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Abstract

We describe a method to automatically detect con-

tours, i.e. lines along which the surface orientation sharply

changes, in large-scale outdoor point clouds. Contours are

important intermediate features for structuring point clouds

and converting them into high-quality surface or solid mod-

els, and are extensively used in graphics and mapping ap-

plications. Yet, detecting them in unstructured, inhomoge-

neous point clouds turns out to be surprisingly difficult, and

existing line detection algorithms largely fail. We approach

contour extraction as a two-stage discriminative learning

problem. In the first stage, a contour score for each indi-

vidual point is predicted with a binary classifier, using a set

of features extracted from the point’s neighborhood. The

contour scores serve as a basis to construct an overcom-

plete graph of candidate contours. The second stage se-

lects an optimal set of contours from the candidates. This

amounts to a further binary classification in a higher-order

MRF, whose cliques encode a preference for connected con-

tours and penalize loose ends. The method can handle point

clouds > 107 points in a couple of minutes, and vastly out-

performs a baseline that performs Canny-style edge detec-

tion on a range image representation of the point cloud.

1. Introduction

By and large, modern 3D reconstruction techniques like
dense multi-view matching, laser scanning or structured
light projection deliver 3D point clouds as primary out-
put. But raw point clouds are of limited use for most
applications, and mostly serve as a basis for further pro-
cessing. Either they are triangulated into an unstructured
surface model, e.g. a triangle mesh, for low-level tasks
such as visualization; or they are processed into more
compact and structured CAD-like higher-level structures,
e.g. [24, 16, 32]. Perhaps the most widely used approach in
this context, especially for indoor applications, is to locally
fit parametric surfaces or solids to the data. Line features
then follow as a last step, by intersecting surface primitives.
Such an approach can work well for schematic surface ge-
ometries, but quickly reaches its limits when portions of the
scene are not covered by the primitive library.

Figure 1: Given an unstructured 3D point cloud (black), our
method detects contours (red). Challenges include strongly
varying point density (e.g., front facade vs. roof of the
church); occlusions and missing data (e.g., dormer on the
left); and sheer data volume (here, ≈ 3 · 107 points).

Here, we propose to proceed the other way round. Our
goal is to extract contours in outdoor point clouds such as
those acquired by terrestrial laser scanners, see Fig. 1. By
contours we mean linear features along which the orien-
tation (normal) of the underlying surface exhibits an un-
usual discontinuity. Arguably, such wireframe-like line fea-
tures are a lower-level representation than CAD surfaces
or solids, in the sense that humans can “see” them in the
raw data – the point cloud alone is sufficient to draw con-
tours, even for relatively unconstrained surfaces that cannot
be represented with a small library of primitives.

In that sense, it seems natural to detect contours before

surface reconstruction, and use them to drive the segmen-
tation and/or to fit surface patches – which is in fact how
interactive modelling systems operate, both in graphics and
vision [25] and in commercial mapping [26, 6].

At first sight, it may seem quite simple to detect crease
edges in point clouds. In practice, it turns out to be surpris-
ingly challenging, for several reasons. On the conceptual
side, the definition of what constitutes a contour is not as
clear-cut as it seems, and hard to formalise. While it should
certainly have one high and one relatively low principal cur-
vature at some (not necessarily fixed) scale, there are fur-
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ther relevant properties like sufficient length, few sudden
changes of the line direction, etc. Informally speaking, it is
“where a CAD operator would draw a line or curve.”

On a more technical note, scanners and cameras are line-
of-sight sensors, hence real point clouds inherently suffer
from occlusions and incomplete data, and exhibit extreme
variations in point density (depending on the distance to the
sensor and the surface orientation). Both effects are a lot
stronger outdoors, where they are not mitigated by the lim-
ited size and constrained shape of rooms. See Figs. 1, 3.

