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Abstract

Multicamera rigs are used in a large number of 3D Vi-

sion applications, such as 3D modeling, motion capture or

telepresence and a robust calibration is of utmost impor-

tance in order to achieve a high accuracy results. In many

practical configurations the cameras in a rig are arranged

in such a way, that they can observe each other, in other

words a number of epipoles correspond to the real image

points. In this paper we propose a solution for the automatic

recovery of the external calibration of a multicamera sys-

tem by enforcing only simple geometrical constraints, aris-

ing from the epipole visibility, without using any calibra-

tion object, such as checkerboards, laser pointers or simi-

lar. Additionally, we introduce an extension of the method

that handles the case of epipoles being visible in the reflec-

tion of a planar mirror, which makes the algorithm suitable

for the calibration of any multicamera system, irrespective

of the number of cameras and their actual mutual visibility,

and furthermore we remark that it requires only one or a

few images per camera and therefore features a high speed

and usability. We produce an evidence of the algorithm ef-

fectiveness by presenting a wide set of tests performed on

synthetic as well as real datasets and we compare the re-

sults with those obtained using a traditional LED-based

algorithm. The real datasets have been captured using a

multicamera Virtual Reality (VR) rig and a spherical dome

configuration for 3D reconstruction.

1. Introduction

Camera calibration is the specification of a mathemati-

cal model describing the image formation process realized

by an imaging system. For a single camera it comprises

two steps, the photometric and the internal calibration that

specifically addresses the estimation of the camera response

function [6] and the system lens-sensor ( and optionally -

mirror ) geometry [18, 17]. When multiple cameras are used

simultaneously, an additional calibration step is required.

It copes with the estimation of the camera cluster geome-

try, namely the set of camera poses in a common reference

frame (rf.) [8, 4]; which is generally referred to as exter-

nal calibration. In many calibration algorithms and tools

this task is blended in a joint process together with the in-

ternal calibration of the cameras, using a calibration object

[2]. This solution, however, requires a simultaneous visibil-

ity of the pattern in many or even in all calibration images,

which in practice is not always feasible and does not scale

well with the increasing number of cameras and complex-

ity of the cluster geometry. Eventually, in the recent years

the advantage of decoupling these two operations into two

different calibration phases has become clear [10]. A differ-

ent approach actually neglects the external calibration and

postpones it to the further operation of the system, that is

the video capture in an uncontrolled environment. In [5]

the multicamera geometry is extracted only enforcing the

rigidity constraint, which is the constraint of the cameras

having a fixed orientations and translations between each

other. The elegant formulation based on the definition of a

virtual camera makes the system suitable also for image se-

quences with non-overlapping content, however it requires

the multicamera system to undergo a consistent motion and

relies on the performance of the feature tracker, which is it-

self dependent on the image content. Therefore this is not

the optimal solution for the calibration of an indoor immov-

able systems. A more flexible alternative is provided by a

single-point calibration techniques, namely the algorithms

based on the projection of a single moving point in the par-

allel video sequences. The latter is usually provided by a

laser pointer, which can be easily detected in each image

[16, 1]. These techniques however, despite being very pow-

erful, are still designed as a joint framework for external

and internal calibration which limits the flexibility in case

of variation of the cluster geometry, removal of cameras or

addition of the new ones.

In this paper we present a novel approach for the multi-

camera systems calibration, based only on the geometrical

constraints arising from the visible epipoles and featuring

important advantages. The size of the calibration dataset is

highly reduced, therefore is less error-prone and easy to col-
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lect, automatize and review for possible outliers in the set of

detected epipoles. Therefore, the system becomes flexible

enough to enable a frequent re-arrangement of the camera

geometry with a small amount extra work required for re-

calibration, making it a good candidate for an integration

into a really practical, handy and user-friendly calibration

tool. The system also has some limitations, which, however,

can be easily circumvented. The accuracy of the recovered

geometry is high enough to provide a reliable initialization

of any 3D reconstruction system, but needs to be further re-

fined using a bundle adjustment (BA) together with the re-

constructed model, which is anyway a common approach in

any 3D reconstruction architecture. A second issue is a pos-

sible lack of a visible epipoles, which may happen for some

camera configurations as well as for cameras with a narrow

field-of views lenses. For this reason, inspired by the work

proposed in [13], we have designed an extension, based on

a planar mirror, which enables the joint exploitation of mir-

rored and directly visible epipoles for the multicamera cam-

era pose recovery and eventually makes the system flexible

enough for any camera cluster configuration.

