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Abstract

Humor is an integral part of human lives. Despite be-

ing tremendously impactful, it is perhaps surprising that we

do not have a detailed understanding of humor yet. As in-

teractions between humans and AI systems increase, it is

imperative that these systems are taught to understand sub-

tleties of human expressions such as humor. In this work,

we are interested in the question – what content in a scene

causes it to be funny? As a first step towards understanding

visual humor, we analyze the humor manifested in abstract

scenes and design computational models for them. We col-

lect two datasets of abstract scenes that facilitate the study

of humor at both the scene-level and the object-level. We

analyze the funny scenes and explore the different types of

humor depicted in them via human studies. We model two

tasks that we believe demonstrate an understanding of some

aspects of visual humor. The tasks involve predicting the

funniness of a scene and altering the funniness of a scene.

We show that our models perform well quantitatively, and

qualitatively through human studies. Our datasets are pub-

licly available.

1. Introduction

An adult laughs 18 times a day [25] on average. A

good sense of humor is related to communication com-

petence [13, 14], helps raise an individual’s social status

[43], popularity [17, 26], and helps attract compatible mates

[8, 10, 35]. Humor in the workplace improves camaraderie

and helps workers cope with daily stresses [38] and loneli-

ness [52]. fMRI [40] studies of the brain reveal that humor

activates the components of the brain that are involved in

reward processing [53]. This probably explains why we ac-

tively seek to experience and create humor [33].

Despite the tremendous impact that humor has on our

lives, the lack of a rigorous definition of humor has hin-

dered humor-related research in the past [4, 46]. While ver-

bal humor is better understood today [41, 44], visual humor

remains unexplored. As vision and AI researchers we are

interested in the following question – what content in an

image causes it to be funny? Our work takes a step in the

(a) Funny scene: Raccoons

are drunk at a picnic.

(b) Funny scene: Dogs feast

while the girl sits in a pet bed.

(c) Funny scene: Rats steal

food while the cats are asleep.

(d) Funny Object Replaced

(unfunny) counterpart: Rats

in (c) are replaced by food.

Figure 1: (a), (b) are selected funny scenes in the Abstract

Visual Humor dataset. (c) is an originally funny scene in the

Funny Object Replaced dataset. The objects contributing to

humor in (c) are replaced by a human with other objects, to

create an unfunny counterpart.

direction of building computational models for visual hu-

mor. Computational visual humor is useful for a number

of applications: to create better photo editing tools, smart

cameras that pick the right moment to take a (funny) pic-

ture, recommendation tools that rate funny pictures higher

(say, to post on social media), video summarization tools

that summarize only the funny frames, automatically gener-

ating funny scenes for entertainment, identifying and cater-

ing to personalized humor, etc. As AI systems interact more

with humans, it is vital that they understand subtleties of hu-

man emotions and expressions. In that sense, being able to

identify humor can contribute to their common sense.

Understanding visual humor is fraught with challenges

such as having to detect all objects in the scene, ob-

serving the interactions between objects, and understand-

ing context, which are currently unsolved problems. In

this work, we argue that, by using scenes made from cli-

part [1, 2, 15, 22, 23, 50, 57, 58], we can study visual humor

without having to wait for these detailed recognition prob-
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lems to be solved. Abstract scenes are inherently densely

annotated (e.g. all objects and their locations are known),

and so enable us to learn fine-grained semantics of a scene

that causes it to be funny. In this paper, we collect two

datasets of abstract scenes that facilitate the study of humor

at both the scene-level (Fig. 1a, Fig. 1b) and the object-level

(Fig. 1c, Fig. 1d). We propose a model that predicts how

funny a scene is using semantic visual features of the scene

such as occurrence of objects, and their relative locations.

We also build computational models for a particular source

of humor, i.e., humor due to the presence of objects in an

unusual context. This source of humor is explained by the

incongruity theory of humor which states that a playful vi-

olation of the subjective expectations of a perceiver causes

humor [28]. E.g., Fig. 1b is funny because our expectation

is that people eat at tables and dogs sit in pet beds and this is

violated when we see the roles of people and dogs swapped.

