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Abstract

For several decades, image restoration remains an ac-
tive research topic in low-level computer vision and hence
new approaches are constantly emerging. However, many
recently proposed algorithms achieve state-of-the-art per-
formance only at the expense of very high computation
time, which clearly limits their practical relevance. In this
work, we propose a simple but effective approach with both
high computational efficiency and high restoration quality.
We extend conventional nonlinear reaction diffusion mod-
els by several parametrized linear filters as well as several
parametrized influence functions. We propose to train the
parameters of the filters and the influence functions through
a loss based approach. Experiments show that our trained
nonlinear reaction diffusion models largely benefit from the
training of the parameters and finally lead to the best re-
ported performance on common test datasets for image
restoration. Due to their structural simplicity, our trained
models are highly efficient and are also well-suited for par-
allel computation on GPUs.

1. Introduction

Image restoration is the process of estimating uncor-

rupted images from noisy or blurred ones. It is one of

the most fundamental operation in image processing, video

processing, and low-level computer vision. There exists

a huge amount of literature addressing the topic of image

restoration problems, see for example [31] for a survey.

Broadly speaking, most state-of-the-art techniques mainly

concentrate on achieving utmost image restoration qual-

ity, with little consideration on the computational efficiency

[44, 30, 19]. However, there are two notable exceptions,

BM3D [11] and the recently proposed Cascade of Shrink-

age Fields (CSF) [38] model, which simultaneously offer

high efficiency and high image restoration quality.

It is well-known that BM3D is a highly engineered

method, specialized for Gaussian noise. Moreover, it in-

volves a block matching process, which is challenging for

parallel computation on GPUs, alluding to the fact that it

is not straightforward to accelerate BM3D algorithm on
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Figure 1. The figure shows four characteristic influence func-

tions (left plot in each subfigure) together with their correspond-

ing penalty functions (right plot in each subfigure), learned by our

proposed method. A major finding in this paper is that our learned

penalty functions significantly differ from the usual penalty func-

tions adopted in partial differential equations and energy mini-

mization methods. In contrast to their usual robust smoothing

properties which is caused by a single minimum around zero, most

of our learned functions have multiple minima different from zero

and hence are able to enhance certain image structures. See Sec.

4.1 for more information.

parallel architectures. In contrast, the recently proposed

CSF model offers high levels of parallelism, making it well

suited for GPU implementation, thus owning high compu-

tational efficiency.

Among the approaches to tackle the problem of image

restoration, nonlinear anisotropic diffusion [34, 41] defines

a class of efficient approaches, as each diffusion step merely

contains the convolution operation with a few linear filters.

A nonlinear diffusion process usually corresponds to cer-

tain Partial Differential Equation (PDE) formulation. How-

ever, up to now, the image restoration quality of diffusion

based approaches is still far away from the state-of-the-art,

although with many improvements [21, 13, 35, 20].
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We give a brief review of nonlinear diffusion based ap-

proaches and then introduce our proposed diffusion model.

In the seminal work [34], Perona and Malik (P-M) demon-

strated that nonlinear diffusion models yield very impres-

sive results for image processing. This has given rise to

many revised models with various formulations. A notable

variant is the so-called biased anisotropic diffusion (also

known as reaction diffusion) proposed by Nordström [32],

which introduces a bias term (forcing term) to free the user

from the difficulty of specifying an appropriate stopping

time for the P-M diffusion process. This additional term

reacts against the strict smoothing effect of the pure P-M

diffusion, therefore resulting in a nontrivial steady-state.

Tsiotsios et al. [40] discussed the choice of some cru-

cial parameters in the P-M model, such as the diffusivity

function, the gradient threshold parameter and the stopping

time of the iterative process. Some works consider mod-

ification to the diffusion term or the reaction term for the

reaction diffusion model [15, 10, 32, 35, 1], e.g., Acton et
al. [1] and Plonkna et al. [35] exploited a more complicated

reaction term to enhance oriented textures; [39, 3] proposed

to replace the ordinary diffusion term with a flow equation

based on mean curvature. Gilboa et al. [17] proposed a for-

ward and backward diffusion process, which incorporates

explicit inverse diffusion with negative diffusivity coeffi-

cient by carefully choosing the diffusivity function. The

resultant diffusion processes can adaptively switch between

forward and backward diffusion process. In a latter work

[42], the theoretical foundations for discrete forward-and-

backward diffusion filtering were investigated. Researchers

also propose to exploit higher-order nonlinear diffusion fil-

tering, which involves larger linear filters, e.g., fourth-order

diffusion models [21, 13, 20]. Meanwhile, theoretical prop-

erties about the stability and local feature enhancement of

higher-order nonlinear diffusion filtering are established in

[12].

It should be noted that all the above mentioned diffusion

processes are handcrafted models. It is a generally difficult

task to design a good-performing PDE for a specific image

processing problem because good insights into this prob-

lem and a deep understanding of the behavior of the PDEs

are usually required. Therefore, some researcher propose

to learn PDEs from training data via an optimal control ap-

proach [29]. Unfortunately, at present [29] is the sole pre-

vious work we can find in this direction. The basic idea of

our approach is the similar to [29], but we go much further

and our proposed model is much more expressive.

1.1. Motivation and Contributions

In this paper we focus on nonlinear diffusion process due

to its high efficiency and propose a trainable nonlinear dif-

fusion model, which is parameterized by the linear filters

and the influence functions. The trained diffusion model

contains many special influence functions (see Fig. 1 for an

illustration), which greatly differ from usual influence func-

tions employed in conventional diffusion models. It turns

out that the trained diffusion processes can lead to effective

image restoration with state-of-the-art performance, while

preserve the property of high efficiency of diffusion based

approaches. At present, we are not aware of any previous

works that simultaneously optimize the linear filters and in-

fluence functions of a nonlinear diffusion process1.