The contribution of the present paper is a contour detec-
tor, which casts the problem as a two-level discriminative
learning task. First, a binary classifier is trained which, for
each 3D point, predicts the likelihood of lying on a contour,
given the geometry in a local neighborhood and the point’s
latent semantic class probabilities. Based on these contour
scores, we design a hypothesize-and-verify framework that
takes into account the line structure: points with high score
serve as seed points to construct an overcomplete contour
graph; an optimal subset of the graph edges is then selected
in another binary labeling task on a higher-order random
field, to obtain the final contours. The first step can be in-
terpreted as a discriminative version of classical multiscale
point set analysis such as [22]. By using supervised learn-
ing, the detector implicitly learns which properties define
(in the eyes of the users who labeled the training data) a
point on a contour. In practice this gives much improved
scores compared to simple curvature values, especially in
terms of precision. The second step can be seen as a global
model for linking individual edge points to an contour net-
work, while taking into account evidence collected along
longer (candidate) lines; rather than greedily linking indi-
vidual points, as for example in the classical Canny detec-
tor [4]. We are not aware of any comparable method for 3D
contour extraction.

In experiments on several laser scans each containing
on the order of 107–108 points the method delivers high-
quality contours. In a quantitative comparison on a real out-
door scan, the proposed method achieves an average F1-
score of 80%, whereas a 3D range image variant of the
Canny edge detector badly fails.

2. Related Work

The task of 3D contour extraction is related to the el-
ementary image processing task of line detection. In this
context it is important to note that even in 2D images (re-
spectively, regularly sampled 3D image stacks) line extrac-
tion is surprisingly difficult, if one adopts a more high-
level definition of what a “line” is. Although low-level
algorithms like the Canny edge detector [4] are widely
used to detect and link adjacent high-contrast pixels, the
extraction of structured line information is still an active
research topic, for example in medical imaging [29, 28],

stereo reconstruction [7] and topographic mapping [27, 19].
These more recent works have in common that they rely
on a hypothesize-and-verify strategy: (i) find points that
are likely to lie on lines with low-level image processing;
(ii) link those points to candidate lines, with shortest-path
search or minimum spanning trees; (iii) use context features
extracted along their entire length and/or CRF-type connec-
tivity priors to reassess the candidate lines, and retain only
an optimal subset.

When working on the basis of images, one possible so-
lution is to extract line features in 2D and then triangu-
late them to 3D lines. Still, even that approach has in
practice largely been limited to “clouds” of disconnected,
straight line segments [23, 20, 13]. The problem becomes
even more difficult when moving to 3D point clouds, with
strongly varying point density and no regular neighborhood
structure. A possible approach is to first turn the point cloud
into a triangle mesh with all-purpose methods like Pois-
son reconstruction [15], and then analyze the mesh to find
contours. Unfortunately, such approaches tend to wash out
sharp edges and struggle to distinguish them from less pro-
nounced regions of relatively high curvature. This is indeed
not surprising, because surface reconstruction from noisy
data typically involves a prior that smoothes the surface,
which contradicts the goal to find sharp contours. Solu-
tions have been developed which attempt to identify sharp
creases before or during mesh generation. This is in accor-
dance with our claim that line features should be identified
early and used to support surface modelling. However, ex-
isting approaches [2, 8, 21] work locally, without taking
into account long-range line structure, and use only basic
surface features. Thus they struggle to distinguish between
contours and areas of high surface roughness (e.g. vegeta-
tion), which renders them unsuitable for outdoor scenarios.

An alternative to triangle meshes are parametric 3D
primitives like boxes, spheres, or cylinders. Several au-
thors fit such primitives to point cloud data and combine
them with simple set operations like union and intersec-
tion, leading to CAD or CSG (constructive solid geometry)
models [24, 17, 32]. Again, it appears that fitting solids
works best if the line structures have been made explicit
beforehand [16]. That work again uses a rather simplistic,
purely local definition of lines. Moreover, a small library of
CSG primitives is too limited to faithfully represent realistic
scenes, which is why high-quality reconstructions fall back
to filling the gaps with triangle meshes [16].

