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Abstract

This paper is a reaction to the poor performance of sym-

metry detection algorithms on real-world images, bench-

marked since CVPR 2011. Our systematic study reveals sig-

nificant difference between human labeled (reflection and

rotation) symmetries on photos and the output of computer

vision algorithms on the same photo set. We exploit this

human-machine symmetry perception gap by proposing a

novel symmetry-based Turing test. By leveraging a com-

prehensive user interface, we collected more than 78,000

symmetry labels from 400 Amazon Mechanical Turk raters

on 1,200 photos from the Microsoft COCO dataset. Using

a set of ground-truth symmetries automatically generated

from noisy human labels, the effectiveness of our work is

evidenced by a separate test where over 96% success rate is

achieved. We demonstrate statistically significant outcomes

for using symmetry perception as a powerful, alternative,

image-based reCAPTCHA.

1. Introduction

With increasing malicious online attacks against com-

panies, individuals and governments alike, CAPTCHA

(Completely Automated Public Turing test to tell

Computers and Humans Apart) [1, 41] becomes a neces-

sary tool in many web applications to prevent automatic lo-

gin, blog post, email, and DoS (denial-of-service) attacks.

CAPTCHAs are constructed by taking advantage of the be-

havioral discrepancies between humans and machines. For

example, since humans are in general superior at recogniz-

ing distorted text than computers, text-based CAPTCHAs

such as [42] have been widely used. reCAPTCHAs, where

one word is used for testing and the other for dataset expan-

sion, can also be implemented and deployed easily. Mean-

while, successful breakings of existing CAPTCHAs (e.g.

[2, 27, 29, 37]) have been extensively reported as well, in-

cluding a recent self-broken reCAPTCHA by Google [17].

We are witnessing a healthy interleaving of more ad-

vanced CAPTCHAs that provide better software security
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Figure 1. Human labeled symmetries on real photos. Red: rotation

center. Green: reflection axis.

and breakings of CAPTCHAs which advance machine in-

telligence. In recent years, automatic text recognition is

closing the gap to human performance [17], thus more

image-based CAPTCHAs have emerged as an alterna-

tive [3, 4, 7, 8, 13, 14, 18, 28, 30, 31, 32, 41]. Most current

image-based CAPTCHAs focus on recognition of common

objects, such as cats, dogs, human faces or relating objects

(with the help of words) semantically. The primary chal-

lenges for computers come from image distortions and ob-

ject semantics. Little work has explored and taken advan-

tage of human ability in visual abstraction, for example, the

perception of symmetry from photos (e.g. Figure 1).

Strong evidence of inherent symmetry detection capabil-

ity in humans has been shown at both behavioral and neu-

ral levels [5, 6, 19, 21, 35, 40], while the outcome from

the 2011/13 CVPR symmetry detection competitions [23]

is less encouraging. This performance gap between hu-

mans and machines presents an opportunity for a symmetry-

perception-based CAPTCHA. To the best of our knowl-

edge, no systematic elicitations of human understanding of

reflection and rotation symmetries on a large set of real-

world photos has been reported, nor has the gap of symme-

try perception between humans and computers been well-

defined or quantified. This leads to our specific contribu-

tions in this work. We provide:

• via crowdsourcing, a systematic collection and evalua-

tion of human symmetry labels from 401 online raters

on 1,200 photos;

• a well-defined set of symmetry metrics and algorithms

to determine human perceived Ground Truth symme-
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tries from noisy human labels;

• a systematic quantification of the gap between the hu-

man and machine symmetry perception in terms of

precision and recall rates;

• a prototype image-based symmetry reCAPTCHA; and

• a validation of the proposed reCAPTCHA on 118 hu-

man online-users with a > 96% success rate.

2. Related Work

reCAPTCHA[42] is one of the most well-known

CAPTCHAs and is widely used on the Internet today. It

combines labeling new ground truth while simultaneously

acting as a CAPTCHA. reCAPTCHA uses text recogni-

tion as the challenge and provides each rater two words.