Our proposed nonlinear diffusion process has several re-

markable benefits as follows:

1) It is conceptually simple as it is just a time-dynamic

nonlinear reaction diffusion model with trained filters

and influence functions;
2) It has broad applicability to a variety of image restora-

tion problems. In principle, all existing diffusion based

models can be revisited with appropriate training;
3) It yields excellent results for several tasks in image

restoration, including Gaussian image denoising, and

JPEG deblocking;
4) It is computationally very efficient and well suited for

parallel computation on GPUs.

2. Proposed reaction diffusion process
We start with conventional nonlinear diffusion processes,

then propose a training based reaction diffusion model for

image restoration. Finally we show the relations between

the proposed model and existing image restoration models.

2.1. Perona and Malik diffusion model

In the whole paper, we stick to the fully discrete set-

ting, where images are represented as column vectors, i.e.,

u ∈ R
N . Therefore, the discrete version of the well-known

Perona-Malik type nonlinear diffusion process [34] can be

formulated as the following discrete PDE with an explicit

finite difference scheme

ut+1 − ut

Δt
= −

∑
i={x,y}

∇�
i Λ(ut)∇iut

.
= −

∑
i={x,y}

∇�
i φ(∇iut) ,

(1)
where matrices ∇x and ∇y ∈ R

N×N are finite differ-

ence approximation of the gradient operators in x-direction

and y-direction, respectively and Δt denotes the time step.

Λ(ut) ∈ R
N×N is defined as a diagonal matrix

Λ(ut) = diag
(
g
(√

(∇xut)2p + (∇yut)2p

))
p=1,··· ,N

,

where function g is known as edge-stopping function [4]

or diffusivity function [41], a typical g function given as

1 Even though the linear filters and penalty functions in the image prior

model [36, 8] can be trained simultaneously, the penalty function is opti-

mized only in the sense that the weight α of certain fixed function (e.g.,

α · log(1 + z2)) can be tuned. Our approach can exploit more general-

ized penalty functions (actually arbitrary functions), which is intractable in

those previous models.



g(z) = 1/(1 + z2). If ignoring the coupled relation be-

tween ∇xu and ∇yu, the P-M model can be also writ-

ten as the second formula on the right side in (1), where

φ(∇iu) = (φ(∇iu)1, · · · , φ(∇iu)N )
� ∈ R

N with func-

tion φ(z) = zg(z), known as influence function [4] or flux

function [41]. In the upcoming subsection, we will stick to

this decoupled formulation.

2.2. Proposed nonlinear diffusion model

Clearly, the matrix-vector product, ∇xu can be inter-

preted as a 2D convolution of u with the linear filter kx =
[−1, 1] (∇y corresponds to the linear filter ky = [−1, 1]�).

Intuitively, in order to improve the capacity of the diffusion

model, we can employ more filters of larger kernel size, in

contrast to previous works that typically involve few filters

with relatively small kernel size. We can additionally con-

sider different influence functions for different filters, rather

than an unique one. Moreover, the parameters of each itera-

tion can vary across iterations. Taking the reaction term into

account, our proposed nonlinear reaction diffusion model is

formulated as

ut − ut−1

Δt
= −

Nk∑
i=1

Kt
i
�
φt
i(K

t
iut−1)︸ ︷︷ ︸

diffusion term

− ψ(ut−1, fn)︸ ︷︷ ︸
reaction term

,

(2)
where Ki ∈ R

N×N is a highly sparse matrix, implemented

as 2D convolution of the image u with the filter kernel ki,
i.e., Kiu ⇔ ki ∗ u, Ki is a set of linear filters and Nk is

the number of filters. Function φi operates point-wise to

the filter response Kiu. In practice, we set Δt = 1, as we

can freely scale the formula on the right side. Note that in

our proposed diffusion model, the influence functions are

adjustable and can be different from each other.

The specific formulation for the reaction term ψ(u) de-

pends on applications. For classical image restoration prob-

lems, such as Gaussian denoising, image deblurring, image

super resolution and image inpainting, we can set the reac-

tion term to be the gradient of a data term, i.e. ψ(u) =
∇uD(u). For example, if D(u, fn) = λ

2 ‖Au − fn‖22,

ψ(u) = λA�(Au − fn), where fn is the degraded image,

A is the associated linear operator, and λ is related to the

strength of the reaction term. In the case of Gaussian de-

noising, A is the identity matrix.

In our work, instead of making use of the well-chosen

filters and influence functions, we train the nonlinear diffu-

sion process for specific image restoration problem, includ-

ing both the linear filters and the influence functions. As

the diffusion process is an iterative approach, typically we

run it for certain iterations. In order to make our proposed

diffusion process more flexible, we train the parameters of

the diffusion model for each single iteration. Finally, we

arrive at a diffusion process which merely involves several

iterations (referred to as stages).

2.3. Relations to existing image restoration models

Previous works [37, 32] show that in the nonlinear dif-

fusion framework, there exist natural relations between re-

action diffusion and regularization based energy functional.