The starting point of the present work is the recurring
need for complete and accurate contours to support subse-
quent processing steps. We do not commit to any particu-
lar surface or solid modelling technique, rather our aim is
to generate wireframe (WF) models. Their greater flexibil-
ity makes them applicable to both parametric and free-form
surface regions, and they can even serve to select the most
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Figure 2: Illustration of our contour detection pipeline. (left) A binary classifier predicts pointwise contour scores (red:
high contour probability, blue: low contour probability); (middle) Seed points with high contour scores are linked into an
overcomplete graph of contour candidates; candidates are rescored with another round of classification; (right) candidates
are pruned to an optimal set of contours by MRF inference.

suitable representation for a given point cloud or region, and
to optimally fit it to the data. It has been suggested to ex-
tract line segments with robust model fitting algorithms like
RANSAC or the Hough transform, and then link the soup
of segments into wireframes [12]. Such a strategy will how-
ever restrict the geometry of the lines to a small set of pre-
defined parametric models, and thereby lose much of the
advantage of wireframes compared to solid-based represen-
tations. Early work on contour extraction, often from the
more isotropic point clouds captured by aerial laser scan-
ners, used rule-based expert systems to exhaustively cover
all expected types of contours, e.g. [2]. The higher com-
plexity of close-range point clouds renders it infeasible to
design and tune such expert systems by hand, which calls
for a machine learning approach.

3. Method

Our method to extract wireframe edges consists of three
main steps as shown in Fig. 2. Starting from the raw point
cloud without any preprocessing, we proceed as follows:

• for each individual point, discriminatively predict the
probability of lying on a contour;

• find regularly spaced points with high contour scores,
and link them into a graph of candidate contours.

• select an optimal subset of those candidates as fi-
nal wireframe edges, by approximate inference in a
higher-order random field defined over the graph edges
and their adjacency relations.

This pipeline bears some similarity to recent work that aims
to extract curvilinear networks from images [29, 19, 11].
Other than those works, we operate on irregular 3D point
clouds rather than regular 2D or 3D image rasters. But like
them, we greatly improve over classical Canny-type detec-
tors by following three recurrent lessons of modern com-
puter vision research: (i) use discriminative learning with

rich feature sets, rather than raw differential geometry, to
obtain low-level evidence at the scale of points/pixels; (ii)

aggregate the points/pixels into higher-level primitives and
use orientation statistics over the entire neighborhood to de-
scribe those primitives; (iii) include a prior about the ex-
pected neighborhood structure to capture long-range rela-
tions between primitives. In the following, we describe in
detail how we implement those principles for contour ex-
traction in unstructured point clouds.

3.1. Pointwise contour scores

The first step of the proposed pipeline is to compute
low-level evidence for the presence of a contour. At each
3D point, we predict the likelihood that it lies on a con-
tour with a binary, discriminative classifier, based on multi-
scale surface properties in the point’s local neighborhood.
In that sense the method can be seen as a discriminative ex-
tension of early methods for feature extraction from point
clouds [9, 22]. Those methods relied on (possibly multi-
scale) curvature values computed from the point neighbor-
hood. We found that, unsurprisingly, curvature alone is not
a very good feature to identify contours. The definition of
what constitutes a contour is unsharp and ill-posed, and in-
cludes properties like that the line should separate two re-
gions of different, but well-defined surface orientation; or,
that it should be part of of a sparse wireframe network. This
clearly goes beyond individual curvature values, e.g. rough
surfaces and volumes such as bushes and tree crowns in out-
door scans exhibit high per-point curvature, but are not per-
ceived as contours. We thus rely on an extended feature
set to describe the point neighborhood, including those pro-
posed in [31] for semantic labeling of 3D point clouds, as
well as newly developed features that emphasize occlusion
boundaries and transitions between smooth surfaces.

In our framework we avoid using color and/or intensity
values, which, depending on the recording technology, are
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Sum λ1 + λ2 + λ3

Omnivariance (λ1 · λ2 · λ3)
1

3

Eigenentropy −
∑

3

i=1
λi · ln(λi)

Anisotropy (λ1 − λ3)/λ1

Planarity (λ2 − λ3)/λ1

Linearity (λ1 − λ2)/λ1

Surface Variation λ3/(λ1 + λ2 + λ3)
Sphericity λ3/λ1

First Order Moment O, see Eq. (2)
Line Feature Q, see Eq. (3)
Orientation Feature R, see Eq. (4)
Verticality 1− |〈[0 0 1], e3〉|

Table 1: Geometric features based on the eigenvalues and
eigenvector of the structure tensor.

not always available; and often also unreliable because of
strong lighting effects. Thus, we face a purely geometric
classification problem: learn a binary classifier for the two
classes contour (ci = 0) and non-contour (ci = 1). With
that classifier, predict a contour score p(ci|xi) for each in-
dividual point pi, given the point’s feature vector xi.

