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Abstract

We propose a color mapping method that compensates
color differences between images having a common seman-
tic content such as multiple views of a scene taken from
different viewpoints. A so-called color mapping model is
usually estimated from color correspondences selected from
those images. In this work, we introduce a color map-
ping that model color change in two steps: first, nonlin-
ear, channel-wise mapping; second, linear, cross-channel
mapping. Additionally, unlike many state of the art meth-
ods, we estimate the model from sparse matches and do not
require dense geometric correspondences. We show that
well known cross-channel color change can be estimated
from sparse color correspondence. Quantitative and visual
benchmark tests show good performance compared to re-
cent methods in literature.

1. Introduction

Many applications such as stereo imaging, multiple-view

stereo, image stitching, photo-realistic texture mapping or

color correction in feature film production, face the problem

of color differences between images showing semantically

common content. Possible reasons include: uncalibrated

cameras, different camera settings, change of lighting con-

dition, and differences between imaging workflows. Color

mapping is a method that models such color differences be-

tween views to allow their compensation.

Color mapping is usually based on: matching corre-

sponding features, computing color correspondences from

those matched features and finally estimating a color map

from the color correspondences. For instance, Figure 1

shows an example of color mapping. In the literature, find-

ing color correspondences (first step of color mapping) is ei-

ther based on sparse [2, 4, 6, 13, 20, 21, 29, 31] or on dense

[2, 9] feature matching. To model the underlying color

change (second step of color mapping), mostly channel-

wise [2, 6, 9, 13, 27–31] color mapping models are used.

Channel-wise means that color mapping models are inde-

pendently estimated for each color channels (such as red,

green and blue). In a channel-wise model, to estimate a

channel of one view, contribution is taken only from the

corresponding channel of the other view, that is:

Rview2 = fR(Rview1)

Gview2 = fG(Gview1)

Bview2 = fB(Bview1).

(1)

Channel-wise methods can be further categorized into linear

[2, 28, 30, 31] or nonlinear [6, 9, 12, 14, 21] models.

Channel-wise color mapping ignores the cross-channel

influences, but is simpler and faster to estimate. However,

in practice many color changes such as strong saturation or

hue differences, due to illumination change or imaging de-

vices change, do not follow channel-wise model assump-

tion. In these situations, color change happens not only

in red, green, and blue channels independently, but also

in a cross-color-channel manner. Furthermore, these color

changes are often nonlinear. To our knowledge, very few

methods [9, 12, 14] addressed cross-channel and nonlinear

color change modeling – often not in the context of color

mapping. In this work, we would like to answer the ques-

tion whether it is possible and useful to estimate a cross-

channel and nonlinear color map using only sparse color

correspondences.

Like many methods from the literature, we start from

the geometric feature correspondences. Then, our approach

consists of two steps. In the first step, we robustly fit a non-

linear, channel-wise model. In the second step, we estimate

a linear but cross-channel color model. The advantage of

the first, channel wise step is that it captures the nonlinear

color change. The advantage of the second step of linear but

cross-channel model is that it is robust.

In order to compare our method with existing color map-
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(A) Reference (B) Test (C) Mapped by our method

Figure 1: An example of color mapping. (A) shows the reference view – colors that we want. (B) shows the test view –

colors that we want to change so that it matches with the reference. (C) shows result after our color mapping which matches

closely with the reference.

ping methods, we use a qualitative (Section 4.1) as well as

quantitative evaluation (Section 4.2). Since our model is

neither constrained to channel-wise color changes nor re-

quires dense color correspondences, a wider range of appli-

cations are possible.

2. Related works

A significant number of color mapping methods are

available in the literature that may compensate color differ-

ences. These methods can be broadly classified into three

main categories: first, geometric correspondence based

methods [2, 4–6, 9, 10, 13, 20, 22, 29, 31]; second statis-

tical distribution transfer based methods [7, 23–28]; third,

user assisted methods [3, 15, 21].

Very few methods have addressed the cross-channel

color change especially in the context of color mapping.