First of all, we can interpret (2) as one gradient descent step

at ut−1 of a certain energy functional given by

E(u, fn) =

Nk∑
i=1

Ri(u) +D(u, fn) , (3)

where Ri(u) =
∑N

p=1 ρ
t
i((K

t
iu)p) are the regularizers and

the functions ρti are the so-called penalty functions. Note

that ρ′(z) = φ(z). Since the parameters {Kt
i , ρ

t
i} vary

across the stages, (3) is a dynamic energy functional, which

changes at each iteration.

In the case of fixed {Kt
i , ρ

t
i} across the stages t, it is ob-

vious that functional (3) is exactly the fields of experts im-

age prior regularized variational model for image restora-

tion [36, 9, 8]. In our work, we do not exactly solve this

minimization problem anymore, but in contrast, we run the

gradient descent step for several stages, and each gradient

descent step is optimized by training.

In a very recent work [38], Schmidt et al. exploited an

additive form of half-quadratic optimization to solve the

same problem (3), which finally leads to a fast and effective

image restoration model called cascade of shrinkage fields

(CSF). The CSF model makes an assumption that the data

term in (3) is quadratic and the operator A can be inter-

preted as a convolution operation, such that the correspond-

ing subproblem has fast closed-form solution based on dis-

crete Fourier transform (DFT). This restrains its applicabil-

ity to many other problems such as image super resolution.

However, our proposed diffusion model does not have this

restriction on the data term. In principle, any smooth data

term is appropriate. Moreover, as shown in the following

sections, we can even handle the case of non-smooth data

term.

There exist some previous works [2, 14], also trying to

train an optimized gradient descent algorithm for the en-

ergy functional similar to (3). In their works, the Gaus-

sian denoising problem is considered, and the trained gra-

dient descent algorithm typically involves less than 10 iter-

ations. However, their model is much more constrained, in

the sense that, they exploited the same filters for each gradi-

ent descent step. More importantly, the influence function

in their model is fixed to be a unique one. This clearly re-

stricts the model performance, as demonstrated in Sec. 4.1.

There are also few preliminary works, e.g., [29] to go

beyond traditional PDEs of the form (1), and propose to

learn optimal PDEs for image restoration via optimal con-

trol. However, the investigated PDE model in [29] is too

simple to generate a promising performance, as they only

optimize the linear combination coefficients of a few prede-

fined terms, which depend on selected derivative filters.
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Figure 2. The architecture of our proposed diffusion model. Note

that the additional convolution step with the rotated kernels k̄i (cf.
Equ. 7) does not appear in conventional feed-forward CNs. Our

model can be interpreted as a CN with a feedback step, which

makes it different from conventional feed-forward networks. Due

to the feedback step, it can be categorized into recurrent neural

networks [18].

The proposed diffusion model also bears an interesting

link to the convolutional networks (CNs) employed for im-

age restoration problems [24]. One can see that each it-

eration (stage) of our proposed diffusion process involves

the convolution operation with a set of linear filters, and

thus it can be treated as a convolutional network. The ar-

chitecture of our proposed network is shown in Figure 2,

where one can see that it is not a pure feed-forward network

any more, because it has a feedback step. Therefore, the

structure of our CN model is different from conventional

feed-forward networks. Due to this feedback step, it can be

categorized into recurrent neural networks [18]. Moreover,

the nonlinearity (e.g., influence functions in the context of

nonlinear diffusion) in our proposed network are trainable.

However, conventional CNs make use of fixed activation

function, e.g., ReLU functions or sigmoid functions.

3. Learning
In this paper, we train our models for two representative

image restoration problems: (1) denoising of images cor-

rupted by Gaussian noise and (2) JPEG blocking artifacts

reduction, which is formulated as a non-smooth problem.

We use a loss minimization scheme to learn the model pa-

rameters Θt = {λt, φt
i, k

t
i} for each stage t of the diffusion

process, given S training samples {f (s)
n , u

(s)
gt }Ss=1, where

f
(s)
n is a noisy input and u

(s)
gt is the corresponding ground

truth clean image.

We firstly consider a greedy training strategy to train the

diffusion processes stage-by-stage, i.e., at stage t, we mini-

mize the cost function

L(Θt) =

S∑
s=1

�(u
(s)
t , u

(s)
gt ) , (4)

where u
(s)
t is the output of stage t of the diffusion process.

We prefer the usual quadratic loss function to the negative

PSNR used in [38], because the latter one imposes more

weights on those samples with relatively smaller cost, and

thus leads to slightly inferior results in practice. The loss

function is given as

�(u
(s)
t , u

(s)
gt ) =

1

2
‖u(s)

t − u
(s)
gt ‖22 . (5)

Parameterizing the influence functions φt
i: We parame-

terize the influence function via standard radial basis func-

tions (RBFs), i.e., each function φ is represented as a

weighted linear combination of a family of RBFs as follows

φt
i(z) =

M∑
j=1

wt
ijϕ

( |z − μj |
γj

)
, (6)

where ϕ represents different RBFs. In this paper, we exploit

RBFs with equidistant centers μj and unified scaling γj . We

investigate two typical RBFs [23]: (1) Gaussian radial basis

and (2) triangular-shaped radial basis.

In general, the Gaussian RBF can provide better approx-

imation for generally smooth function than the triangular-

shaped RBF with the same number of basis functions. How-

ever, the triangular-shaped RBF based function parameteri-

zation has the advantage of computational efficiency. More

details can be found in the supplemental material [7]. In our

work, we consider both function parameterization methods,

but only present the results achieved based on the Gaussian

RBF.