Several authors [10, 31] have proposed geometric fea-
tures for point cloud classification (usually into semantic
object classes) that are based on the covariance tensor Σi,

Σi =
1

N

∑

n∈PN

i

(pn − p)(pn − p)⊤ , (1)

where PN denotes the set comprising the N nearest neigh-
bours of pi, and p = medn∈PN (pn) is the medoid. The
features are, by and large, based on different arithmetic
combinations of the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and
eigenvectors e1, e2, e3 of the covariance tensor. We use the
features of [31], see Table 1.

The original feature vector lacks information about oc-
clusion boundaries. We thus add an additional feature di-
mension based on the first order moment m↑ of pi around
the first eigenvector e1 of the structure tensor,

O =
m

2
↑

m⇑

with

m↑ =
∑

n∈PN

i

〈pn − pi, e2〉 , m⇑ =
∑

n∈PN

i

〈pn − pi, e2〉
2 ,

(2)

where 〈., .〉 denotes the scalar product. The normalization
with the second order moment m⇑ ensures O ∈ [0, 1], to
suppress the effects of varying point density. Moreover, the
standard eigenvalue features do not explicitly capture the
fact that contour points should (i) be arranged along locally
smooth 1D paths of consistently high curvature and (ii) sep-
arate surface areas with different orientations. We thus de-
sign two more feature dimensions for those properties.

The first one is similar to a 3D line detector: we approx-
imate the tangent of the putative contour with the first mo-
ment and split the points in the neighborhood into a subset

Cnear of size ⌈α · N⌉ which are closest to the tangent, and
the remaining points Cfar (reusing the projections di,n =
|〈pn−pi, e2〉| from the previous feature). For each point we
examine the local surface variation γn = λ3/(λ1+λ2+λ3).
The ratio between the average surface variations of the two
subsets serves as feature

Q =
meann∈Cnear

(γn)

meann∈Cfar
(γn)

. (3)

Empirically we found the best split to be α = 0.2. The
second feature targets the change in surface normal along
the tangent. Again the N neighbours in PN

i are split into
two subsets, one set P l for the points on the “left” side of
the tangent and the other Pr for the “right” side. The feature
is then the angle between the left and right medoid normal,

P l = {pn ∈ PN |〈pn, e3〉 < 0} , Pr = PN \ P l

R =
∣

∣

〈

med
n∈Pl

(nn), med
n∈Pr

(nn)
〉∣

∣ .
(4)

It is well-known that methods which rely on the local
orientation and curvature in general benefit from multi-
scale representations, and this is even more true for un-
evenly sampled 3D point clouds. Like [22, 3] we there-
fore vary the size of the neighborhood PN and extract
all geometric features at 9 different scales, by voxel-grid
down-sampling of the raw point cloud with voxel sizes
s ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4} [m].

It is reasonable to assume that the definition of a contour
also depends on the semantic object class(es) one is look-
ing at, e.g. the transition from man-made ground surface
to building wall is rather likely to form a contour, and on
buildings an occluding contour is more likely to be a con-
tour than on a tree. Moreover, it has been shown by several
authors that geometric features of the type described above
perform reasonably well also for the task of semantic point
cloud labeling. We thus run a random forest classifier on the
geometric feature set described above, with seven possible
class labels natural ground, man-made ground, low vege-

tation, high vegetation, buildings, scanning artifacts, and a
rejection class for other objects. The estimated class prob-
abilities per point are also included in the feature vector for
contour detection. Note that, although the geometric fea-
tures are the same, this step does add the information that is
contained in the semantic labels of the training data.

Given the complete feature set described so far, we train
another, binary random forest to predict the contour score
p(ci|xi) of a point pi, see Fig. 2.