1.1. Notation

In order to ease the paper understanding, we first intro-

duce the mathematical notation. We will consider a multi-

camera system comprised of N cameras, which projection

centers are denoted by {Ci}i=1,...,N . The absolute refer-

ence frame will be identified with the index w and the Eu-

clidean transformation converting the vector representation

of a 3D point from w to the rf. of the i-th camera will be

denoted as Twi = [Rwi|twi] : Rwi ∈ SO(3), twi ∈ R
3,

where SO(3) is the group of 3D rotation matrices, (Fig. 1)

and I3×3 ∈ SO(3) is the null rotation, namely the identity

matrix. The action of the transformation Twi on a vector X

will be synthetically expressed as Twi ◦X = RwiX+ twi.

Figure 1: Multicamera model with visible epipoles.

Inner product and cross product between 3D vectors will

be denoted as v⊤
a vb and [va]×vb, where [v]× is the skew

symmetric matrix built using the vector v.

We assume working in the calibrated camera conditions,

which implies that the image points can be represented as a

unit-norm vectors, that is points on unit sphere S2 or equiv-

alently 3D directions in the 3D space. Occasionally, the

projection of a 3D vector on S2 will be explicitly expressed

using the notation N{v} = v√
vTv

.

The epipoles of the multicamera systems will identified

by the letter e, and specifically eij denotes the projection of

the point Ci on the j-th camera; epipoles will be represented

as unit-norm vectors as well.

Our aim will be to estimate the set of camera poses,

namely the set of transformations {Twi}i=1,...,N and the es-

timation will be formulated as the minimization of an ob-

jective function built using the geometrical constraints be-

tween the visible epipoles. The minimization will be per-

formed by means of the Levenberg-Marquardt iterative al-

gorithm (LM). By the formalization of the LM iterations,

we will use the a+ in order to identify the update of the

variable a. We will also use the notations ã and â in or-

der to distinguish the actual measurement from the estimate

of a. The working dataset will consist of the set of visi-

ble epipoles, denoted as V = {(i, j) : ∃ẽij}. The epipoles

measurements in the set V will be also grouped pairwise in a

second set M, the set of pairs of mutually visible epipoles,

M = {(i, j) : ∃ẽij
∧

∃ẽji}.

2. Calibration of the multicamera geometry

Without loss of generality we assume that the rf. w is

aligned with the first camera, that is Tw1 = [I3×3 |0]. The

calibration process consequently reduces to the estimation

of the transformation set {Twi}i=2,...,N . In the next sec-

tions we show how this task can decoupled in two consecu-

tive steps aimed at estimation of rotational and translational

components of the camera poses, namely {Rwi}i=2,...,N and

{twi}i=2,...,N .

2.1. Recovery of the rotational components

Let us consider two cameras i and j that can observe

each other, as in the model in Fig.1. By applying the co-

ordinate transformation between the i-th camera rf. and w,

the epipole eji can be then expressed as

eji ∼ Twi ◦Cj = R
⊤
wi (Cj −Ci) . (1)

A similar relation can be established also for the corre-

sponding epipole eij , which together with (1) allows for

the removal of the dependency from the (unknown) camera

centers:

eji = −RwiR
⊤
wjeij . (2)

Equation (2) could have been derived also by considering

the epipoles to be the unit norm vectors, representation of

two points on S2.
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Each pair of epipoles in the set M can be used to build

an equation in a form (2), which stacked together lead to the

formulation of the estimation of the multicamera geometry

rotational components as an optimisation problem

{R̂wi}i=2,...,N = argmin
Rwi∈SO(3)







∑

(i,j)∈M

‖ρi,j‖
2







, (3)

where each error contribution is defined as:

ρi,j = ẽij + RwjR
⊤
wiẽji (4)

A closed form solution for single rotation estimation

given a set of corresponding vectors is a well known re-

sult of matrix analysis [11]; however we are not aware of

similar solutions for the simultaneous recovery of multi-

ple rotations as in (3). In many approaches rotations and

translations are estimated in a non-iterative manner, how-

ever those approaches rely on the external feature points,

which are not available in our calibration case scenario

[14, 7, 15, 3, 15, 12]. The same observation applies to the

other state of the art works addressing the translation esti-

mation under the assumption of known rotation [9]. There-

fore, we attempt to solve the problem within an iterative

minimization context using the LM algorithm.

For this purpose we parameterize a differential rotation

with a 3D vector dω, which is used to compute the corre-

sponding unit quaternion and then the rotation update in the

matrix representation:


























dq =
[

√

(1− dω⊤dω) | dω⊤
]

dR = dR (dq) = I3×3 + 2 [dω]×

R
+ = R · dR

(5)

Using equations (5) in the definition (4) in place of both

the camera rotations Rwj and Rwi, and discarding the second

order terms in dp, one obtains:

ρ+
i,j = ẽij + R

+
wjR

+⊤
wi ẽji = ρ+

i,j + Jρdp (6)

where dp is the update vector collecting all the rota-

tion update parameters stacked in a single vector, dp =
[

dω⊤
2 , ... , dω⊤

k , ... , dω⊤
N

]⊤
. After a few mathematical

manipulations the Jacobian Jρ can be arranged in a compact

matrix form as






Jρ = [0..., Jb , ...0..., −Jb , ...0]

Jb = 2Rwj

[

R
⊤
wiẽji

]

×

(7)

The update equations (7) and (6) are then used within

the LM optimization framework to build the normal equa-

tion that is solved in each LM iteration, with the trivial ini-

tialization Rwj = I3×3 for each camera. As each camera

pose has three degrees of freedom and each vector equation

(2) provides only two independent linear equations, one can

infer that the number of visible epipoles must satisfy the

condition

2|M| ≥ 3(N − 1), (8)

where |M| is the cardinality of the set M. As N cameras

define a maximum number of N2N
2 pairs of mutually visible

epipoles, one can also conclude that a necessary, but not

sufficient condition to meet the constraint (8) is N ≥ 3.

2.2. Recovery of the translational components

Once the set of camera orientations {R̂wi}i=2,...,N is

available, one can use it as an additional input to tackle the

estimation of the camera translational components. Let us

rewrite equation (1), or rather its complementary equation

for the epipole eij , explicitly considering the normalization

factor

eij = Rwj · N {Ci −Cj} . (9)

Now the camera orientation Rwj can be assumed to be

known, therefore (9) becomes a non-linear equation in the

unknowns Ci and Cj . As each visible epipole provides an

equation in a form of (9), one can formulate the estimation

of the camera translation components as the solution of the

optimization problem

{

Ĉi

}

i=2,...,N
= argmin

Ci∈R3

{

∑

V
‖τ i,j‖

2

}

, (10)

where each error contribution is defined as:

τ i,j = ẽij − R̂wj · N {Ci −Cj} . (11)

Similarly to the rotational component estimation, we

solve the problem (10) using the LM algorithm. For a com-

fortable formulation of the LM iterations, still keeping a

minimal dimensionality of the optimization space, we pa-

rameterize the projection center of each camera using the

corresponding epipolar ray on the reference camera,

Ci = λiei1 , (12)

and we express the parameters update as







λ+
i = λi(1 + δλi)

e+i1 = ei1 + Biδei ,

(13)

where Bi is the 3 × 2 matrix representing any basis for the

plane tangent to the unit sphere at the epipole ei1, δei is a

2D vector and δλi is a scalar. Notice that the definition of

the epipoles as unit norm vectors justifies the update equa-

tion (13), which describes a local update of each epipole ei1
on S2 (Fig.2). We omit the description of a basis retrieval

for a given 3D plane for brevity.
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Figure 2: Epipole update parameterization.