Training for denoising: According to the diffusion equa-

tion (2), for image denoising, the output of stage t is given

as

ut = ut−1 −
(

Nk∑
i=1

k̄ti ∗ φt
i(k

t
i ∗ ut−1) + λt(ut−1 − fn)

)
,

(7)

where we explicitly use a convolution kernel k̄i (obtained

by rotating the kernel ki 180 degrees) to replace the K�
i for

the sake of model simplicity 2.

Training for deblocking: Motivated by [5], we consider

a new variational model for JPEG deblocking based on the

FoE image prior model

argmin
u

E(u) =

Nk∑
i=1

ρi(ki ∗ u) + IQ(Du) , (8)

where IQ is a indicator function over the set Q (quantiza-

tion constraint set). In JPEG compression, information loss

happens in the quantization step, where all possible values

in the range [d − 0.5, d + 0.5] (d is an integer) are quan-

tized to a single number d. Given a compressed data, we

only know d. Therefore, all possible values in the interval

[d− 0.5, d+ 0.5] define a convex set Q which finally leads

2We use the symmetric boundary condition in our work. In this case,

K�
i can be interpreted as the convolution kernel k̄i only in the central

region. Therefore, we actually slightly modify the original model.



to a box constraint. The sparse matrix D ∈ R
N×N denotes

the block DCT transform. We refer to [5] for more details.

We derive the diffusion process w.r.t the variational

model (8) using the proximal gradient method [33], which

reads as

ut = D�projQ

(
D

(
ut−1 −

∑Nk

i=1
k̄ti ∗ φt

i(k
t
i ∗ ut−1)

))
,

(9)

where projQ(·) denotes the orthogonal projection onto Q.

More details can be found in the supplemental material [7].

Gradients: We minimize (4) with commonly used gradi-

ent based L-BFGS algorithm [28]. The gradient of the loss

function at stage t w.r.t the model parameters Θt is com-

puted using standard chain rule, given as

∂�(ut, ugt)

∂Θt
=

∂ut

∂Θt
· ∂�(ut, ugt)

∂ut
, (10)

where
∂�(ut,ugt)

∂ut
= ut − ugt is directly derived from (5),

∂ut

∂Θt
is computed from (7) for the training of denoising task

or (9) for the deblocking training, respectively. We do not

present the derivatives for specific model parameters due to

space limitation. All derivatives can be found in the supple-
mental material [7].

Joint training: In (4), each stage is trained greedily such

that the output of each stage is optimized according to the

loss function, regardless of the total stages T used in the

diffusion process. A better strategy would be to jointly train

all the stages simultaneously. The joint training task is for-

mulated as

L(Θ1,··· ,T ) =
S∑

s=1

�(u
(s)
T , u

(s)
gt ) , (11)

where the loss function only depends on uT (the output of

the final stage T ). The gradients of the loss function w.r.t

Θt is given as

∂�(uT , ugt)

∂Θt
=

∂ut

∂Θt
· ∂ut+1

∂ut
· · · ∂�(uT , ugt)

∂uT
,

which is the standard back-propagation technique widely

used in the neural networks learning [26]. Compared with

the greedy training, we additionally need to calculate
∂ut+1

∂ut
.

All the derivations can be found in the supplemental mate-
rial [7].

4. Experiments
We used the same 400 training images as [38], and

cropped a 180× 180 region from each image, resulting in a

total of 400 training samples of size 180×180, i.e., roughly

13 million pixels.

We trained the proposed diffusion process with at most 8

stages to observe its saturation behavior after some stages.

We first greedily trained T stages of our model with spe-

cific model capacity, then conducted a joint training for the

parameters of the whole T stages.

In our work, we mainly considered two trained reaction

diffusion (TRD) models.

TRDT
5×5,Fully trained model with 24 filters of size 5× 5 ,

TRDT
7×7,Fully trained model with 48 filters of size 7× 7 ,

where TRDT
m×m denotes a nonlinear diffusion process of

stage T with filters of size m × m. The filters number is

m2 − 1, if not specified.

Note that the calculation of the gradients of the loss func-

tion in (10) can be accomplished with convolution tech-

nique efficiently, even with a simple Matlab implementa-

tion. The training time varies greatly for different config-

urations. Important factors include (1) model capacity, (2)

number of training samples, (3) number of iterations taken

by the L-BFGS, and (4) number of Gaussian RBF kernels

used for function approximation. We report below the most

time consuming cases.

In training, computing the gradients ∂L
∂Θ with respect

to the parameters of one stage for 400 images of size

180×180 takes about 35s (TRD5×5), 75s (TRD7×7) or 165s

(TRD9×9) with Matlab implementation on a server with

CPUs: Intel(R) Xeon E5-2680 @ 2.80GHz (eight parallel

threads, 63 Gaussian RBF kernels for the influence function

parameterization). We typically run 200 L-BFGS iterations

for optimization. Therefore, the total training time, e.g., for

the TRD5
7×7 model is about 5× (200× 75)/3600 = 20.8h.

Code for learning and inference is available on the authors’
homepage www.GPU4Vision.org.

4.1. Image denoising experiments

We started with the training model of TRDT
5×5. We first

considered the greedy scheme to train a diffusion process up

to 8 stages (i.e., T ≤ 8), in order to observe the asymptotic

behavior of the diffusion process. After the greedy training

was completed, we conducted joint training for a diffusion

model of certain stages (e.g., T = 5), by simultaneously

tuning the parameters in all stages.

We initialized the joint training with the parameters ob-

tained from greedy training, as this is guaranteed not to de-

crease the training performance. In previous work [38], it is

shown that joint training a model with filters of size 5 × 5
or larger hardly makes a difference relative to the result ob-

tained by the greedy training. However, in our work we

observed that joint training always improves the result of

greedy training.