3.2. Contour candidate generation

Given point-wise scores, we identify contour points and
link them to contours following a hypothesize-and-verify
strategy, i.e. we generate an over-complete set of contour

candidates that is pruned to an optimal subset. The idea
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Figure 3: If the horizontal point density decreases more
rapidly than the vertical density, “scan lines” become vis-
ible (on the left).

is that explicitly processing contour segments (instead of
points) delivers more expressive, long-range evidence along
the entire line length. Also, they allow one to impose con-
nectivity constraints to favor longer, connected contours.

Candidate generation consists of (i) local non-maxima
suppression (NMS) to find seed points with high contour
probability p(ci = 0|xi); and (ii) linking seed points into
an over-complete graph of putative contour segments.

Voxel-grid non-maxima suppression. Traditional line
detectors like Canny select points with high scores as seeds
to bootstrap line tracing. However, contour likelihoods
of 3D point clouds are very unevenly distributed. Conse-
quently, simple thresholding tends to either miss contours
(if set too high), or to generate too many seeds (if too low),
which in turn would lead to a huge candidate set that de-
fies further processing. Note that both cases will also result
in candidate segments of greatly varying length. We there-
fore opt for an adaptive NMS that produces a more uniform
distribution of seed points: we discard only points below a
conservative threshold p(ci = 0|xi) < 0.5, then perform
voxel-grid filtering (with s = 0.1 [m] spacing). Only the
point with the highest score per voxel is retained. Of those
remaining, points that have a neighbor in PN with a higher
score are removed, except for neighbors along the local tan-
gent (approximated by the eigenvector e1 of the covariance
tensor). Furthermore, the less confident of two points along
the tangent is removed if their distance is < 0.5 ·s. With the
described NMS rules, seed points will have a spacing < 2 ·s
if they lie on potential contours, and < 3 · s otherwise.

Graph construction. Next, seed points must be lo-
cally connected to a neighborhood graph. Recall that out-
door laserscan point clouds have a very anisotropic point
distribution (Fig. 3) due to quadratic decrease in point den-
sity with increasing distance from the sensor. Voxel-grid
filtering can partially reduce this effect in high-density ar-
eas, but is less efficient in the far-field. Another charac-
teristic property that complicates neighborhood graph con-
struction is varying point spacing in horizontal and verti-
cal direction on slanted surfaces. Previous works usually
connect points across large neighborhoods, which however
quickly becomes intractable in terms of memory and com-
putation time when dealing with millions of points. An al-

ternative strategy is to sample random points on (estimated)
surfaces [18]. This strategy seems inappropriate for contour
delineation because it risks to alter lines by hallucinating
points in low-density regions.

Our method first connects seed points pi ∈ P into a k-
nearest neighbor graph with a low number of neighbors
k1 = 5, to obtain an initial edge set E1. Second, a larger
neighborhood k2 = 50 is constructed per point and reduced
to a minimum spanning tree (MST) with Prim’s method.
MST edges of all points are added to E1 to yield the com-
plete edge set E . Finally, edge set E is reduced to a set of
candidate contours, defined as chains of adjacent edges, by
searching for up to β = 15 minimum-cost paths that con-
nect a seed point to its neighbors within a radius rlink =
0.85m. We define graph edge costs as

eij = 2−
p(ci|xi) + p(cj |xj)

2
−

d∗

‖pi − pj‖
, (5)

with ‖pi − pj‖ the Euclidean length of the edge between
pi, pj , and d∗ the smallest distance from either of the two
endpoints pi, pj to all other points. In practice it is not nec-
essary to run Dijkstra’s algorithm globally over long dis-
tances, but only within the local neighborhood 2 · rlink thus
keeping computation efficient. Edges that are not part of
any shortest path are discarded. All (overlapping) shortest-
path edge chains form the set of candidate contours. We
point out that more sophisticated methods have been pro-
posed to remove unwanted edges from the raw neighbour-
hood graph, e.g. ant colony optimisation in [29]. For large
graphs with millions of points such methods are computa-
tionally demanding and this step quickly becomes a bottle-
neck of the overall system. Local shortest-path search is a
pragmatic compromise that, in our experience, gives very
similar results in much less time.