For instance, computational color constancy algorithms [8]

employ a cross-channel linear model, but do not apply nec-

essarily to color mapping. Because, the objective of com-

putational color constancy algorithms is to correct for il-

lumination spectrum such that it looks like to be captured

under canonical illuminant (such as CIE D65). Besides,

scene illumination is required to be estimated or known as

prior. Hacohen et al. [9] use also similar linear model after

a channel-wise mapping.

Ilie and Adrian [12] address cross-channel change but

from camera color calibration point of view. The authors

estimate the cross-channel model from the 24 sample col-

ors of GretagMacbeth ColorChecker. Unfortunately, that

cannot be extended to color mapping since it requires a Col-

orChecker in the scene.

Although not necessarily color mapping, Kim et al. [14]

propose an imaging model that can correct colors when

camera settings are not “correct”. A Radial Basis Function

(RBF) based cross-channel color modeling is used in their

work.

Despite significant contributions in related works, in the

context of color mapping, no work provides a method that

can model both cross channel and nonlinear color change

between different viewpoints only from sparse color corre-

spondences.

3. A new cross-channel color mapping
Our color mapping method is based on three steps. In the

first step, we start by computing feature correspondences

by SIFT [16]. We collect colors near to these feature cor-

respondences that provide so-called color correspondences.

Here, color correspondences define which colors from one

view correspond to which colors of the other view. Note

that, to generate the feature correspondences, other meth-

ods such as SURF [1], MSER [18] etc. can be utilized as

well. In the second step, we robustly fit a channel-wise,

constrained, nonlinear color mapping model. In the third

step, we estimate a linear, but cross-channel model.

Let Ci ↔ C
′
i be the color correspondences with i its

index, that is, Ci is a color from one view that corresponds

to the color C
′
i from the other view. Let us assume three

color channels, that is, Cε{R,G,B}, where R, G, B stands

for red, green, and blue color correspondences, respectively.

Let us also assume, M be the number of color correspon-

dences. Therefore, both C and C
′

are M×3 matrices. Each

Ci ↔ C
′
i can be read as a 3-tuple correspondence, that is,

(R,G,B)↔ (R
′
, G

′
, B

′
).

From these color correspondences, the color mapping

model fC is estimated such that it minimizes the following

color differences:

min
M∑

i=1

(Ci − fC(C
′
i))

2. (2)

In this work, we estimate fC in two steps: first, channel-

wise nonlinear estimation (Section 3.1); second, cross-
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channel linear estimation (Section 3.2). A pseudo-code of

the whole proposed method is presented in Algorithm 1

3.1. Step1: Channel-wise estimation

In this section, using the color correspondences, we es-

timate the color mapping model, fC which describes and

compensates the color differences in a channel-wise man-

ner.

Before estimation, for regularization purpose, we add

two imaginary white and black color correspondences.

Since we assume high quality content and no clipping, for a

P -bit image, we add (1 1 1)↔ (1 1 1) and (2P 2P 2P )↔
(2P 2P 2P ) in Ci ↔ C

′
i . We do this to account for of-

ten missing very dark and very bright colors in high quality

pictures. This also help the estimation to avoid extrapola-

tion. We estimate the color correction model in the follow-

ing three main steps.

In the first step, for each color channel, we estimate a

piece-wise cubic spline from the list of color correspon-

dences, Ci ↔ C
′
i having K knots. We set constraint during

the estimation so that the estimated curves are monotonic,

which is common in recent works [9, 11]. Similar to [9],

we use K = 6 so that the model can capture some nonlin-

ear changes. We expect this model to be approximate (since

channel-wise) but robust.

In the second step, for each color channel, we compute

the standard deviation of residuals σC . If the residual of

a color correspondence is larger than 5 ∗ σC for any color

channel, this color correspondence is considered as outlier.

Then, it is removed from the list of color correspondences.

Lastly, in the third step, we again estimate the model for

each color channel, but from the “outlier-free” color corre-

spondences.

3.2. Step2: Cross channel estimation

In this step, we estimate cross-channel color mapping

model. Cross-channel change such as saturation change

due to illuminant spectrum change can not be compensated

by channel-wise model only. Therefore, we describe the

remaining cross channel color changes by a linear model.