The scene-level Abstract Visual Humor (AVH) dataset

contains funny scenes (Fig. 1a, Fig. 1b) and unfunny scenes

with human ratings for funniness of each scene. Using the

ground truth rating, we demonstrate that we can reliably

predict a funniness score for a given scene. The object-level

Funny Object Replaced (FOR) dataset contains scenes that

are originally funny (Fig. 1c) and their unfunny counterparts

(Fig. 1d). The unfunny counterparts are created by humans

by replacing objects that contribute to humor such that the

scene is not funny anymore. The ground truth of replaced

objects is used to train models to alter the funniness of a

scene – to make a funny scene unfunny and vice versa. Our

models outperform natural baselines and ablated versions

of our system in quantitative evaluation. They also demon-

strate good qualitative performance via human studies.

Our main contributions are as follows:

1. We collect two abstract scene datasets consisting of

scenes created by humans which are publicly available.

i. The scene-level Abstract Visual Humor (AVH)

dataset consists of funny and unfunny abstract

scenes (Sec. 3.2). Each scene also contains a brief

explanation of the humor in the scene.

ii. The object-level Funny Object Replaced (FOR)

dataset consists of funny scenes and their corre-

sponding unfunny counterparts resulting from ob-

ject replacement (Sec. 3.3).

2. We analyze the different sources of humor tech-

niques depicted in the AVH dataset via human studies

(Sec. 3.2).

3. We learn distributed representations for each object cat-

egory which encode the context in which an object natu-

rally appears, i.e., in an unfunny setting. (Sec. 4.1).

4. We model two tasks to demonstrate an understanding of

visual humor:

i. Predicting how funny a given scene is (Sec. 5.1).

ii. Automatically altering the funniness of a given

scene (Sec. 5.2).

To the best of our knowledge, this is the first work that

deals with understanding and building computational mod-

els for visual humor.

2. Related Work

Humor Theories. Humor has been a topic of study since

the time of Plato [37], Aristotle [3] and Bharata [5]. Over

the years, philosophical studies and psychological research

have sought to explain why we laugh. There are three the-

ories of humor [55] that are popular in contemporary aca-

demic literature. According to the incongruity theory, a per-

ceiver encounters an incongruity when expectations about

the stimulus are violated [24]. The two stage model of hu-

mor [48] further states that the process of discarding prior

assumptions and reinterpreting the incongruity in a new

context (resolution) is crucial to the comprehension of hu-

mor. Superiority theory suggests that the misfortunes of

others which reflects our own superiority is a source of hu-

mor [34]. According to the relief theory, humor is the re-

lease of pent-up tension or mental energy. Feelings of hos-

tility, aggression, or sexuality that are expressed bypassing

any societal norms are said to be enjoyed [16].

Previous attempts to characterize the stimuli that induce

humor have mostly dealt with linguistic or verbal humor

[28] e.g., script-based semantic theory of humor [44] and

its revised version, the general theory of verbal humor [41].

Computational Models of Humor. A number of compu-

tational models are developed to recognize language-based

humor e.g., one-liners [30], sarcasm [11] and knock-knock

jokes [49]. Other work in this area includes exploring fea-

tures of humorous texts that help detection of humor [29],

and identifying the set of words or phrases in a sentence that

could contribute to humor [56].

Some computational humor models that generate verbal

humor are JAPE [7] which is a pun-based riddle generating

program, HAHAcronym [47] which is an automatic funny

acronym generator, and an unsupervised model that pro-

duces “I like my X like I like my Y, Z” jokes [36]. While the

above works investigate detection and generation of verbal

humor, in this work we deal purely with visual humor.

Recent works predict the best text to go along with a

given (presumably funny) raw image such as a meme [51]

or a cartoon [45]. In addition, Radev et al. [39] develop

unsupervised methods to rank funniness of captions for a

cartoon. They also analyze the characteristics of the funni-

est captions. Unlike our work, these works do not predict

whether a scene is funny or which components of the scene

contribute to the humor.

Buijzen and Valkenburg [9] analyze humorous commer-

cials to develop and investigate a typology of humor. Our

contributions are different as we study the sources of humor

in static images, as opposed to audiovisual media. To the

best of our knowledge, ours is the first work to study visual

humor in a computational framework.