Note that for the models trained in the greedy manner,

we can stop the inference at any stage, as its output of each

stage is optimized. However, for the jointly trained models,

we have to run T stages, as in this case only the output of

the T th stage is optimized.



Method
σ

St.
σ = 15

15 25 TRD5×5 TRD7×7

BM3D 31.08 28.56 2 31.14 31.30

LSSC 31.27 28.70 5 31.30 31.42
EPLL 31.19 28.68 8 31.34 31.43
opt-MRF 31.18 28.66 σ = 25
RTF5 – 28.75 TRD5×5 TRD7×7

WNNM 31.37 28.83 2 28.58 28.77

CSF5
5×5 31.14 28.60 5 28.78 28.92

CSF5
7×7 31.24 28.72 8 28.83 28.95

Table 1. Average PSNR (dB) on 68 images from [36] for image

denoising with σ = 15, 25.

We first trained our diffusion models for the Gaussian de-

noising problem with standard deviation σ = 25. The noisy

training images were generated by adding synthetic Gaus-

sian noise with σ = 25 to the clean images. Once we have

trained a diffusion model, we evaluated its performance on

a standard test dataset of 68 natural images.3

We present the final results of the joint training in Ta-

ble 1, together with a selection of recent state-of-the-art de-

noising algorithms, namely BM3D [11], LSSC [30], EPLL

[44], opt-MRF [8], RTF5 model [25] and two very recent

methods: the CSF model [38] and WNNM [19]. We down-

loaded these algorithms from the corresponding author’s

homepage, and used them as is.

Concerning the performance of our TRDT
5×5 models, we

find that joint training usually leads to an improvement of

about 0.1dB in the cases of T ≥ 5. From Table 1, one

can see that (1) the performance of the TRDT
5×5 model sat-

urates after stage 5, i.e., in practice, 5 stages are typically

enough; (2) our TRD5
5×5 model has achieved significant im-

provement (28.78 vs. 28.60), compared to a similar model

CSF5
5×5, which has the same model capacity and (3) more-

over, our TRD8
5×5 model is on par with so far the best-

reported algorithm - WNNM.

When comparing with some closely related models such

as the FoE prior based variational model [8], the FoE de-

rived CSF model [38] and convolutional networks (CNs)

[24], our trained models can provide significantly superior

performance. Therefore, a natural question arises: what is

the critical factor in the effectiveness of the trained diffusion

models? There are actually two main aspects in our training

model: (1) the linear filters and (2) the influence functions.

In order to have a better understanding of the trained mod-

els, we went through a series of experiments to investigate

the impact of these two aspects.

Analysis of the proposed diffusion process: Concentrat-

ing on the model capacity of 24 filters of size 5×5, we con-

sidered the training of a diffusion process with 10 steps, i.e.,

T = 10 for the Gaussian denoising of noise level σ = 25.

We exploited two main classes of configurations: (A) the

3The test images are strictly separate from the training datasets.

parameters of every stage are the same and (B) every diffu-

sion stage is different from each other. In both configura-

tions, we consider two cases: (I) only train the linear filters

with fixed influence function φ(z) = 2z/(1 + z2) and (II)

simultaneously train the filters and influence functions.

Based on the same training dataset and test dataset, we

obtained the following results: (A.I) every diffusion step is

the same, and only the filters are optimized with fixed in-

fluence function. This is a similar configuration to previous

works [2, 14]. The trained model achieves a test perfor-

mance of 28.47dB. (A.II) with additional tuning of the in-

fluence functions, the resulting performance is boosted to

28.60dB. (B.I) every diffusion step can be different, but

only train the linear filters with fixed influence function.

The corresponding model obtains the result of 28.56dB,

which is equivalent to the variational model [8] with the

same model capacity. Finally (B.II) with additional opti-

mization of the influence functions, the trained model leads

to a significant improvement with the result of 28.86dB.

The analysis experiments demonstrate that without the

training of the influence functions, there is no chance to

achieve significant improvements over previous works, no

matter how hard we tune the linear filters. Therefore, we be-

lieve that the additional freedom to tune the influence func-

tions is the critical factor of our proposed training model.

After having a closer look at the learned influence functions

of the TRD5
5×5 model, these functions reinforce our argu-

ment.

Learned influence functions: The form of 120 learned

penalty functions ρ4 in the TRD5
5×5 model can be divided

into four classes (see the corresponding subfigures in Fig-

ure 1):

(a) Truncated convex penalty functions with low values

around zero to encourage smoothness.
(b) Negative Mexican hat functions, which have a local

minimum at zero and two symmetric local maxima.
(c) Truncated concave functions with smaller values at the

two tails.
(d) Double-well functions, which have a local maximum

(not a minimum any more) at zero and two symmetric

local minima.

At first glance, the learned penalty functions (except (a))

differ significantly from the usually adopted penalty func-

tions used in PDE and energy minimization methods. How-

ever, it turns out that they have a clear meaning for image

regularization.