Using equations (13) and (12), we can rewrite the update

of the error term (11) as a function of the parameter vector

dp =
[

δe⊤2 , δλ2 , ..., δe
⊤
i , δλi , ..., δe

⊤
N , δλN

]⊤
, col-

lecting the parameters of each camera center stacked in a

single vector. After a few mathematical manipulations one

can arrange a linear equation in the form

τ+
i,j = τ i,j + Jτdp , (14)

where similarly to (7) the Jacobian matrix Jτ can be ex-

pressed in a relatively compact matrix form by applying the

basic derivation rules for the square root and quotient of

functions. We omit this derivation in order to keep the no-

tation reasonably light.

Similarly to (2), also equation (9) provides only two in-

dependent linear equations in the unknowns Ci and Cj ;

consequently one can show that the number of visible

epipoles must satisfy the condition

2|V| ≥ 3(N − 1), (15)

where |V| is the cardinality of the set V . The latter is any-

way always greater than |M|, therefore the set of visible

epipoles always provides enough constraints for the trans-

lation components estimation when the condition (8) is met.

In contrast to the rotational components, for the recovery

of the camera center locations a smarter initialization of the

LM iteration can also be achieved, as shown in Fig.3. The

reference camera is naturally located in the origin, while

all the other cameras are located on one epipolar ray cor-

responding to one visible epipole. For example given that

ẽij ∈ V , then Ci is located on the ray identified by ẽij at

unit distance from the Cj , Ci = 1 · ẽij , the camera center

is then converted in the rf. of the reference camera and the

corresponding pose is computed according to (12). As mul-

tiple epipoles ẽij for a single view i may be available, one

is randomly selected for the pose initialization.

3. Epipole Mirroring

In many practical scenarios the geometrical configura-

tion of the multicamera system and the type of lens mounted

Figure 3: LM Initialization for the translation component

recovery.

Figure 4: Mirrored Epipoles.

on each camera may result in a calibration image set with

a number of visible epipoles, which is not large enough to

meet the conditions (8) and (15). An example is given by

360◦ camera rigs for VR and panorama capture, such as

Google JUMP. In order to cope with such configurations we

provide a simple solution based on using a planar mirror. It

is placed multiple times in front of the camera system, al-

lowing the cameras to observe each other in the reflection

and consequently extending the size of the set of visible

epipoles. In the next sections the additional epipoles will

be denoted as mirrored epipoles (Fig. 4) and we will show

how these can be used on their own or in combination with

the directly visible epipoles.

3.1. Recovery of the rotational components

In order to simplify the derivation of the geometrical

constraints pertaining to the mirrored epipoles, it is conve-

nient to introduce an additional a reference system m with

the XY plane aligned with the mirror surface, related to the

rf. w by the Euclidean transformation Twm = [Rwm|tmw].
By applying the basic laws of the reflection geometry one

can show that in the rf. m a vector X and its mirrored

version X′ are related by the equation X = FZX
′, where

Fz = diag (0, 0, −1) is the reflection transformation in-
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duced by the plane XY . Therefore, the mirrored epipole

e′ij in the j-th view can be accounted as the image of a

virtual cameras located in C′
i:

e′ij ∼ Twj ◦C
′
i = R

⊤
wj (C

′
i −Cj) , (16)

where

C′
i = T

−1
wm ◦ (Fz · (Twm ◦Ci)) . (17)

Following the same steps as in section 2.1, one can easily

derive a relation similar to (2) for the mirrored epipoles,

e′ij = −RmjFzR
T
mie

′
ji = −RwjR

T
wmFzRwmR

T
wie

′
ji .

(18)

Equation (18) can be expanded by decomposing the rotation

matrix Rwm by means of the Euler ZYX parameterization,

Rwm = ZwmYwmXwm,

e′ij = −RwjX
T
wmY

T
wmZ

T
wmFzZwmYwmXwmR

⊤
wie

′
ji , (19)

and then simplified in

e′ij = −RwjX
T
wmY

T
wmFzYwmXwmR

⊤
wie

′
ji , (20)

using the equivalence ZTwmFzZwm = Fz .