4604



Human Perception of Images. A number of works inves-

tigate the intrinsic characteristics of an image that influence

human perception e.g., memorability [20], popularity [21],

visual interestingness [18], and virality [12]. In this work,

we study what content in a scene causes people to perceive

it as funny, and explore a method of altering the funniness

of a scene.

Learning from Visual Abstraction. Visual abstractions

have been used to explore high-level semantic scene under-

standing tasks like identifying visual features that are se-

mantically important [57, 59], learning mappings between

visual features and text [58], learning visually grounded

word embeddings [22], modeling fine-grained interactions

between pairs of people [2], and learning (temporal and

static) common sense [15, 23, 50]. In this work, we use

abstract scenes to understand the semantics in a scene that

cause humor, a problem that has not been studied before.

3. Datasets

We introduce two new abstract scenes datasets – the Ab-

stract Visual Humor (AVH) dataset (Sec. 3.2) and the Funny

Object Replaced (FOR) dataset (Sec. 3.3) using the inter-

faces described in Sec. 3.1. The AVH dataset (Sec. 3.2) con-

sists of both funny and unfunny scenes along with funniness

ratings. The FOR dataset (Sec. 3.3) consists of funny scenes

and their altered unfunny counterparts. Both the datasets are

made publicly available on the project webpage.

3.1. Abstract Scenes Interface

Abstract scenes enable researchers to explore high-level

semantics of a scene without waiting for low-level recogni-

tion tasks to be solved. We use the clipart interface1 devel-

oped by Antol et al. [1] which allows for indoor and outdoor

scenes to be created. The clipart vocabulary consists of 20

deformable human models, 31 animals in various poses, and

around 100 objects that are found in indoor (e.g., chair, ta-

ble, sofa, fireplace, notebook, painting) and outdoor (e.g.,

sun, cloud, tree, grill, campfire, slide) scenes. The human

models span different genders, races, and ages with 8 dif-

ferent expressions. They have limbs that are adjustable to

allow for continuous pose variations. This combined with

the large vocabulary of objects result in diverse scenes with

rich semantics. Fig. 1 (Top Row) shows scenes that AMT

workers created using this abstract scenes interface and vo-

cabulary. Additional details, example scenes, and a sample

of clipart objects are available on the project webpage.

3.2. Abstract Visual Humor (AVH) Dataset

This dataset consists of funny and unfunny scenes cre-

ated by AMT workers, facilitating the study of visual humor

at the scene level.

1www.github.com/VT-vision-lab/abstract_scenes_

v002

Collecting Funny Scenes. We collect 3.2K scenes via

AMT by asking workers to create funny scenes that are

meaningful, realistic, and that other people would also con-

sider funny. This is to encourage workers to refrain from

creating scenes with inside jokes or catering to a very per-

sonalized form of humor. A screenshot of the interface used

to collect the data is available on the project webpage. We

provide a random subset of the clipart vocabulary to each

worker out of which at least 6 clipart objects are to be used

to create a scene. In addition, we also ask the worker to

give a brief description of why the scene is funny in a short

phrase or sentence. We find that this encourages workers

to be more thoughtful and detailed regarding the scene they

create. Note that this is different from providing a caption

to an image since this is a simple explanation of what the

worker had in mind while creating the scene. Mining this

data may be useful to better understand visual humor. How-

ever, in this work we focus on the harder task of understand-

ing purely visual humor and do not use these explanations.

We also use an equal number (3.2K) of abstract scenes

from [1] which are realistic, everyday scenes. We expect

most of these scenes to be mundane (i.e., not funny).

Labeling Scene Funniness. Anyone who has tried to be

funny knows that humor is a subjective notion. A well-

intending worker may create a scene that other people do

not find very funny. We obtain funniness ratings for each

scene in the dataset from 10 different workers on AMT who

do not see the creator’s explanation of funniness. The rat-

ings are on a scale of 1 to 5, where 1 is not funny and 5 is ex-

tremely funny. We define the funniness score Fi of a scene

i, as the average of the 10 ratings for the scene. We found

10 ratings to be sufficient for good inter-human agreement.

Further analysis is provided on the project webpage.