Regarding the penalty function (b), there are two criti-

cal points (indicated by red triangles). When the magnitude

of the filter response is relatively small (i.e., less than the

critical points), probably it is stimulated by the noise and

4The penalty function ρ(z) is integrated from the influence function

φ(z) according to the relation φ(z) = ρ′(z)



(a) 48 filters of size 7× 7 in stage 1

(b) 48 filters of size 7× 7 in stage 5

Figure 3. Trained filters (in the first and last stage) of the TRD5
7×7

model for the noise level σ = 25. We can find first, second and

higher-order derivative filters, as well as rotated derivative filters

along different directions. These filters are effective for image

structure detection, such as image edge and texture.

therefore the penalty function encourages smoothing oper-

ation as it has a local minimum at zero. However, once the

magnitude of the filter response is large enough (i.e., across

the critical points), the corresponding local patch probably

contains a real image edge or certain structure. In this case,

the penalty function encourages to increase the magnitude

of the filter response, alluding to an image sharpening op-

eration. Therefore, the diffusion process controlled by the

influence function (b), can adaptively switch between im-

age smoothing (forward diffusion) and sharpening (back-

ward diffusion). We find that the learned influence function

(b) is closely similar to an elaborately designed function in

a previous work [17], which leads to an adaptive forward-

and-backward diffusion process.

A similar penalty function to the learned function (c)

with a concave shape is also observed in previous work

on image prior learning [43]. This penalty function also

encourages to sharpen the image edges. Concerning the

learned penalty function (d), as it has local minima at two

specific points, it prefers specific image structure, implying

that it helps to form certain image structure. We also find

that this penalty function is exactly the type of bimodal ex-

pert functions for texture synthesis employed in [22].

Now it is clear that the diffusion process involving the

learned influence functions does not perform pure image

smoothing any more for image processing. In contrast, it

leads to a diffusion process for adaptive image smoothing

and sharpening, distinguishing itself from previous com-

monly used image regularization techniques.

Influence of initialization: Our training model is also a

deep model with many stages (layers). It is well-known that

Method 2562 5122 10242 20482 30722

BM3D [11] 1.1 4.0 17 76.4 176.0

CSF5
7×7 [38] 3.27 11.6 40.82 151.2 494.8

WNNM [19] 122.9 532.9 2094.6 – –

TRD5
5×5

0.51 1.53 5.48 24.97 53.3

0.43 0.78 2.25 8.01 21.6

0.005 0.015 0.054 0.18 0.39

TRD5
7×7

1.21 3.72 14.0 62.2 135.9

0.56 1.17 3.64 13.01 30.1

0.01 0.032 0.116 0.40 0.87

Table 2. Run time comparison for image denoising (in seconds)

with different implementations. (1) The run time results with

gray background are evaluated with the single-threaded imple-

mentation on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz; (2)

the blue colored run times are obtained with multi-threaded com-

putation using Matlab parfor on the above CPUs; (3) the run time

results colored in red are executed on a NVIDIA GeForce GTX

780Ti GPU. We do not count the memory transfer time between

CPU/GPU for the GPU implementation (if counted, the run time

will nearly double)

deep models are usually sensitive to initialization. However,

our training model is not very sensitive to initialization. We

have training experiments with fully random initializations

for (1) greedy training. Using fully random initial parame-

ters in range [−0.5, 0.5], the trained models lead to a devi-

ation within 0.01dB in the test phase and (2) joint training.

Fully random initializations lead to models with inferior re-

sults, e.g., TRD5
5×5 (28.61 vs. 28.78). However, a plain ini-

tialization (all stages with DCT filters, influence function

φ(z) = 2z/(1 + z2)) works almost the same, e.g.,TRD5
5×5,

(28.75 vs. 28.78) and TRD5
7×7, (28.91 vs. 28.92).

Training for other configurations: In order to investigate

the influence of the model capacity, we increase the filter

size to 7 × 7 and 9 × 9. We find that increasing the filter

size from 5×5 to 7×7 brings a significant improvement of

0.14dB ( TRD5
7×7 vs. TRD5

5×5) as show in Table 1. How-

ever, if we further increase the filter size to 9×9, the result-

ing TRD5
9×9 leads to a performance of 28.96dB (a slight

improvement of 0.05dB relative to the TRD5
7×7 model). In

practice, we prefer the TRD5
7×7 model as it provides the

best trade-off between performance and computation time.

Fig. 3 shows the trained filters of the TRD5
7×7 model in the

first and last stage.

We also trained diffusion models for the noise level of

σ = 15, and the test performance is shown in Table 1. In ex-

periments, we observed that joint training can always gain

an improvement of about 0.1dB over the greedy training for

the cases of T ≥ 5.

From Table 1, one can see that for both noise levels,

the resulting TRD7×7 model achieves the highest average

PSNR. The TRD5
7×7 model outperforms the benchmark

BM3D method by 0.35dB in average. This is a notable im-



q
JPEG

decoder

TGV

[5]

Dic-

SR[6]
SADCT

[16]
RTF[25] TRD4

7×7

10 26.59 26.96 27.15 27.43 27.68 27.85
20 28.77 29.01 29.03 29.46 29.83 30.06
30 30.05 30.25 30.13 30.67 31.14 31.41

Table 3. JPEG deblocking results for natural images, reported with

average PSNR values.

provement as few methods can surpass BM3D more than

0.3dB in average [27]. Moreover, the TRD5
7×7 model also

surpasses the best-reported algorithm - WNNM method,

which is very slow as shown in Table 2. In summary, our

TRD5
7×7 model outperforms all the recent state-of-the-arts

on the exploited test dataset, meanwhile it is the fastest

method even with the CPU implementation.

Run time: The algorithm structure of our TRD model is

closely similar to the CSF model, which is well-suited for

parallel computation on GPUs. We implemented our trained

models on GPU using CUDA programming to speed up the

inference procedure, and finally it indeed lead to a signifi-

cantly improved run time, see Table 2. We see that for the

images of size up to 3K × 3K, the TRD5
7×7 model is still

able to accomplish the denoising task in less than 1s.