Each pair of mutually visible mirrored epipoles pro-

vides an additional equation in the form of (20), which

can be incorporated into the optimization problem (3). One

can therefore reformulate (3) by extending the optimization

space and including the additional error terms, as:

{R̂wi, X̂wm, Ŷwm}
i=1,...,N ,

m=1,...,M

= argmin

Rwi∈SO(3)

Xwm∈SOX(3)

Ywm∈SOY (3)

Eρ ,

(21)

where SOX(3) and SOY (3) are the subspace of 3D rota-

tions about the X-axis and the Y-axis and the objective func-

tion Eρ is defined as:







Eρ =
∑

(i,j)∈M ‖ρi,j‖
2 +

∑

(i,j)∈M′ ‖ρ′

i,j‖
2

ρ′

i,j = ẽ′ij + RwjX
⊤
wmY

⊤
wmFzYwmXwmR

⊤
wiẽ

′
ji .

(22)

In (22) the error term ρi,j is defined according to equa-

tion (4), M′ is the set of pairs of mirrored mutually visible

epipoles and M is the number of mirror snapshots, that is

the number of different mirror poses.

The Jacobian of the objective function can be analyti-

cally computed in a (relatively compact) matrix using the

same procedure, previously described for the derivation of

equation (7), which is omitted for brevity. The solution is

then obtained by means of the Levenberg-Marquardt algo-

rithm, where the additional parameters of the mirror poses

are initialized to zero, that is Xwm and Ywm are initialized

as identity matrices.

We remark that the formulation (21) provides the low-

est dimensionality of the optimization space as each mirror

pose increases the number of parameters by two, namely the

additional parameters of the rotations Xwm and Ywm.

3.2. Recovery of the translational components

Taking advantage of the knowledge of the rotational

components of the camera and the mirror poses (21), one

can significantly reduce the complexity of the translational

component estimation. We first expand the mirror pose

components as







R
T
wm = [r1wm, r2wm, r3wm]

twm = [txwm, tywm, tzwm] .

Then by plugging the previous equations in (17) and after a

few manipulations, one obtains







C′
i = FmCi + tzwmr3wm

Fm = X
⊤
wmY

⊤
wmFzYwmXwm .

(23)

By using equation (23) in (16) one can represent the mir-

rored epipoles as a function of only the real poses of the

cameras and the mirror:

e′ij = Rwj · N {FmCi + tzwmr3wm −Cj} . (24)

Each visible mirrored epipole provides an equation in the

form of (24), which can be incorporated into the optimiza-

tion problem (10). This is reformulated using the estimates

of the camera and mirror rotations in place of Rwm, Xwm

and Ywm, extending the optimization space and including

the additional error terms:
{

Ĉi, t̂zwm

}

i=1,...,N ,

m=1,...,M

= argmin

Ci∈R3

tzwm∈R

Eτ , (25)

where the objective function Eτ is defined as:







Eτ =
∑

V ‖τ i,j‖
2 +

∑

V′ ‖τ ′

i,j‖
2

τ ′

i,j = ẽ′ij − R̂wj · N
{

F̂mCi + tzwmr̂3wm −Cj

}

.

(26)

In (26), τ i,j is defined according to equation (11) and V ′ is

the set of mirrored visible epipoles. Once again, we remark

that the formulation (25) provides the lowest dimensionality

of the optimization problem as each mirror pose increases

the number of parameters only by one, namely the addi-

tional parameter tzwm.

The objective function (25) is minimized by means of

the LM algorithm, using the same parameterization and the
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same initialization for the camera centers as in section 2.2.

For the mirror one can also derive a simple initialization

following the same model shown in Fig.3.

4. Results

The proposed algorithm has been evaluated on the syn-

thetic and real datasets. In both cases we have tested the

algorithm first using only directly visible epipoles and then

also introducing the mirrored epipoles in the calibration

dataset. The synthetic tests have been organized with the

objective of assessing the algorithm stability against in-

creasing noise corrupting the visible epipoles. This is an

important point, as in a real scenario the visible epipoles

can be localized only with some uncertainty within the im-

age regions corresponding to the visible camera lenses. The

algorithm has been further tested using the real multicamera

systems, a dome and VR-rig configuration, both comprised

of wide angle cameras.