By plotting a distribution of these scores, we determine

the optimal threshold that best separates scenes that were

intended to be funny (i.e., workers were specifically asked

to create a funny scene) and other scenes (i.e., everyday

scenes from [1], where workers were not asked to cre-

ate funny scenes). We label all scenes that have a Fi >

threshold as funny and all scenes with a lower Fi as un-

funny. This re-labeling results in 522 unintentionally funny

scenes (i.e., scenes from [1], which were determined to be

funny), and 682 unintentionally unfunny scenes (i.e., well-

intentioned worker outputs which were deemed not funny

by the crowd).

In total, this dataset contains 6,400 scenes (3,028 funny

scenes and 3,372 unfunny scenes). We randomly split these

scenes into train, val, and test sets having 60%, 20%, and

20% of the scenes, respectively. We refer to this dataset as

the AVH dataset.

Humor Techniques. To better understand the different

sources of humor in our dataset, we collect human annota-

tions of the different techniques are used to depict humor

in each scene. We create a list of humor techniques that
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(a) 0.1 (b) 1.5 (c) 4.0 (d) 4.0

Figure 2: Spectrum of scenes (left to right) in ascending order of funniness score, Fi (Sec. 3.2) as rated by AMT workers.

are motivated by existing humor theories, based on patterns

that we observe in funny scenes, and the audio-visual humor

typology by Buijzen et al. [9]: person doing something un-

usual, animal doing something unusual, clownish behavior

(i.e., goofiness), too many objects, somebody getting hurt,

somebody getting scared and somebody getting angry.

We choose a subset of 200 funny scenes from the AVH

dataset. We show each of these scenes to 10 different AMT

workers and ask them to choose all the humor techniques

that are depicted. Our options also included none of the

above reasons, which also prompted workers to briefly ex-

plain what other unlisted technique depicted in the scene

made it funny. However, we observe that this option was

rarely used by workers. This may indicate that most of our

scenes can be explained well by one of the listed humor

techniques. Fig. 3 shows the top voted images correspond-

ing to the 4 most popular techniques of humor. We find

that the techniques that involve animate objects – animal

doing something unusual and person doing something un-

usual are voted higher than any other technique by a large

margin. For 75% of the scenes, at least 3 out of 10 workers

picked one of these two techniques. We observe that this

unusualness or incongruity is generally caused by objects

occurring in an unusual context in the scene.

Introducing or eliminating incongruities can alter the

funniness of a scene. An elderly person kicking a football

while simultaneously skateboarding (Fig. 4, bottom) is in-

congruous and hence considered funny. However, when the

person is replaced by a young girl, this is is not incongruous

and hence not funny. Such incongruities that can alter the

funniness of a scene serves as our motivation to collect the

Funny Object Replaced dataset which we describe next.

3.3. Funny Object Replaced (FOR) Dataset

Replacing objects in a scene is a technique to manipulate

incongruities (and hence funniness) in a scene. For instance,

we can change funny interactions (which are unexpected by

our common sense) to interactions that are normal accord-

ing to our mental model of the world. We use this technique

to collect a dataset which consists of funny scenes and their

altered unfunny counterparts. This enables the study of hu-

mor in a scene at the object-level.

We show funny scenes from the AVH dataset and ask

AMT workers to make the least number of replacements in

the scene to render the originally funny scene unfunny. The

motivation behind this is to get a precise signal of which ob-

jects in the scene contribute to humor and what they can be

replaced with to reduce/eliminate humor, while keeping the

underlying structure of the scene the same. We ask work-

ers to replace an object with another object that is as similar

as possible to the first object and keep the scene realistic.

This helps us understand fine-grained semantics that causes

a specific object category to contribute to humor. There

could be other ways to manipulate humor, e.g., by adding,

removing, or moving objects in a scene, etc. but in our work

we employ only the technique of replacing objects. We find

that this technique is very effective in altering the funniness

of a scene. Our interface did not allow people to add, re-

move, or move the objects in the scene. A screenshot of

the interface used to collect this dataset is available on the

project webpage.