We make a run time comparison to other denoising algo-

rithms based on strictly enforced single-threaded CPU com-

putation ( e.g., start Matlab with -singleCompThread) for a

fair comparison, see Table 2. We only present the results

of some selective algorithms, which either have the best de-

noising result or run time performance. We refer to [38]

for a comprehensive run time comparison of various algo-

rithms5.

We see that our TRD model is generally faster than the

CSF model with the same model capacity. It is reasonable,

because in each stage the CSF model involves additional

DFT and inverse DTF operations, i.e., our model only re-

quires a portion of the computation of the CSF model. Even

though the BM3D is a non-local model, it still possesses

high computation efficiency. In contrast, another non-local

model - WNNM achieves compelling denoising results but

at the expense of huge computation time. Moreover, the

WNNM algorithm is hardly applicable for high resolution

images (e.g., 10 mega-pixels) due to its huge memory re-

quirements. Note that our model can be also easily imple-

mented with multi-threaded CPU computation.

4.2. JPEG deblocking experiments

We also trained diffusion models for the JPEG deblock-

ing problem. We followed the test procedure in [25] for

performance evaluation. The test images were converted to

gray-value, and scaled by a factor of 0.5, resulting images of

5 LSSC, EPLL, opt-MRF and RTF5 methods are much slower than

BM3D on the CPU, cf. [38].

size 240× 160. We distorted the images by JPEG blocking

artifacts. We considered three compression quality settings

q = 10, 20 and 30 for the JPEG encoder.

We trained three nonlinear diffusion TRD7×7 models for

different compression parameter q. We found that for JPEG

deblocking, 4 stages are already enough. Results of the

trained models are shown in Table 3, compared with sev-

eral representative deblocking approaches. We see that our

trained TRD4
7×7 outperforms all the competing approaches

in terms of PSNR. Furthermore, our model is extremely fast

on GPU, e.g., for a common image size of 1024×1024, our

model takes about 0.095s, while the strongest competitor

(in terms of run time) - SADCT consumes about 56.5s with

CPU computation6. See the supplemental material [7] for

JPEG deblocking examples.

5. Conclusion and future work

We have proposed a trainable reaction diffusion model

for effective image restoration. Its critical point lies in the

training of the influence functions. We have trained our

models for the problem of Gaussian denoising and JPEG de-

blocking. Based on standard test datasets, the trained mod-

els result in the best-reported results. We believe that the

effectiveness of the trained diffusion models is attributed to

the following desired properties of the models

• Anisotropy. In the trained filters, we can find rotated

derivative filters in different directions, cf. Fig 3.

• Higher order. The learned filters contain first, second

and higher-order derivative filters, cf. Fig 3.

• Adaptive forward/backward diffusion through the
learned nonlinear functions. Nonlinear functions cor-

responding to explicit backward diffusion appear in the

learned nonlinearity, cf. Fig 1.

Meanwhile, the trained models are very simple and well-

suited for parallel computation on GPUs. As a conse-

quence, the resulting algorithms are significantly faster than

all competing algorithms and hence are also applicable to

the restoration of high resolution images.

Future work: From a application point of view, we think

that it will be interesting to consider learned, nonlinear reac-

tion diffusion based models also for other image processing

tasks such as image super resolution, blind image deconvo-

lution, optical flow. Moreover, since learning the influence

functions turned out to be crucial, we believe that learning

optimal nonlinearities in CNs could lead to a similar perfor-

mance increase. Finally, it will also be interesting to inves-

tigate the unconventional penalty functions learned by our

approach in usual energy minimization approaches.

6 RTF is slower than SADCT, as it depends on the output of SADCT.



6. Acknowledgments
This work was supported by the Austrian Science Fund

(FWF) under the China Scholarship Council (CSC) Schol-

arship Program and the START project BIVISION, No.

Y729.

References
[1] S. T. Acton, D. Prasad Mukherjee, J. P. Havlicek, and A. Con-

rad Bovik. Oriented texture completion by AM-FM reaction-

diffusion. IEEE TIP, 10(6):885–896, 2001. 2

[2] A. Barbu. Training an active random field for real-time image de-

noising. IEEE TIP, 18(11):2451–2462, 2009. 3, 6

[3] C. A. Z. Barcelos, M. Boaventura, and E. C. Silva Jr. A well-

balanced flow equation for noise removal and edge detection. IEEE
TIP, 12(7):751–763, 2003. 2

[4] M. Black, G. Sapiro, D. Marimont, and D. Heeger. Robust

anisotropic diffusion and sharpening of scalar and vector images. In

ICIP, pages 263–266. IEEE, 1997. 2, 3

[5] K. Bredies and M. Holler. Artifact-free jpeg decompression with

total generalized variation. In VISAPP (1), pages 12–21, 2012. 4, 5,

8

[6] H. Chang, M. K. Ng, and T. Zeng. Reducing artifact in JPEG decom-

pression via a learned dictionary. IEEE TSP, 62(3):718–728, 2014.