3.3. Contour edge labeling

The final step of the proposed contour detector is to se-
lect a subset of the candidate edges, such that it best covers
the actual contours. This is another binary labelling prob-
lem, this time on a Markov Random Field defined by the
candidate graph, in which the candidate contours (rather
than the original 3D points) are the variables. To that end
we design a novel unary term that takes into account both
the contour scores of the associated points and their spatial
layout. The expectation that contours should mostly form a
connected wireframe is encoded via higher-order terms that
discourage free endpoints.

Unary Term. The unary term encodes statistics about
both the per-point scores and the point distribution along
a putative contour. For the point distribution we introduce
a new descriptor, cumulative shape context, based on the
pointwise shape context of [1]. The original shape con-
text captures the relative locations of points in an image,
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by picking one point pi as the origin of a local coordi-
nate system and building a polar histogram over the relative
positions vij = pj − pi of other points in its neighbour-
hood. The procedure to gather statistics about the distri-
bution of discrete points makes the method appealing for
our data. Compared to the original application, we require
statistics about an entire contour candidate, which consists
of a sequence of points. Moreover, the descriptor in our
case should be invariant to rotation and scale. To achieve
scale invariance and at the same time simplify the descrip-
tor to 1D, we discard relative distance and encode only di-
rections, by normalising the vectors. Rotation invariance
is achieved by projecting them onto the canonical direction
vse = pe−ps defined by the start point ps and end point pe

of the contour candidate. To collect the directional statistics
from all points along the candidate, we simply add their his-
tograms together into a single one. Taken together, we visit
each point pi along the putative contour, and let each of the
other points pj generate a scalar value

vij =
∥

∥

∥

〈 vse

‖vse‖
,

vij

‖vij‖

〉
∥

∥

∥
∀ i, j∈{s, . . . , e} : i 6= j . (6)

The vij are then quantised into 5 equally spaced bins to
form a 1D histogram z1. To also include information about
the overall straightness/curvature of the contour candidate,
we repeat the computation of the cumulative shape context
descriptor, but this time normalise the rotation w.r.t. the lo-
cal tangent (first eigenvector) e1,i:

wij =
∥

∥

∥

〈

e1,i,
vij

‖vij‖

〉∥

∥

∥
∀ i, j ∈ {s, . . . , e} : i 6= j , (7)

to obtain a second histogram z2.
To retain the pointwise contour likelihoods p(ci|xi) from

section 3.1, they are again histogrammed over the points on
the candidate contour, in two different ways. The first his-
togram simply quantises the scores directly into 5 bins to
obtain z3. For the second one the candidate is chopped into
b segments of equal length, and the mean probabilities of
the segments form a further set of features z4, which cap-
tures the variation of the score along a candidate. Overall, a
much stronger descriptor can be obtained by aggregating in-
formation along contour candidates (i.e. edge chains), rather
than looking only locally at the level of points. In that sense
the approach is similar in spirit to recent work on line fea-
ture extraction in medical imaging, e.g. [28] compute HOG-
style features along similar candidate edges.

To obtain a discriminative unary, the descriptors z =
[z1, z2, z3, z4] are again fed into a two-class random for-
est to obtain a class-conditionals p(g|z) for being (gi = 1)
or not being (gi = 0) a contour. For the subsequent
MRF inference the class-conditional probabilities are con-
verted to log-likelihoods (“energies”) in the usual manner,
hi = − log p(gi|zi).