One word where the transcription is known is used as the

CAPTCHA; the other word is unknown. The unknown

words are found by two separate OCR algorithms transcrib-

ing books. A consensus has to be reached before the word is

added into the new challenge word set. The reCAPTCHA

system can detect humans with a success rate of 96.1%, but

with the steady advancement of OCR [17, 37, 42] in recent

years, it has become less successful at rejecting computers.

Researchers have investigated various forms of

CAPTCHAs based on natural image understanding. These

can be divided into (1) object recognition-based and (2) 3D

model-based (e.g. orientation judgment).

Simple image recognition CAPTCHAs [3] present raters

with undistorted generic images to be labeled using the pro-

vided word lists. ESP-PIX asks raters to recognize what

object is common in a set of images [14]. ARTiFACIAL

exploits the face detection gap between human and algo-

rithms. It provides synthesized images with a distorted

face embedded in a cluttered background and raters are re-

quested to first find the face and then click on four eye

corners and two mouth corners on the face [32]. Avatar

CAPTCHA uses a similar task where the raters are required

to find a synthetic faces among a table of faces, although

computers have outperformed humans at the task [12, 20].

Asirra is based on cat/dog classification; it presents im-

ages of 12 cats and dogs and asks raters to identify the cats

among them [13]. Golle [16] shows that Asirra is vulnera-

ble to machine learning attacks since it is possible to train

a classifier that can identify cats and dogs with high accu-

racy. PI-CATCHA [30] asks the rater to identify a type of

object, such as books, balls, or buildings, from 8 listed im-

ages. Datta et al. [8] explored further the use of systematic

image distortion in designing CAPTCHAs and found that

combining multiple atomic distortions can significantly re-

duce machine recognizability [39]. Mitra et al. [26] propose

“emergence images” rendered with noise and clutter from

3D models as a potential source of CAPTCHA.

The second type of image-based CAPTCHAs relies on

an understanding of orientations of 3D models. Gossweiler

Figure 2. The symmetry labeling interface (Section 3.2 ). Best

viewed online.

et al. [18] introduced the idea of correcting image orien-

tation for designing the “What’s Up” CAPTCHA; it uses

images drawn from popular web searches as a potential

database and asks the humans to correct the image’s ori-

entation. Ross et al. [31] presented the Sketcha CAPTCHA

that requires raters to determine the upright orientation for a

selection of 3D objects rendered as line drawings. Sketcha

provides the rater with only four orientation options com-

pared with a continuous rotation from “What’s Up”.

Many crowdsourcing image annotation tools have been

developed for object segmentation and image labeling [9,

10, 11, 33, 34, 38], while little is available for labeling

symmetry directly on photos via crowdsourcing, which is

a new tool we develop in this work. Furthermore, our work

differs from previous image-based CAPTCHAs in utiliz-

ing symmetry as a cue for CAPTCHA, which is object-

class, scale, shape, orientation and color independent. Our

experiments demonstrate that a symmetry-concept-based

CAPTCHA can be understood and utilized by human sub-

jects across culture, age, gender, and education levels.

Symmetry detection has been a lasting research topic

in computer vision and computer graphics [24]. From the

benchmarked outcome of 2011/2013 CVPR symmetry de-

tection from real-world images competitions [23], the algo-

rithm developed by Loy and Eklundh [25] has been shown

to yield consistently the best performance on both reflec-

tion and rotation symmetry detection. The algorithm is fast,

requires no image-segmentation, and recognizes reflection

and rotation symmetries respectively from extracted SIFT

keys via an effective voting scheme. During these competi-

tions, [25] has been compared against dozens of algorithms.

Thus far, we have not found newer work that surpasses [25]

consistently. Thus [25] is chosen to be the representative for

computer symmetry detection algorithms in our evaluation

of machine perception of real world symmetries.

5166



3. Our Approach

3.1. Image Data Initialization

Our dataset consists of 1,200 images from the Microsoft

COCO database[22]. To be included in our initial image

data set, each image must satisfy two conditions (through

visual inspection by undergraduate/graduate students): (1)

the image presents some kind of visual symmetry and (2)

the symmetry detection algorithm [25] fails on detecting the

most prominent symmetry in the image. Before presenting

the images to human raters, each image is scaled to 400

pixels (largest dimension) to permit two images to fit on

most computer screens.