4.1. Synthetic dataset

For the synthetic test a scene has been generated with a

cluster of cameras, each one modeled as a super wide angle

lens (150◦ horizontal FoV) and 1024× 768 pixel sensor.

In the first test we have simulated a system consisting

of seven virtual cameras randomly located on a unit sphere

and pointing towards its origin. The visible epipoles lo-

cation has been corrupted by a zero-mean Gaussian noise,

with variance ranging in the interval [0; 2] pixels. For each

level of noise a new scene has been generated 100 times and

the mean and standard deviation of the geometry estimation

error has been computed (Fig. 5 (a)). The estimation error

of the rotational and translation component of the camera

poses has been defined as






ǫRi =
∥

∥Φ
(

Rwi · R̂
⊤
wi

)∥

∥

ǫti =
∥

∥twi − t̂wi

∥

∥

, (27)

where Φ(R) is the conversion of a rotation matrix in the

axis-angle representation.

In the next test, addressing the case of mirrored epipoles,

the virtual cameras have been randomly located on a unit

sphere pointing outwards in divergent configuration, so that

they cannot see each other directly, but only in the reflection

of a virtual mirror, which has been also randomly posed in

3D space. The estimation error has been calculated similar

to the previous test and the results are presented in Fig.5 (b).

Both tests on the synthetic data confirm a high robustness

against the image projection noise, despite the small size of

the calibration dataset.

4.2. Real dataset

The method has been further evaluated on two real multi-

camera systems, a real dome and a VR-rig, both comprised

(a)

(b)

Figure 5: Epipole-based (a) and Mirrored epipole-based ap-

proaches, synthetic test. Rotation and translation errors vs.

the epipole projection noise variance.

of GoPro HERO Black 3+ cameras. The corresponding sys-

tem geometry has been estimated using the proposed algo-

rithm ( with only visible epipoles or only mirrored epipoles

according to the geometry ), followed by a BA refinement.

For a comparison purpose we have calibrated the system

also using the Multi-Camera Self-Calibration tool (MCSC)

[16]. In order to ensure a fair comparison the intrinsic pa-

rameters of the cameras have been estimated beforehand

and used for both calibration pipelines.

4.2.1 Dome configuration

The dome configuration comprises 8 GoPro Hero 3+ cam-

eras arranged on a rigid metal frame, in two circular groups

located one on top of the other, each one with 4 cameras

(Fig.6 (a)). The system geometry has been estimated first

using MCSC with an input of 32000 images (4000 im-

ages/points per camera), extracted from a video recording of

a green LED moving in the inner volume of the dome. The

system geometry has been then recovered using the pro-

posed epipole-based method, after manual selection of the

visible epipoles from only 8 input images (1 image per cam-

era). The recovered geometry has been further refined using

BA on the set of LED points, (Fig.6 (b)). LED points have
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(a) (b)

Figure 6: Dome multicamera setup (a). Geometry of the dome multicamera system reconstructed using the proposed Epipole-

based approach (b).

(a)

(b)

Figure 7: Backprojection error distribution for MCSC (a)

and the Epipole-based (b) approach.

been only used in order to allow a direct comparison with

MCSC, however in the real scenarios the camera positions

can be bundle adjusted using the feature points coming from

the actual target scene. To evaluate the estimated geometry

the LED point structures have been back-projected onto the

camera views using the system geometry, estimated using

the two tested approaches. In each view the error has been

measured as a Euclidean distance in pixels between the de-

tected LED points and their backprojections and the overall

statistical distribution of the backprojection error has been

shown in Fig.7 and Table 1.