For each of the 3,028 funny scenes in the AVH dataset,

we collect object-replaced scenes from 5 different workers

resulting in 15,140 unfunny counterpart scenes. As a san-

ity check, we collect funniness ratings (via AMT) for 750

unfunny counterpart scenes. We observe that they indeed

have an average Fi of 1.10, which is smaller than that of

their corresponding original funny scenes (whose average

Fi is 2.66). Fig. 4 shows two pairs of funny scenes and

their object-replaced unfunny counterparts. We refer to this

dataset as the FOR dataset.

Given the task posed to workers (altering a funny scene

to make it unfunny), it is natural to use this dataset to train a

model to reduce the humor in a scene. However, this dataset

can also be used to train flipped models that can increase the

humor in a scene as shown in Sec. 5.2.3.

4. Approach

We propose and model two tasks that we believe demon-

strate an understanding of some aspects of visual humor:

1. Predicting how funny a given scene is.

2. Altering the funniness of a scene.

The models that perform the above tasks are described in

Sec. 4.2 and Sec. 4.3, respectively. The features used in the

models are described first (Sec. 4.1).

4.1. Features

Abstract scenes are trivially densely annotated which we

use to compute rich semantic features. Recall that our in-

terface allows two types of scenes (indoor and outdoor) and
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Figure 3: Top voted scenes by humor technique (Sec. 3.2). From left to right: animal doing something unusual, person doing

something unusual, somebody getting hurt, and somebody getting scared.

Figure 4: Funny scenes (left) and one among the 5 corre-

sponding object-replaced unfunny counterparts (right) from

the FOR dataset (see Sec. 3.3). For each funny scene, we

collect an unfunny counterpart from a different worker.

our vocabulary consists of 150 object categories. We com-

pute both scene-level and instance-level features.

1. Instance-Level Features

(a) Object embedding (150-d) is a distributed represen-

tation that captures the context in which an object cate-

gory usually occurs. We learn this representation using a

word2vec-style continuous Bag-of-Words model [32]. The

model tries to predict the presence of an object category in

the scene, given the context provided by other instances of

objects in the scene. Specifically, in a scene, given 5 (ran-

domly chosen) instances, the model tries to predict the ob-

ject category of the 6th instance. We train the single-layer

(150-d) neural network [31] with multiple 6-item subsets of

instances from each scene. The network is trained using

Stochastic Gradient Descent (SGD) with a momentum of

0.9. We use 11K scenes (that were not intended to be funny)

from the dataset collected in [1] to train the model. Thus, we

learn representations of objects occurring in natural contexts

which are not funny. A visualization of the object embed-

dings is available on the project webpage.

(b) Local embedding (150-d) For each instantiation of an

object in the scene, we compute a weighted sum of object

embeddings of all the other instances in the scene. The

weight of every other instance is its inverse square-root

distance w.r.t. the instance under consideration.

2. Scene-Level Features

(a) Cardinality (150-d) is a Bag-of-Words representation

that indicates the number of instances of each object cate-

gory that are present in the scene.

(b) Location (300-d) is a vector of the horizontal and verti-

cal coordinates of every object in the scene. When multiple

instances of an object category are present, we consider lo-

cation of the instance closest to the center of the scene.

(c) Scene Embedding (150-d) is the sum of object embed-

dings of all objects present in the scene.

4.2. Predicting Funniness Score

We train a Support Vector Regressor (SVR) that predicts

the funniness score, Fi for a given scene i. The model

regresses to the Fi computed from ratings given by AMT

workers (described in Sec. 3.2) on scenes from the AVH

dataset (Sec. 3.2). We train the SVR on the scene-level fea-

tures (described in Sec. 4.1) and perform an ablation study.

4.3. Altering Funniness of a Scene

We learn models to alter the funniness of a scene – from

funny to unfunny and vice versa. Our two-stage pipeline

involves:

1. Detecting objects that contribute to humor.

2. Identifying suitable replacement objects from 1. to make

the scene unfunny (or funny), while keeping it realistic.