Cross channel color change can be nonlinear. So, we pro-

pose here an approximate but robust model.

Let Ĉ denote colors after applying the channel wise

mapping on C. The resulting color correspondences is,

Ĉi ↔ C
′
i . Now, we estimate the cross-channel model

parameters, θ by solving the following normal equation,

where θ is a 3× 3 matrix.

θ = (ĈT ∗ Ĉ)−1 ∗ ĈT ∗ (C ′) (3)

4. Experiment
In this section, we present experimental results obtained

with our method. We also compare it with the color correc-

Algorithm 1 Approximate cross channel color mapping

Input: feature correspondences, Fi ↔ F
′
i by SIFT

Remove outliers in Fi ↔ F
′
i by RANSAC

for each Fi ↔ F
′
i do

Collect color correspondences, Ci ↔ C
′
i

end for
Step1: Channel-wise estimation

for each color channel, C where Cε{R,G,B} do
Estimate piece-wise cubic spline (con-

straint:monotonic) and compute robust standard

deviation of residuals [19], σC

end for
for each Ci ↔ C

′
i do

if residualCi > 5σC for any C then
remove ith Ci ↔ C

′
i

end if
end for
Estimate model from “outlier-free”, Ci ↔ C

′
i

return model parameters
Step2: Cross channel estimation

θ = (ĈT ∗ Ĉ)−1 ∗ ĈT ∗ (C ′)

tion methods from the state of the art: Hacohen et al. [9],

Pitie et al. [24]; and, Reinhard et al. [27]; For these meth-

ods, we have used the original codes/executables provided

by the authors.

In all following experiments, given an image as example

(i.e. reference), color mapping is applied on the test images.

We first show qualitative (Section 4.1) and then quantitative

(Section 4.2) results. We particularly focus on test images

having nonlinear and cross-channel color change.

4.1. Qualitative results

4.1.1 Differences in imaging devices

Differences in imaging devices can lead to complex color

change. Possible reasons include nonlinear processing [14]

applied by the camera or differences in optics, sensors, dif-

ferent color filters and different color primaries. For this

experiment, we captured images using different consumer

imaging devices that are mentioned in the Table 1. In Figure

2, (A), (C), and (E) show three reference images, whereas

(B), (D), and (F) show the corresponding test images. Given

a reference image, we apply color mapping on the test im-

age. Resulting images after color mapping are shown in

Figure 3. Red rectangles point out the remaining errors such

as the artifacts or strong remaining luminance differences.

From visual inspection, we observe that in Figure 3, method

from Pitie et al. [24] and Reinhard et al. [27] performs com-

paratively worse than Hacohen et al. [9] and our method.
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Table 1: Different imaging devices used in experiment (Sec-

tion 4.1.1)

Device# Device name

Device1 Panasonic DMC FS-11

Device2 HTC phone (Model QCAM-AA)

(A) Reference: Device#1 (B) Test: Device#2

(C) Reference: Device#2 (D) Test: Device#1

(E) Reference: Device#2 (F) Test: Device#1

Figure 2: Input images for color mapping captured by dif-

ferent imaging devices. List of imaging devices are men-

tioned in Table 1. See color mapping results for these im-

ages in Figure 3

4.1.2 Differences in illumination spectrum

In this section, we qualitatively compare color mapping per-

formance in case of illuminant spectrum change. Original

images are shown in Figure 4. In this figure, given the im-

age under reference illuminant, we apply color mapping

on the test image that we acquired under “Blue”, “Red’,

and “Cyan” illuminants. We used led panels from Elation

(TVL2000), and color spots from Spectral (M800 Tour) &

Flat Par (TRi7x). We controlled these light sources by a

MAYA plugin. These images were captured by a CANON

7D camera. The results after color mapping are presented in

Figure 5. Like previous experiment, the method from Pitie

et al. [24] results into clearly visible artifacts in Figure 5.

The method from Reinhard et al. [27] also fails because

their simple model of scaling mean and variance cannot

capture illuminant spectrum change. The method from Ha-

cohen et al. [9] also fails. For example, in the first column

of Figure 5, notice the remaining color differences on the

skin tone of the person. On the other hand, the fourth col-

umn of Figure 5 shows that our method visually performs

well compared to other methods.