3.2. Mechanical Turk Labeling Tool

We have designed and implemented a graphical interface

for human raters to enter their choice of perceived real-

world symmetries on an image (Figures 1 and 2). After a

short introduction on the general concept of symmetry with

visual examples, each Amazon Mechanical Turk rater must

pass a training session that consists of labeling four images

(Figure 1).

The user interface (Figure 2) guides the raters to label a

rotation or a reflection symmetry. Once a type of symmetry

is selected, they can identify a rotation center by one click or

a reflection axis by clicking the two end points of a line seg-

ment. The rater has the choice of either identifying at least

one perceived symmetry or skipping either image or both

images. The task requires the rater to label 100 images total

and can skip at most 100 images during the experiment. The

ability to skip an image enables the rater to not be forced to

label a symmetry unless he or she perceives one. The raters

are asked to label the symmetries within the image accord-

ing to perceived prominence. Each rater is given at least 90

unique images and 10 repeats. The repeats are used to deter-

mine the rater’s reliability. We have collected 78,310 rater

labeled symmetries from 401 raters. Statistical information

on data collection is shown in Table 1. We define a Skip-

Label Score (SL-Score) to reflect the number of times each

image is skipped due to a lack of perceived symmetries and

is labeled due to a perceived symmetry. See Figure 3 for a

distribution of images in the SL-score space.

3.3. Symmetry Distance Metrics

Our data is a collection of human inputs in the form of

labeled symmetries on an image, either for rotation symme-

try centers (one point) or for reflection symmetry axes (two

points). An intriguing research question as well as an en-

gineering necessity is HOW to group such labels into their

intended semantic meanings: symmetry X is at this position

of this image. A key theoretical basis for such a grouping

task is the distance metric(s) that can measure the similari-

ties among different human-perceived symmetry labels.

Total # of Initial Images 1,200

Total # of Images after Screening 961

Total # of Human Raters 401

Average # of Labelers / Image ± std 33(±3)

Average # Skippers / Image ± std 3(±3)

Total Rotation Symmetries Labeled 26,374

Total Reflection Symmetries Labeled 51,936

Average Symmetries Labeled

/ Image ± std

81(±34)

Average Rotation Symmetries Labeled

/ Image ± std

27(±27)

Average Reflection Symmetries Labeled

/ Image ± std

54(±22)

Table 1. Statistics of the data used in this paper, pertaining to the

images, human raters, and labeled symmetries.

3.3.1 Definitions of Symmetry Distance

We define the rotation symmetry distance D◦ as the Eu-

clidean distance between the two labeled rotation symmetry

centers. Given two reflection axes (L1 and L2), the reflec-

tion symmetry distance between them is a measure com-

paring two line segments with potentially different lengths,

positions and orientations.

We propose four different reflection symmetry measures

for a pair of reflection symmetry axes: da (end points), db
(mid points), dc (mid-point to line), and dd (angle) distances

as defined and illustrated in Figure 4.

Previous work has observed that the closeness of two

line segments is proportional to their lengths, i.e., two 10-

foot lines 1-inch apart may be perceived as closer than two

1-inch long line segments 1-inch apart.[23]. We thus weigh

our reflection symmetry distance measures da, db, dc with

the lengths of the corresponding reflection axes by defining:

R =
|L1|+ |L2|

2
(1)

Da =
da

R
,Db =

db

R
,Dc =

dc

R
,Dd = dd. (2)

3.3.2 Distance Distribution of Nearest Symmetries

Given a pair of human labels, we need to find out: are they

labeling the same symmetry? In addition to a proper set

of symmetry distance measures (Section 3.3.1), we need a

membership algorithm to determine whether two labels be-

long to the same group. We build statistical distributions of

nearest neighbors of all labeled symmetries for each sym-

metry distance (Figure 5). To determine the membership

threshold τ automatically, we algorithmically discover the
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Figure 3. The average number of labelers per image is 33 and the average number of skippers per image is 3. Images labeled 1, 2, and 3