Detecting Humor. We train a multi-layer perceptron

(MLP) on scenes from the FOR dataset to make a binary

prediction on each object instance in the scene – whether

it should be replaced to alter the funniness of a scene or

not. The input is a 300-d vector formed by concatenating

object embedding and local embedding features. The MLP

has two hidden layers comprising of 300 and 100 units re-

spectively, to which ReLU activation is applied. The final

layer has 2 neurons and is used to perform binary classifi-

cation (replace or not) using cross-entropy loss. We train

the model using SGD with a base learning rate of 0.01 and

momentum of 0.9. We also trained a model with skip-

connections that considers the predictions made on other

objects when making a prediction on a given object. How-

ever, this did not result in significant performance gains.

Altering Humor. We train an MLP to perform a 150-way

classification to predict potential replacer objects (from the
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clipart vocabulary), given an object predicted to be replaced

in a scene. The model’s input is a 300-d vector formed by

concatenating local embedding and object embedding fea-

tures. The classifier has 3 hidden layers of 300 units each,

with ReLU non-linearities. The output layer has 150 units

over which we compute soft-max loss. We train the model

using SGD with a base learning rate of 0.1, momentum of

0.9, and a dropout ratio of 0.5. The label for an instance is

the index of the replacer object category used by the worker.

Due to the large diversity of viable replacer objects that can

alter humor in a scene, we also analyze the top-5 predictions

of this model. We train two models – one on funny scenes,

and another on their unfunny counterparts from the FOR

dataset. Thus, we learn models to alter the funniness in a

scene in one direction – funny to unfunny or vice versa. Al-

though we could train the pipeline end-to-end, we train each

stage separately so that we can evaluate them separately and

isolate their errors (for better interpretability).

5. Results

We discuss the performance of our models in the two

visual humor tasks of:

1. Predicting how funny a given scene is (Sec. 5.1)

2. Altering funniness of a scene (Sec. 5.2).

We discuss the quantitative results of our model in altering

an unfunny scene to make it funny in Sec. 5.2.2), and the

vice versa in Sec. 5.2.3. In Sec. 5.3, we report qualitative

results through human studies.

5.1. Predicting Funniness Score

This section presents performance of the SVR (Sec. 4.2)

that predicts the funniness score Fi of a scene.

Metric. We use average relative error to quantify our

model’s performance computed as follows:

1

N

N∑

i=1

|Predicted Fi −Ground Truth Fi|

Ground Truth Fi

(1)

where N is the number of test scenes and Fi is the funniness

score for the test scene i.

Baseline: The baseline model always predicts the average

funniness score of the training scenes.

Model. As shown in Table 1, we observe that our model

trained using combinations of different scene-level features

(described in Sec. 4.1) performs better than the baseline

model. We see that Location features perform slightly bet-

ter than Cardinality. This makes sense because Location

features also have occurrence information. The Embedding

does not have location information and hence does worse.

Due to some redundancy (all features have occurrence in-

formation), combining them does not improve performance.

Features Avg. Rel. Err.

Avg. Prediction Baseline 0.3151

Embedding 0.2516

Cardinality 0.2450

Location 0.2400

Embedding + Cardinality + Location 0.2400

Table 1: Performance of different feature combinations in

predicting funniness score Fi of a scene.

5.2. Altering Funniness of a Scene

We discuss the performance in the tasks of identifying

objects in a scene that contribute to humor (Sec. 4.2) and

replacing those objects with other objects to reduce (or in-

crease) humor (Sec. 4.3).

5.2.1 Predicting Objects to be Replaced

We train this model to detect objects instances that are funny

in the scene. It makes a binary prediction whether each in-

stance should be replaced or not.

Metric. Along with naı̈ve accuracy (% of correct predic-

tions, i.e., Acc.), we also report average class-wise accuracy

(i.e., Avg. Cl. Acc.) to determine the performance of our

model for this task. As the data is skewed, with the major-

ity class being not-replace, we require our model to perform

well both class-wise and as a whole.

Baselines:

1. Priors. We always predict that an instance should not

be replaced. We also compute a stronger baseline that

replaces an object if it is replaced at least T% of the time

in training data. T was set to 20 based on the validation

set.