4.2. Quantitative results

Since qualitative results might be subjective and difficult

to evaluate, in this section, we provide quantitative results

of our color mapping method. Since the method from Pitie

et al. [24] creates disturbing artifacts, we no longer report

performance for this method in this section. We continue

to compare our method with the method from Hacohen et

al. [9] and Reinhard et al. [27]. To report quantitatively,

ground truth is required.

Ground truth: Let us consider a static scene acquired

under two different illumination conditions (illum1 and

illum2) and from two different viewpoints (viewpoint1
and viewpoint2). Under viewpoint1 and illuminant

illum1, a first image (Img1) is captured. Next, under

viewpoint2 and illuminant illum1, a second image (Img2)

is captured. As Img1 and Img2 are taken under the same

illumination condition (illum1) and that they represent the

same scene and we assume lambertian surface, their colors

are consistent even though the two viewpoints are different.

A third image (Img3) is acquired under the same viewpoint

as for the second image (i.e. viewpoint2) but under illumi-

nant illum2. As Img1 and Img3 are taken under different

illumination conditions (illum1 vs. illum2), their colors

are different. Now, if we consider that Img1 is the ref-

erence view and Img3 is the test view, then Img2 is the

ground truth.

Evaluation metric: We evaluate the performance using

the remaining color differences with respect to the ground

truth. Taking the average for the whole image provides the

overall remaining difference,

μΔRGB =

∑M,N
i,j=1 ΔRGB

M ∗N (4)
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(A) Hacohen et al. [9] (B) Pitie et al. [24] (C) Reinhard et al. [27] (D) our result

Figure 3: Resulting images after color mapping. See input images in Figure 2. Red rectangles show artifacts or strong

remaining luminance differences. Method from Pitie et al. [24] results into clearly visible artifacts. Method from Reinhard

et al. [27] over-compensate or under compensates. On the other hand, our method as well as method from Hacohen et al. [9]

comparatively well compensate the color differences for these test images.

(A) Reference illuminant (B) “Blue” illuminant (C) “Red” illuminant (D) “Cyan” illuminant

Figure 4: Input images for color mapping acquired under several illuminant spectra and from different viewpoints. These

input images have strong cross-channel color differences. See the results after color mapping in Figure 5.

Here, M ∗ N is the total number of pixels in the image.

ΔRGB(i, j) is the euclidean distance in RGB color space

between mapped color from test view and ground truth view

at (i, j) pixel location. We compare several color mapping

methods by comparing their μΔRGB . Note that, other met-

rics such as perceptual metric CIE ΔE00 [17] can be used

as well.

Let us first report the case of illumination spectrum and

intensity change. Figure 6 provides test images having

ground truth. In these test images, there is a change in spec-

trum, intensity as well as viewpoint. Like previous experi-

ments, given the reference images, color mapping is applied

864864



(A) Hacohen et al. [9] (B) Pitie et al. [24] (C) Reinhard et al. [27] (D) Our result

Figure 5: Results after color mapping. Input (reference and test) images having illumination spectrum difference are shown

in Figure 4. Visually compare these results with Figure 4 (A). Like previous case, method from Pitie et al. [24] have shown

strong artifacts. Method from Reinhard et al. [27] has also failed since their model is too simple to capture such illuminant

spectrum change. Method from Hacohen et al. [9] has also failed as the resulting difference is visible on the skin tone. We

show red rectangles to point out artifacts or strong remaining luminance differences.

to the test images. Error maps representing by remaining

ΔRGB are shown in Figure 7. These error maps quanti-

tatively show and localize the remaining error after color

mapping where the gray values correspond to ΔRGB. The

lower the ΔRGB, the darker is the error maps, the better

is the performance. Quantitative result in Figure 7 confirms

that our method compensate colors better than both Haco-

hen et al. [9] and Reinhard et al. [27]. This proves the

robustness of our method to strong cross-channel and non-

linear color change.