(left column) represent those images without any skips by any rater and images labeled 4, 5, and 6 (right column) represent images around

the peak of the distributions of the SL-images). The different colors of the image numbers are for ease of viewing. Each image pair shows

the input image and the image with all labeled symmetries. This figure is best viewed in color.
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db

dd

(c) (d)

d2
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2
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d1 + d2

2

d3 + d4( ),

d1L1 L2

L1
L2

2
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Figure 4. The four different reflection symmetry distance measures

between two reflection symmetry axes L1 and L2; (a) da measures

the minimum mean distance between the corresponding end points

of L1 and L2; (b) db measures the distance between the midpoints;

(c) dc measures the average shortest distance between their mid-

points and the other line; and (d) dd measures the angle difference

between the two line segments.

‘knee-of-the-curve’ for the distribution curves (Figure 5),

where the ‘knee’ is the point at which a function has the

maximum curvature and where the curve starts to grow ex-

ponentially. We use the Kneedle algorithm by Satopää et

al. [36] since it is a general knee-of-the-curve finding algo-

rithm and meets our needs of adaptive thresholding based

on human perceptual input. The neighbors with distance

beyond τ can be considered as symmetry labels for a differ-

ent symmetry. In the case of reflection symmetry, the four

different thresholds have to work jointly to determine the

membership (Section 3.4).

3.4. Ground Truth Extraction

The ground truths (GTs) rotation or reflection symmetry

in an image is computed from a consensus of human labels

based on each rater’s perception of a real-world symmetry

in that image. To obtain a set of symmetry GTs objectively

and computationally, we adapt DBSCAN [15], a method

for Density-Based Spatial Clustering of Applications with

Noise (the winner of the test-of-time award in 2014), with

special considerations for perceptual symmetries by hu-

mans. Different from K-means, DBSCAN does not need

the number of clusters as input. DBSCAN is a local-

neighborhood distribution-based method whose inputs are

the minimum distance ǫ of a neighbor for being a member of

the cluster and the minimum number of neighbors minPts to

be a dense region or cluster. In our case, we have automat-

ically obtained symmetry distance threshold τ for nearest-

neighbors under different symmetry distance metrics (Sec-

tion 3.3.2, Figure 5), and for each labeled symmetry to be

considered as a GT symmetry we expect that at least two

unique raters have labeled it independently. Here we have

to enforce the independence condition for each cluster to

containing a unique set of raters since the same rater may

label a symmetry twice when given the same image as a re-

peat to test rater consistency (Section 3.2). Therefore, we

have ǫ = τ and minPts = 2 as the input parameters for
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Figure 5. The nearest symmetry distance distributions (Do for rotation symmetry, Da, Db, Dc, Dd for four reflection symmetry distance

measures defined in Figure 4) sorted from low to high (left to right). The ‘knee point’ τ is automatically determined using the Kneedle

algorithm by Satopää et al. [36]. The ‘knee’ is the point at which a function has the maximum curvature and where the curve starts to grow

exponentially. The automatically found threshold for rotation symmetry labels is 5 (pixels); the four thresholds for reflection symmetry

labels are: 0.18 for Da, 0.14 for Db, 0.09 for Dc and 7 (degrees) for Dd. Note: Da, Db, Dc are normalized by the average lengths of the

pair of reflection axes under consideration (Equations 1, 2).

DBSCAN.

Figure 6 demonstrates a set of sample GTs extracted au-

tomatically from rater labels. To illustrate the human per-

ceived level of prominence of a labeled symmetry, the radii

of the rotation symmetry centers and the thickness of the

reflection axes shown in Figure 6 are proportional to the

number of raters who have labeled that particular symme-

try. The circular contour around each point (rotation center,

end points of a reflection axis) indicates the location un-

certainty of the labels. Table 2 shows the statistics of the

automatically extracted GTs. Using this set of automati-

cally computed reflection and rotation symmetry GTs, we

re-evaluate the admissible image set to ensure that the al-

gorithm [25] can not pass as human. This step reduces the

initial dataset size from 1200 images to 961 images (Table

1).