2. Anomaly Detection. We use cosine similarity between

object embedding (of each instance in the scene) and

the scene embedding to predict anomalous objects in the

scene. This is similar to finding the odd-one-out given a

group of words [31]. Objects that have a cosine similar-

ity less than a threshold T with the scene are predicted as

anomalous objects and are replaced. A modification to

this baseline is to replace K objects that are least similar

to the scene. Based on performance on the validation set,

T and K are determined to be 0.8 and 4, respectively.

Model. Table 2 compares the performance of our model

with the baselines described above. We observe that the

baseline based on priors performs better than anomaly de-

tection. This is perhaps not surprising because the prior-

based baseline, while naı̈ve, is “supervised” in the sense

that it relies on statistics from the training dataset of which

objects tend to get replaced. On the other hand, anomaly

detection is completely unsupervised since it only captures

the context of objects in normal scenes. Our approach per-

forms better than the baseline approaches in identifying ob-

jects that contribute to humor.
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Method Avg. Cl. Acc. Acc.

Priors (do not replace) 39.93 % 79.86%

Priors (object’s tendency to be replaced) 73.13 % 71.5%

Anomaly detection (threshold distance) 62.16 % 58.30%

Anomaly detection (top-K objects) 63.01 % 64.31%

Our model 74.45% 74.74%

Table 2: Performance of predicting whether an object

should be replaced or not, for the task of altering a funny

scene to make it unfunny. As the data is skewed with the

majority class being “not-replace”, we require our model to

perform well both class-wise and as a whole.

On average, we observe that our model replaces 3.67 ob-

jects for a given image as compared to an average of 2.54

objects replaced in the ground truth. This bias to replace

more objects ensures that a given scene becomes signifi-

cantly less funny than the original scene. We observe that

the model learns that in general, animate objects like hu-

mans and animals are potentially stronger sources of humor

compared to inanimate objects. It is interesting to note that

the model also learns fine-grained detail, e.g., to replace

older people playing outdoors (which may be considered

funny) with younger people (Fig. 5, top row).

5.2.2 Making a Scene Unfunny

Given that an object is predicted to be replaced in the scene,

the model has to also predict a suitable replacer object. In

this section, we discuss the performance of the model in

predicting these replacer objects. This model is trained and

evaluated using ground truth annotations of objects that are

replaced by humans in a scene. This helps us isolate per-

formance between predicting which objects to replace and

predicting suitable replacers .

Metric. In order to evaluate the performance of the model

on the task of replacing funny objects in the scene to make

it unfunny, we use the top-5 metric (similar to ImageNet

[42]), i.e., if any of our 5 most confident predictions match

the ground truth, we consider that as a correct prediction.

Baselines:

1. Priors. Every object is replaced by one of its 5 most

frequent replacers in the training set.

2. Anomaly Detection. We subtract the embedding of the

object that is to be replaced from the scene embedding.

The 5 objects from the clipart vocabulary that are most

similar (in the embedding space) to this resultant scene

embedding are the ones that contextually “fit in”.

Model. We observe that the performance trend in Table 3 is

similar to that observed in the previous section (Sec. 5.2.1),

i.e., our model performs better than priors, which performs

better than anomaly detection. By qualitative inspection, we

find that our top prediction is intelligent, but lazy. It elimi-

nates humor in most scenes by choosing to replace objects

Method Top-5 accuracy

Priors (top 5 GT replacers) 24.53%

Anomaly detection (object that “fits” into scene) 7.69%

Our model 29.65%

Table 3: Performance of predicting which object to replace

with, for the task of altering a funny scene to make it un-

funny.

Figure 5: Fully automatic result of altering an input funny

scene (left) into an unfunny scene (right).

contributing to humor with other objects that blend well into

the background. By relegating an object to the background,

it is rendered inactive and hence, cannot be contribute to hu-

mor in the scene. For e.g., the top prediction is frequently

“plant” in indoor scenes and “butterfly” in outdoor scenes.

The 2nd prediction is both intelligent and creative. It ef-

fectively reduces humor while also ensuring diversity of re-

placer objects. Subsequent predictions from the model tend

to be less meaningful. Qualitatively, we find the 2nd most

confident prediction to be the best compromise.

Full pipeline. Fig. 5 shows qualitative results from our full

pipeline (predicting objects to replace and predicting their

replacers) using the 2nd predictions made by our model.