8

[7] Y. Chen. Notes on diffusion networks. arXiv preprint
arXiv:1503.05768, 2015. 4, 5, 8

[8] Y. Chen, T. Pock, R. Ranftl, and H. Bischof. Revisiting loss-specific

training of filter-based mrfs for image restoration. In GCPR, pages

271–281, 2013. 2, 3, 6

[9] Y. Chen, R. Ranftl, and T. Pock. Insights into analysis operator learn-

ing: From patch-based sparse models to higher order MRFs. IEEE
TIP, 23(3):1060–1072, 2014. 3

[10] G.-H. Cottet and L. Germain. Image processing through reaction

combined with nonlinear diffusion. Mathematics of Computation,

pages 659–673, 1993. 2

[11] K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian. Image de-

noising by sparse 3-d transform-domain collaborative filtering. IEEE
TIP, 16(8):2080–2095, 2007. 1, 6, 7

[12] S. Didas, J. Weickert, and B. Burgeth. Stability and local feature

enhancement of higher order nonlinear diffusion filtering. In DAGM,

pages 451–458. 2005. 2

[13] S. Didas, J. Weickert, and B. Burgeth. Properties of higher order

nonlinear diffusion filtering. JMIV, 35(3):208–226, 2009. 1, 2

[14] J. Domke. Generic methods for optimization-based modeling. In

AISTATS, pages 318–326, 2012. 3, 6

[15] J. Escları́n and L. Alvarez. Image quantization using reaction-

diffusion equations. SIAP, 57(1):153–175, 1997. 2

[16] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive

DCT for high-quality denoising and deblocking of grayscale and

color images. IEEE TIP, 16(5):1395–1411, 2007. 8

[17] G. Gilboa, N. Sochen, and Y. Y. Zeevi. Forward-and-backward diffu-

sion processes for adaptive image enhancement and denoising. IEEE
TIP, 11(7):689–703, 2002. 2, 7

[18] A. Graves and J. Schmidhuber. Offline handwriting recognition with

multidimensional recurrent neural networks. In NIPS, pages 545–

552, 2009. 4

[19] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm

minimization with application to image denoising. In CVPR, 2014.

1, 6, 7

[20] P. Guidotti and K. Longo. Two enhanced fourth order diffusion mod-

els for image denoising. JMIV, 40(2):188–198, 2011. 1, 2

[21] M. R. Hajiaboli. An anisotropic fourth-order diffusion filter for im-

age noise removal. IJCV, 92(2):177–191, 2011. 1, 2

[22] N. Heess, C. K. I. Williams, and G. E. Hinton. Learning generative

texture models with extended Fields-of-Experts. In BMVC, pages

1–11, 2009. 7

[23] Y. H. Hu and J.-N. Hwang. Handbook of neural network signal pro-
cessing. CRC press, 2010. 4

[24] V. Jain and S. Seung. Natural image denoising with convolutional

networks. In NIPS, pages 769–776, 2009. 4, 6

[25] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of

non-parametric image restoration models: A new state of the art. In

ECCV, pages 112–125, 2012. 6, 8

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998. 5

[27] A. Levin and B. Nadler. Natural image denoising: Optimality and

inherent bounds. In CVPR, pages 2833–2840. IEEE, 2011. 8

[28] D. C. Liu and J. Nocedal. On the limited memory BFGS method for

large scale optimization. Mathematical Programming, 45(1):503–

528, 1989. 5

[29] R. Liu, Z. Lin, W. Zhang, and Z. Su. Learning PDEs for image

restoration via optimal control. In ECCV, pages 115–128. 2010. 2, 3

[30] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local

sparse models for image restoration. In ICCV, pages 2272–2279,

2009. 1, 6

[31] P. Milanfar. A tour of modern image filtering: new insights and

methods, both practical and theoretical. Signal Processing Maga-
zine, IEEE, 30(1):106–128, 2013. 1

[32] K. Niklas Nordström. Biased anisotropic diffusion: a unified regular-

ization and diffusion approach to edge detection. Image and Vision
Computing, 8(4):318–327, 1990. 2, 3

[33] P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial Proximal

Algorithm for Nonconvex Optimization. SIAM Journal on Imaging
Sciences, 7(2):1388–1419, 2014. 5

[34] P. Perona and J. Malik. Scale-space and edge detection using

anisotropic diffusion. IEEE TPAMI, 12(7):629–639, 1990. 1, 2

[35] G. Plonka and J. Ma. Nonlinear regularized reaction-diffusion filters

for denoising of images with textures. IEEE TIP, 17(8):1283–1294,

2008. 1, 2

[36] S. Roth and M. J. Black. Fields of Experts. IJCV, 82(2):205–229,

2009. 2, 3, 6

[37] O. Scherzer and J. Weickert. Relations between regularization and

diffusion filtering. JMIV, 12(1):43–63, 2000. 3

[38] U. Schmidt and S. Roth. Shrinkage fields for effective image restora-

tion. In CVPR, 2014. 1, 3, 4, 5, 6, 7, 8

[39] V. Surya Prasath and D. Vorotnikov. Weighted and well-balanced

anisotropic diffusion scheme for image denoising and restoration.

Nonlinear Analysis: Real World Applications, 17:33–46, 2014. 2

[40] C. Tsiotsios and M. Petrou. On the choice of the parameters for

anisotropic diffusion in image processing. Pattern Recognition,

46(5):1369–1381, 2013. 2

[41] J. Weickert. Anisotropic diffusion in image processing. Teubner

Stuttgart, 1998. 1, 2, 3

[42] M. Welk, G. Gilboa, and J. Weickert. Theoretical foundations for

discrete forward-and-backward diffusion filtering. In SSVM, pages

527–538. 2009. 2

[43] S. C. Zhu and D. Mumford. Prior learning and Gibbs reaction-

diffusion. IEEE TPAMI, 19(11):1236–1250, 1997. 7

[44] D. Zoran and Y. Weiss. From learning models of natural image

patches to whole image restoration. In ICCV, pages 479–486, 2011.

1, 6