Total # of GT 8,146

Total # of Rotation GT 2,704

Total # of Reflection GT 5,442

Total # of Images with Rotation GT 836

Total # of Images with Reflection GT 961

Average # of Reflection GT/Image 6± 3

Average # of Rotation GT/Image 3± 3

Table 2. Statistics of the automatically extracted Ground Truth

Symmetries from the raters’ labels.

4. Quantitative Evaluation and Comparison

After the construction of both a user interface for cap-

turing human perceived symmetries and a computational

method for extracting GT symmetries, we validate that our

method is indeed achieving the intended goals:

(1) On the data from 400+ anonymous online raters, we

quantify the human and machine performance on the same

image set (961 images) in terms of their precision and

recall rate under the variations of three parameters that

are, respectively; rotation-symmetry threshold, reflection-

symmetry threshold and the minimum number of symmetry

labels required for a symmetry GT.

(2) On a new set of human raters, excluding those who par-

ticipated in (1), we perform a validation test of “are you

human or machine?” using a subset of the 961 images.

4.1. Performance of Human and Machine

True Positive: Given a labeled symmetry A (either a rota-

tion or a reflection), a GT symmetry, a symmetry distance

Dm, its corresponding threshold τm (Section 3.3.2), and B

to represent all more prominent symmetry labels from the

same rater on the same image where prominence is defined

by the rater’s ordering:

TP =







1 if ∃ GT : (∀ m : Dm(GT,A) < τm)
¬∃ B : (∀ m : Dm(GT,B) < τm)

0 otherwise

(3)

False Positives:

FP =

{

1 if ¬∃ GT : (∀ m : Dm(GT,A) > τm)
0 otherwise

(4)
False Negatives:

FN =

{

1 if ¬∃ A : (∀ m : Dm(GT,A) < τm)
0 otherwise

(5)

We vary three parameters to create the Precision-Recall

(PR) curves. They are: rotation center distance threshold,

reflection axis distance thresholds and the minimum num-

ber of labeled symmetries for defining a GT symmetry. We

use the τ values automatically discovered in Section 3.3.2

(Figure 5) as a basis, and increase the threshold values up

to 5 times the base value. A comparison of PR-surfaces and

the differences between the human and the machine et al.

[25] are shown in Figures 7.

4.2. Symmetry reCAPTCHA Validation

To evaluate the effectiveness of the symmetry re-

CAPTCHA mechanism, we automatically select a subset
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S-L

Score
Original Image Human Labels Ground Truth Labels Machine Rot. Labels Machine Ref. Labels

1, 36

1, 35

1, 35

1, 35

3, 34

3, 34

3, 30

Figure 6. Seven randomly selected sample images where we index each image with its SL-score (skip-label score from Figure 3) and show

the original image, all human labels on the image, the symmetry GTs automatically extracted, followed by the output of [25] showing the

detected rotation and reflection symmetries where the detected symmetries are ranked from bright (top choice) to dark in intensities. This

figure is best viewed on the computer.
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Human Precision Human Recall Machine Precision Machine Recall

Figure 7. The performance PR-surfaces of all human raters (401) in comparison to those of a computer algorithm[25] on all 961 images.

The three varying parameters are: (1) rotation symmetry center distance threshold; (2) reflection symmetry distance thresholds (four); and

(3) the minimum number of symmetries required for a symmetry GT to be defined. With the increasing of minimum labeled symmetries

required for a symmetry GT, one can observe a tradeoff between the human PR-curves due to down of symmetry GTs and up of FPs.
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Total # of Test Images 40

Total # of Human Testers 118

Average # of Labelers / Image ± std 115(±3)

Average # Skippers / Image ± std 3(±3)

Total Rotation Symmetries Labeled 4,118

Total Reflection Symmetries Labeled 6,111

Average Symmetries Labeled

/ Image ± std

256(±83)

Average Rotation Symmetries Labeled

/ Image ± std

103(±57)

