66.26%.

4.5. Deeper networks and other works

The experiments presented so far are based on the

AlexNet architecture. Deeper architectures such as

GoogLeNet[12] and VGG-net[11] have demonstrated su-

perior performance by exploiting deeper models. We re-

peated some of the experiments using the 16 layer VGG

architecture, obtaining state-of-the-art results in the three

datasets. The experiments with VGG in dual architectures
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899-1283
643-899

451-643
323-451

227-323

66

64
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60

58
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cy
 (

%
)

Splicing point

Figure 8. Accuracy on SUN397 of full and hybrid spliced archi-

tectures (7 AlexNet networks). The combination same indicates

that the 7 networks share the same CNN model (i.e. trained with

the same dataset).

are consistent with those with AlexNet, but with a more

moderate gain. However, experiments combining more

networks were surprisingly disappointing, performing even

worse than single network baselines. VGG applied on small

patches tends to be very noisy with poor performance. We

tried an intermediate hybrid architecture, including a total

of three scales, achieving slightly better performance than

with dual architectures.

Overall, for the small 15 scenes dataset, it seems that

the performance is somewhat saturated, with a best perfor-

mance of 95.18% (94.51% with AlexNet). The best perfor-

mance in MIT Indoor 67 is 86.04% (compared with 80.97%

with AlexNet) and in SUN397 is 70.17% (compared with

66.26% with AlexNet). This performance is better than hu-

man recognition by “good workers” (68.5%), and close to

human expert performance (70.6%), as reported in [18].
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Table 1. Accuracy for different multi-scale variations and architectures.

Architecture Pretraining dataset #scales
15 scenes MIT Indoor 67 (w/ FT) SUN 397

Alex VGG Alex VGG Alex VGG3

Baseline1
IN 1 87.60 90.69 61.49 72.31 47.93 55.19

PL 1 91.16 92.90 74.18 80.45 58.87 66.50

Best single2
IN 1 88.54 91.86 66.64 (68.21) 76.42 52.42 59.71

PL 1 91.65 93.73 72.76 (73.35) 80.90 58.88 66.23

Dual
IN 2 91.16 93.84 71.87 (72.46) 79.04 56.62 61.07

PL 2 93.80 95.18 76.87 (79.40) 83.43 62.60 68.49

Dual hybrid IN/PL 1+1 93.80 95.18 78.28 (78.81) 85.59 64.10 69.20

Three4 IN/PL 1+2 93.37 95.14 78.28 86.04 63.03 70.17

Full
IN 7 91.66 92.86 74.33 (75.97) 70.22 58.71 55.18

PL 7 93.77 94.51 78.21 (79.70) 77.81 63.81 58.80

Full hybrid (spliced) IN/PL 7 93.90 94.08 80.97 (80.75) 80.22 65.38 63.19

Double full hybrid IN/PL 2x7 94.51 94.84 80.97 (79.85) 80.7 66.26 62.01

Hybrid-CNN[23] IN+PL 1 53.86 - 70.80 - 53.86 -

MOP-CNN[4] IN 3 - - 68.88 - 51.98 -

MPP[21] IN 7 - - 75.67 - - -

MPP+DSFL[21] IN 7+DSFL - - 80.78 - - -

SFV[1] IN 4 - - 72.86 - 54.4 -

SFV+Places[1] IN/PL 4+1 - - 79.0 - 61.72 -

MetaObject-CNN[16] Hybrid (IN+PL)[23] 1 (variable) - - 78.90 - 58.11 -

DAG-CNN[20] IN 1 - 92.9 - 77.5 - 56.2

DSP[3, 15] IN 1 - 91.78 - 78.28 - 59.78

Human (good)[17] 68.5%

Human (expert)[17] 70.6%

1 256x256 central crop (conventional settings for single crop).
2 Excluding 256x256.
3 Six scales (1827x1827 was not included).
4 Only evaluated the combination Places-CNN 227x227, Places-CNN 451x451, ImageNet-CNN 899x899.

5. Conclusions

In contrast to previous works, in this paper we analyzed

multi-scale CNN architectures focusing on the local CNN

model, rather than on the pooling method. In particular, we

showed that scaling images induces a bias between training

and test data, which has a significant impact on the recog-

nition performance. We also showed how ImageNet-CNN

and Places-CNN in this context are implicitly tuned for dif-

ferent scale ranges (object scales and scene scales). Based

on these findings, we suggest that addressing this bias is

critical to improve scene recognition, and propose includ-

ing scale-specific networks in the multi-scale architecture.

The proposed method is also a more principled way to com-

bine scene-centric knowledge (Places) and object-centric

knowledge (ImageNet) than previous attempts (e.g. Hybrid-

CNN).

In fact, recent scene recognition approaches fall into two

apparently opposite directions: global holistic recognition

(Places-CNN) versus local object recognition and pooling

(multi-scale CNNs). In this paper we describe them as two

particular cases in a more general view of how multi-scale

features can be combined for scene recognition. They are

not incompatible, and actually when combined properly to

reduce the dataset bias the results can be excellent, even

reaching human recognition performance simply with just

two or three networks carefully chosen. Our hybrid parallel

architecture also suggests some similarities with perceptual

and cognitive models, where object recognition and global

scene features follow two distinct yet complementary

neural pathways which are later integrated to accurately

recognize the visual scene[7].
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