5.2.3 Making a Scene Funny

We train our full pipeline model used in Sec. 5.2.2 on scenes

from the FOR dataset to perform the task of altering an un-

funny scene to make it funny. Some qualitative results are

shown in Fig. 6.

5.3. Human Evaluation

We conducted two human studies to evaluate our full

pipeline:

1. Absolute: We ask 10 workers to rate the funniness of

the scene predicted by our model on a scale of 1-5. We

then compare this with the Fi of the input funny scene.

2. Relative: We show 5 workers the input scene and the

predicted scene (in random order) and ask them to indi-

cate which scene is funnier.
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Figure 6: Fully automatic result of altering an input unfunny

scene (left) into a funny scene (right).

Funny to unfunny. As expected, the output scenes from

our model are less funny than the input funny scenes on

average. The average Fi of the input funny test scenes is

2.69. This is 1.05 points higher than the output unfunny

scenes whose average Fi is 1.64. Unsurprisingly, in relative

evaluation, workers find our output scenes to be less funny

than the input funny scenes 95% of the time.

Unfunny to funny. During absolute evaluation, we find that

the average Fi of scenes made funny by our model is 2.14.

This is a relatively high score, considering that the average

Fi score of the corresponding originally funny scenes that

were created by workers is 2.69. Interestingly, the relative

evaluation can be perceived as a Turing test of sorts, where

we show workers the model’s output funny scene and the

original funny scene created by workers. 28% of the time,

workers picked the model’s scenes to be funnier.

6. Discussion

Humor is a subtle and complex human behavior. It

has many forms ranging from slapstick which has a sim-

ple physical nature, to satire which is nuanced and requires

an understanding of social context [54]. Understanding the

entire spectrum of humor is a challenging task. It demands

perception of fine-grained differences between seemingly

similar scenarios. E.g., a teenager falling off his skateboard

(such as in America’s Funniest Home Videos2) could be

considered funny but an old person falling down the stairs is

typically horrifying. Due to these challenges some people

even consider computational humor to be an “AI-complete”

problem [6, 19].

While understanding fine-grained semantics is impor-

tant, it is interesting to note that there exists a qualitative

difference in the way humor is perceived in abstract and real

scenes. Since abstract scenes are not photorealistic, they

afford us “suspension of reality”. Unlike real images, the

content depicted in an abstract scene is benign. Thus, peo-

ple are likely to find the depiction more funny [27]. In our

2www.afv.com

everyday lives, we come across a significant amount of hu-

morous content in the form of comics and cartoons to which

our computational models of humor are directly applicable.

They can also be applied to learn semantics that can extend

to photorealistic images as demonstrated by Antol et al. [2].

Recognizing funniness involves violation of our mental

model of how the world “ought to be” [28]. In verbal hu-

mor, the first few lines of the joke (set-up) build up the world

model and the last line (punch line) goes against it. It is un-

clear what forms our mental model when we look at images.

Is it our priors about the world around us formed from our

past experiences? Is it because we attend to different re-

gions of the image when we look at it and gradually build

an expectation of what to see in the rest of the image? These

are some interesting questions regarding visual humor that

remain unanswered.

7. Conclusion

In this work, we take a step towards understanding and

predicting visual humor. We collect two datasets of abstract

scenes which enable the study of humor at different lev-

els of granularity. We train a model to predict the funni-

ness score of a given scene. We also explore the different

sources of humor depicted in the funny scenes via human

studies. We train models using incongruity-based humor to

alter a scene’s funniness. The models learn that in general,

animate objects like humans and animals contribute more

to humor compared to inanimate objects. Our model out-

performs a strong anomaly detection baseline, demonstrat-

ing that detecting humor involves something more than just

anomaly detection. In human studies of the task of making

an originally funny scene unfunny, humans find our model’s

output to be less funny 95% of the time. In the task of

making a normal scene funny, our evaluation can be inter-

preted as a Turing test of sorts. Scenes made funny by our

model were found to be funnier 28% of the time when com-

pared with the original funny scenes created by workers.

Note that our model would match humans at 50%. We hope

that addressing the problem of studying visual humor using

abstract scenes and the two datasets that are made public

would stimulate further research in this new direction.
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