Markov Random Field. To obtain a wireframe-type
model in which the contours are long, and if possible form
closed contours, we encourage contours that meet at their
endpoints. Perhaps the simplest way to do so is to embed
the candidate contours as variables (nodes) in an MRF. Each
contour candidate li defines a clique ℓi together with all
other candidates with which it shares either the start node
or the end node.1 Denoting the set of contours that connect
to li at the start node as Ls

i , and similarly those which meet
li at the end node Le

i , we have

ℓi =



























































γ gi=1 AND ∀ lj ∈Ls
i ,L

e
i :gj=0

(isolated contour)

δ gi=1 AND (∃ lj ∈Ls
i :gj=1 XOR ∃ lj ∈Le

i :gj=1)

(continuation only on one side)

0 gi=1 AND ∃ lj ∈Ls
i :gj=1 AND ∃ lj ∈Le

i :gj=1

(continuation on both sides)

0 gi=0

(candidate is not a contour)
(8)

The cliques are of varying order, depending on how many
candidates meet at the start/end points of li; but there are
only as many cliques as variables, and each clique depends
only on the direct neighbours and can be computed effi-
ciently. There are MRF formulations that enforce connec-
tivity over long distances, but they need known foreground
seeds and are computationally a lot more demanding [30].

The overall energy in our MRF simply reads E =
∑

i hi +
∑

i ℓi. We minimize it with Iterated Conditional
Modes (ICM), because of its low computational cost [14].
Stronger inference methods like loopy believe propagation
yield comparable results, with much higher runtime.

Note that there is no penalty for selecting overlapping
candidates. In our setting it does not hurt if multiple con-
tours overlap, since they are based on the same points and
can be unambiguously repaired in post-processing. On the
contrary, a pairwise potential that suppresses overlapping
contours would be harmful, because wireframe junctions
are not known in advance, and it can happen that candidates
extend past a junction. In such cases, overlapping contours
are necessary to recover the junction correctly.

4. Experiments

We evaluate the proposed contour detector on a large
database of laserscans with a total of more than one bil-
lion 3D points. The scans were captured in different cities
and villages across Europe and Asia, using professional,
surveying-grade laser scanners. Visually, the results on 16
different point clouds demonstrate that our method gener-
alises well across different scenes and locations, see Fig. 4

1“Start” and “end” are used for convenience, the graph is undirected.
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Figure 4: Contour detection results at different locations. (left) Bildstein; (middle) Munich; (right) Singapore.
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Figure 5: Precision-Recall Curves. Please note, each stage requires different ground truth, so values are not comparable
across diagrams. See text for details.

for examples. One of the scans was hand-labeled to serve
as ground truth, comprising 101′614 points on contours and
7′681′061 background points. Trees and clutter caused by
moving occluder were left unlabeled to allow for a fair com-
parison against methods that do not have access to seman-
tically annotated training data. This is a bias against our
proposed method. Our contour scores (Sec. 4.1) can handle
these object classes, largely thanks to the semantic class-
conditionals included in the feature vector. On the contrary,
methods based only on curvature, like the Canny baseline,
would generate massive amounts of false positives on them,
hence we exclude them from the comparison.

4.1. Pointwise Classification

As quality metrics for quantitative evaluation, we use
precision-recall curves, evaluated over individual 3D points.
The pointwise contour detector (Sec. 4.1) is trained on
48′964 positive and 85′853 negative examples taken from
other cities than the test set. Our Random Forests always
consist of 50 trees, their tree depth is determined automat-
ically by grid search, with 5-fold cross-validation over the
training set. Figure 5 shows the performance of our point-
wise contour score, as well as standard baselines. Most re-
lated methods, which also perform some sort of edge or line
detection in point clouds, threshold either curvature values
or a combination of curvature and occlusion features. In
particular, single-scale curvature and occlusion form the ba-

sis of RGB-D edge detection in [5], while multi-scale cur-
vature is the descriptor used by [22]. Our goal is to compare
the power of different feature sets, thus we do not set thresh-
olds, but instead learn Random Forest classifiers also for the
baseline feature sets. Together with the cross-validation de-
scribed above this is more or less guaranteed to perform at
least as well as a single threshold per feature dimension. In
the comparison there are several interesting observations.
Single-scale detectors are practically useless in large-scale
outdoor point clouds, because of the strongly varying point
density. Even in the multi-scale version, curvature alone is
not suitable, because outdoor point clouds are never com-
plete, thus many contours appear as occlusion edges with
data only on one side. And even multi-scale curvature and
contour features do not capture all important information:
our full feature set still performs significantly better than
the best baseline, over the entire precision-recall curve.