We now look at quantitative results in case of more com-

plex color change. Figure 8 shows the reference image un-

der “white” illuminant, but the test images under “yellow-

ish” illuminant. Furthermore, in these test images of Figure

8 (A) to (E), we changed the camera white balance from

7000k to 3000K during the capture with a CANON 7D cam-

era. This produces yellowish (Figure 8 (A)) to blue-wish

(Figure 8 (E)) images.

Given the reference image as example, color mapping

is applied on the test images. After that, we compare the

color mapping results with the ground truth that produce er-

ror maps like the previous experiment. For each method,

and each test image of Figure 8, we calculate μΔRGB us-

ing Eq. 4. This produces the error bar which are shown

in Figure 9. Lines on the error bars correspond to 1 stan-

dard deviation. The error bars in Figure 9 shows significant

improvement of our method compared to other mentioned

methods from 7000K to 4000K. This proves the robustness

of our method to strong cross-channel as well as nonlinear

color change.

4.3. Discussion

Our first observation from these experiments is that

method from Pitie et al. [24] as well as Reinhard et al. [27]

can compensate simple color changes. However, in case of a

complex color change such as cross-channel change (e.g. il-

lumination spectrum), these methods fail. Particularly Pitie

et al. [24] often results into disturbing visual artifacts. Rein-

hard et al. [27] fails because of their too simple model that

can not capture nonlinear and cross channel color change.

As a result, method from Reinhard et al. [27] often re-

sults over-compensation or under-compensation especially

in case of nonlinear and cross channel color change. The

advantage of both Pitie et al. [24] and Reinhard et al. [27]

is that their method do not require geometric feature corre-

spondences.

Method from Hacohen et al. [9] perform comparatively

better both in terms of color compensation and robustness
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(A) Reference (B) Test (C) Ground truth

Figure 6: Input images for color mapping having ground

truth. First column shows the reference, second column

shows the test and the third column shows the correspond-

ing ground truth. Between (A) and (B), there is a change

in spectrum and intensity. Between (D) and (E), there is a

change in strong viewpoint and spectrum. Lastly, between

(G) and (H), there is a change in focus in foreground vs.

focus in background with a change in spectrum.

Hacohen et al. [9] Reinhard et al. [27] Our result

Figure 7: Error maps produced by ΔRGB that localize the

remaining errors after comparing with the ground truth. The

lower the ΔRGB, the darker is the error maps, the better is

the performance.

compared to both Pitie et al. [24] and Reinhard et al. [27].

However, the method from Hacohen et al. [9] also fails in

case of cross channel change such as illuminant spectrum

change. This is because, their method failed to make feature

correspondences.

On the other hand, our method succeeds, thanks to its ro-

bustness to strong nonlinear and cross channel color change.

This robustness comes from the robust estimation of the

nonlinear channel-wise model followed by the linear cross-

channel model.

4.4. Limitations

Since the proposed method depends on feature match-

ing, color mapping scope is limited to scenes where such

matching is possible. We also noticed that feature matching

(sparse of even dense) might fail to make correspondences

for colors in the homogeneous part of the scene. Besides, in

our method, we estimate a single map for the whole image.

Therefore, our method might be limited to very strong lo-

cal color differences such as local hue shift caused by dras-

tic changes of illumination direction as well as spectrum

change or those produced by manual image editing.

4.5. Conclusions

In this paper, we have presented a color mapping method

for the compensation of color differences between images

utilizing sparse color correspondences.

Our color mapping method first selects color correspon-

dences using feature matches. Then we eliminate outliers

and fit a nonlinear channel-wise model. To model the cross-

channel change, we estimate a simple linear model.

We conducted experiments with images having illumi-

nant spectrum difference, imaging device difference and

imaging settings difference (e.g. white balance). Experi-

mental results show the robustness of our method compared

to the state of the art. This initial result is very promis-

ing since our method utilize only sparse color correspon-

dences. We conclude that dense color correspondences (like

Hacohen et al. [9]) are not necessary for color mapping. In

this work, we proved that robust color mapping can be esti-

mated from sparse color correspondences. The gain in per-

formance of our method comes from robust estimation of

nonlinear channel-wise model and the robust, linear cross-

channel model.
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