Average Reflection Symmetries Labeled

/ Image ± std

152(±53)

Table 3. Table of statistics on the performance of the prototype

symmetry reCAPTCHA.

of test images which are most discriminative between hu-

man and machine perception of symmetries. Each image

is selected based on human/machine performance evalua-

tion (Section 4.1) according to the following criteria: (1)

the computer algorithm fails to find any GT symmetries;

(2) the total number of raters who successfully labeled at

least one symmetry on the image (the higher the total, the

more prominent the symmetry appears to humans); (3) the

success rate ( total TPs / total GTs ) of human raters on the

image; and (4) the number of human raters who failed to

label the correct GT symmetry on the image: TP=0 while

FP 6= 0. Based on these conditions, a total of 40 test images

are chosen. By pairing each test image with a non-test im-

age, we constructed a symmetry reCAPTCHA. In practice,

the system would have a limitless supply of photos from the

internet, labeled by users during reCAPTCHA, creating an

ever moving target of symmetry image set.

A new set of human raters (exclusive from Section 4.1)

are presented with our prototype symmetry reCAPTCHA,

whose labels are used to determine whether the labeler is

a human and compute the overall success rate (Table 3).

For 118 new human raters, our symmetry reCAPTCHA

prototype achieves a success rate of 96.31%, 95.05% and

95.81% using rotation symmetries alone, reflection symme-

tries alone and jointly, respectively. Using a one-sample

t-test, with the null hypothesis that the human test result

comes from a normal distribution with zero mean (or the

same as machine performance), leads to p-value = 0.

5. Summary and Discussion

We have explored taking advantage of the discrepancy

of symmetry perception between humans and machines to

build a symmetry-based reCAPTCHA. We have carefully

designed, implemented, and tested a user interface to solicit

input of human-perceived imperfect symmetries on real-

world photos from the MS COCO database. Our methods

objectively and systematically extract user labeled symme-

try ground truth as statistical consensus or viable clusters

in the proper symmetry distance spaces. A 2-stage quan-

titative evaluation has shown that human performance on

visual symmetry selection from real-world photos is indeed

significantly superior to the best proven computer algorithm

[25] thus far. A prototype symmetry reCAPTCHA gener-

ates promising initial results. In their extensive survey of

image-based CAPTCHAs, Zhu et al. [43] proposed three

guidelines for image-based CAPTCHAs. The first is to rely

on the unambiguous semantics of the images. Symmetry

reCAPTCHA relies on symmetry detection which is innate

for humans across different cultures, and our experimental

results support the observation that human symmetry per-

ception is well-clustered and computable. The second crite-

ria is allowing large variations: symmetry is a phenomenon

independent of object class, shape, size and color. The last

desirable criteria is the ease of making the image percep-

tions harder. Given the types and variances of possible

symmetries (simple to complex, global to local, small to

large ...), real-world symmetry detection from noisy data

can be continuously challenged. Even without any inten-

tional manipulations of the images, [25] fails to find any

ground truth symmetries from human labels of the 961 pho-

tos from COCO database selected in this work. When com-

paring performance of humans versus machines on sym-

metry detection, we observe that human subjects are less

distracted by clutters around real world symmetry objects

(e.g. face, half of a moon, eyes of a dog); while the ma-

chine tends to have issues with near regular textures in the

background or recurring patterns in the foreground. Since

our focus is on rotation or reflection symmetries (exclud-

ing translation symmetry), the computer vision algorithm

often fails to capture the real symmetry in a crowded im-

age. Another common failure of machine is when the plane

of symmetry is not parallel with the camera plane. These

issues are illustrated in Figure 6.

Real-world symmetries have presented computational

challenges to computer vision for decades. We hope to mo-

tivate more research in this direction such that better algo-

rithms can break symmetry reCAPTCHA in the near future.

Meanwhile, we continue our effort on learning how humans

perceive noisy symmetries. A better understanding of hu-

man perception at both the behavioral and neural levels will

help our design of more robust algorithms for symmetry de-

tection. We will release the full dataset of images to help

others test and improve their symmetry algorithms.
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