4.2. Linewise Classification

We go on to separately evaluate the proposed features at
the level of entire contour candidates, i.e., the unary term
of our MRF (Sec. 3.2). Since a contour candidate spans
many points, the training set for lines has only 1862 con-
tours and 832 negatives (automatically generated contour
candidates that do not coincide with ground truth contours)
The Random Forest was trained with the same settings as
above. Figure 5 shows the results on the test set (2227 posi-
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Figure 6: (left) Connected contour segments on our test set; (middle) Histogram of contour lengths; (right) A failure case: if
objects with strong geometric structure did not appear in the training set, then they tend to get high contour scores.

tives, 1013 negatives). As expected, simply aggregating the
pointwise scores as evidence for a contour already works
reasonably well. Adding information about the shape of the
contour, in the form of cumulative shape context features,
improves the performance further, most notably is the high-
precision regime (up to ≈20 percent points).

4.3. Full Framework

We do not have access to any direct competitor that also
extracts contours in 3D point clouds. The closest indepen-
dent baseline that we could find is the 3D Canny variant
of [5]. That detector requires a so-called “organised point
cloud”, i.e. a depthmap with regular neighbourhood struc-
ture, both to compute low-level evidence such as depth dis-
continuities and to link the edge points into lines. We thus
convert our test set, which stems from a single scan position
and therefore comes in a regular (angular) grid, into a depth
image on a cubemap.

At this point the evaluation faces a subtle, but important
problem: the Canny baseline does not return line segments,
but only a list of all points that form part of a line. Hence,
we can only evaluate against the pointwise ground truth.
Our method, on the other hand, aims to find lines. To that
end it suppresses many of the individual points along a con-
tour through non-maxima suppression (NMS), which would
all be flagged as false negatives.

As a compromise, we emulate the NMS during evalua-
tion, based on the detection result. On the one hand, we
do not count false negatives that are less than 3 cm away
from the nearest true positive. On the other hand, we iden-
tify false negatives in the detection results, and ignore addi-
tional false negatives within 3 cm in the ground truth. This
filtering approximately corrects for point dropped by NMS
during candidate generation. Still, it counts gaps of > 6 cm
in the contour network as false negatives, and it also counts
false positives not present in the ground truth, with their ex-
pected point count after NMS. We believe that for a relative
comparison the approximation is meaningful, however note
that the absolute precision/recall values cannot be compared
to the one for pointwise classification. As can be seen in
Fig. 5, the proposed detector vastly improves over a sim-

ple Canny edge detector on range images, which essentially
fails. We have tried to tune the two thresholds of Canny
for seed generation and linking separately, so as to maxi-
mize the performance on our test set, but did not manage to
improve over the depicted curve.

Recall that our contours are ordered sequences of 3D
data points. Colour-coded example contours are shown in
Fig. 6. We currently do not break up contours at points
of high curvature (“corners”) or where more than two seg-
ments meet (“junctions”), since there is no need to do so in
our application. In this setting the detected contours’ me-
dian and average lengths are 28, respectively 187 points.
For our specific data – urban outdoor scans in metric world
units – this corresponds to 0.5m, respectively 3.7m. The
full histogram of contour lengths is also shown in Fig. 6.

4.4. Failure cases

We have observed two main sources of failure for our
contour detector. The main type of error happens at dis-
connected contours that are very close to each other. If the
distance between two contours is less than the voxel size s
of our NMS, then the candidate generation as well as the
MRF prior will tend to hallucinate spurious connections.

Another problem comes from the machine learning
backbone of our method. Regions that have a large amount
of geometric structure, but have not been seen in the (neg-
ative) training data, tend to get high contour scores and in-
duce false positives. Figure 6 shows a case with window
blinds that were never seen during training.

5. Conclusion

We have proposed a novel approach to detect contours
in unorganized 3D point clouds, which is able to handle
data from complex outdoor environments. In our experi-
ments the proposed detector work robustly across a range
of laser-scanning datasets, whereas a standard Canny-like
baseline badly fails. Our method is also computationally
efficient enough for practical application: processing ten
million points only takes a couple of minutes an a single
desktop PC.
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