We observe that this comparison has the shortcoming

of computing the evaluation measure from the same data

used for calibration. Therefore, we suggest to perform a

second test on an independent set of points, provided by a

traditional black and white checkerboard pattern, which has

been presented to the pairs of camera sharing the same field

of view. The grid points have been detected in each view,

triangulated in 3D space using the estimated camera geom-

LED err., px Pattern err., px

MCSC µ = 2.2, σ = 1.9 µ = 3.6, σ = 2.1

Epipole µ = 1.7, σ = 1.3 µ = 1.1, σ = 0.7

Table 1: Backprojection error for MCSC and the Epipole-

based approach. µ - mean, σ - standard deviation .

etry and projected back to the source views. Similarly to the

LED point test, we have computed the mean value and the

standard deviation of the backprojection error between the

detected grid points and their backprojected counterpart. A

visual representation of this test is shown in Fig.9 and the

error measures collected in Table 2.

From the inspection of Table 1 we can conclude that our

technique is able to successfully recover the system geome-

try and slightly outcome the performance of MCSC.

4.3. VR rig configuration

The second test has been performed using a VR rig com-

posed of 15 GoPro Hero Black 3+ cameras, 12 pairwise

located on a hexagon and 3 positioned on top of the rig at

the approximate angle of 45◦ (Fig.8 (a)).

We have attempted to calibrate the system using MCSC

with an input of 180000 images (12000 images per cam-

era), however the system failed due to the peculiarity of this

particular configuration, that implies a reduced overlap be-

tween the cameras field of views. Our approach instead has

successfully recovered the camera system geometry as well

as the 3D pose of the mirrors using a small set of views, 12

snapshots, each with a different mirror position. The overall

recovered geometry is shown in Fig.8 (b) and Fig.8 (c). We

have further refined the system geometry using BA on a set

of 5000 feature points extracted from the actual scene. Sim-

ilar to the dome configuration, the accuracy of the estimated

geometry has been evaluated by computing the backprojec-

tion error from the reconstructed 3D point cloud and from

the pairwise transfer of the BW checkerboard points. The
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(a) (b) (c)

Figure 8: VR rig multicamera system (a). VR rig geometry recovered using the proposed approach, based on mirrored

epipoles (b). Top view of the same geometry together with the recovered mirror positions (c).

Figure 9: Checkerboard with the detected (circle) and back-

projected (dot) grid corners, using the system geometry, es-

timated with epipoles.

Feature err., px Pattern err., px

Mirrored epipoles µ = 1.4, σ = 1.5 µ = 2.4, σ = 0.6

Table 2: Backprojection error for the proposed Mirrored

Epipole-based approach.

numerical results are shown in Table 2.

5. Conclusion

We have proposed an algorithm aimed at the estimation

of the geometry of a multicamera system, based on the en-

forcement of simple constraints arising only from the vis-

ible epipoles. This approach is particularly suitable for

dome-like indoor multicamera systems, typically used for

motion capture and 3D reconstruction. In such configura-

tions indeed the number of visible epipoles is usually large

enough to provide sufficient constraints, and an acceptable

solution can be reached very fast, whereas other techniques

based on calibration object are not as flexible and easy to

use. A great advantage of our solution is the capability of

a fast recovery of the external calibration of a multicam-

era system in case of rearrangement, removal or inclusion

of cameras, with almost no overhead. Other algorithms in-

stead require each time completion of a complex and time

consuming calibration routine. We have also presented an

extension of the calibration algorithm aimed at the integra-

tion of the epipoles visible in a planar mirror reflection into

the calibration dataset. This solution leads to a sensible en-

largement of the epipole set and in practice makes the sys-

tem suitable for any camera geometry, dome-like, fronto-

parallel and divergent circular VR-rig configuration, such

as Google JUMP rig. We have shown how the mirrored

epipoles can be simply integrated within a unified estima-

tion framework by including additional terms into a single

calibration objective function. The evaluation on the syn-

thetic and real datasets has shown a high robustness of the

proposed approach against image noise, which implies a ca-

pability of reaching in a quasi automatic way an accuracy of

the camera system geometry high enough for initialization

of a successive BA 3D reconstruction pipeline. This is par-

ticularly useful, as a typical bundle adjustment pipeline re-

quires a rather precise initial guess in order to converge. The

practical advantages such as simplicity and time efficiency

of the calibration procedure, reduced dataset collection and

high robustness enable the integration of a flexible calibra-

tion architecture, capable of handling the rearrangement of

the camera geometry without requiring an extra effort.
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