
 

 
Abstract 

 
We propose a novel video event retrieval algorithm 

given a video query containing grouped events from large 
scale video database. Rather than looking for similar 
scenes using visual features as conventional image 
retrieval algorithms do, we search for the similar semantic 
events (e.g. finding a video such that a person parks a 
vehicle and meets with other person and exchanges a bag). 
Videos are analyzed semantically and represented by a 
graphical structure. Now the problem is to match the graph 
with other graphs of events in the database. Since the query 
video may include noisy activities or some event may not be 
detected by the semantic video analyzer, exact graph 
matching does not always work. For efficient and effective 
solution, we introduce a novel subgraph indexing and 
matching scheme. Subgraphs are grouped and their 
importance is further learned over video by topic learning 
algorithms. After grouping and indexing subgraphs, the 
complex graph matching problem becomes simple vector 
comparison in reduced dimension. The performances are 
extensively evaluated and compared with each approach. 

1. Introduction 

Given a video as a query, finding semantically closest 
videos is an emerging research area as large-scale video 
data are generated and stored.  The objective of this study is 
to retrieve videos containing similar complex activities 
with the query video rather than finding visually similar 
videos. Challenges in this work are; (1) to retrieve relevant 
data efficiently in a very large scale of video data; (2) to be 
robust to video noises (e.g. scale, occlusion, and view-point 
changes) and systematic noises from not-so-perfect 
state-of-art object detection and tracking methods; and (3) 
to model any possible complex events even with limited 
number of semantic expressions of video events.  

Activities in a scene are classified into four categories 
based on complexity, (1) basic action, (2) action, (3) event, 
and (4) grouped event. Basic action involves a single agent 
with simple activities or gestures (e.g. walk, run, stop, turn, 
sit, bend, lift hands, etc.). The action is a single agent 

interacting with a single subject (e.g. carry a box, open 
door, disembark a car, etc.). The event is defined as a 
single or multiple agents interacting with a single or 
multiple subjects (e.g. Person_1 passes a ball to 
Person_2.). The grouped event consists of the two or more 
events occurring concurrently or sequentially (e.g. 
Person_1 disembarks Vehicle_2, meets Person_3, takes a 
bag_4 from Person_3, and then Person_3 walks away and 
Person_1 rides Vehicle_2 and leaves the scene).   

For a conventional video retrieval system, color (histogram 
or correlogram) and visual features (e.g. HOG, SIFT) are 
commonly used to find similar scenes [3][12][19] rather 
than activities. Especially in surveillance videos, since the 
activities are taken at the same sites, conventional retrieval 
methods cannot detect activities of interest. Meanwhile, 
Snoek et al. retrieve video events using time interval [18] 
and also propose video retrieval concept detectors which 
handle multi-modal queries and fuse them to find the best 
matching videos [17]. However, when the system fails to 
detect semantic event from the videos due to detection error 
or noise in a video, those videos will not be considered as a 
candidate. Our goal is, to retrieve a video with unknown 
grouped events regardless of systematic errors or missing 
evidences.  

In recent works, Markov Logic Networks (MLN) [14] and 
Stochastic Context Sensitive Grammar (SCSG) [22] are 
used for video data representation. SCSG constructs a 
scene parse graph parsing stochastic attribute grammars. 
Embodying SCSG, the And-Or graph (AOG) [20] is 
introduced for scene understanding and can flexibly 
express more complex and topological structures of the 
scene, objects, and activities. In this study, we model and 
represent objects and activities, and their spatial, temporal, 
and ontological relationships in a scene with And-Or 
Graph.  

When the activities are represented as a graph, finding a 
similar activity becomes matching similar graphs in video 
database. Graph matching includes two categories, exact 
matching and inexact matching. Exact matching requires 
isomorphism that vertices and connected edges need to be 
exactly mapped between two graphs or subgraphs. In 
addition, exact graph matching is NP-complete. On the 
other hand, inexact graph matching finds mapping between 
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subsets of vertices with relaxed edge connectivity. It finds 
suboptimal solution, instead, in polynomial time [7]. The 
condition for exact matching is quite rigid and makes it 
difficult to match graphs of videos, where the video, the 
2-D projection of 3-D world, has innate noises caused by 
occlusion, view-point and scale changes, which video 
analysis methods cannot perfectly handle. In addition, the 
most of query requires limited retrieval time. Therefore, we 
apply inexact graph matching. A substructure similarity 
search approach [21] include subgraph matching and 
indexing algorithm for fast and effective video event 
retrieval. A complex graph is decomposed into multiple 
subgraphs. Among the subgraphs, its importance (or 
selectivity) is determined by frequency over videos. 
However, the estimation of frequency is rather simple and 
the same weight is assigned for each sub-graph, which is 
not distinctive with each other. Therefore we propose to 
apply other probabilistic methods (e.g. tf-idf [16], 
pLSA[11], or LDA[2]) to determine the weight of each 
subgraph from graph database and group the related 
subgraphs.  

LDA is a generative model using Dirichlet prior. LDA has 
been once widely used for modeling documents [2], scene 
categorization [9], object recognition [10], and activity 
recognition [12][19]. For activity recognition, the video is 
represented by visual features (Spatio-temporal HOG or 
SIFT) and a complex event is learned from those set of 
features, called topics (or themes). However recognized 
activities are mostly simple gestures by a single human (e.g. 
running, jumping, or boxing), rather than complex grouped 
events which involves multiple agents and objects. The 
main drawback of LDA is that since all features are 
considered as separate features, the relationships of features 
are ignored. We plan to apply this topic learning approach 
while still keeping the relationship of feature pairs. 

We propose a novel algorithm to retrieve the semantically 
closest video from a video query which contains unknown 
grouped events. The video is analyzed and represented by 
scene grammars with And-Or Graphs (AOG) [20]. The 
graph provides a principled mechanism to list visual 
elements, objects, and activities in the scene and describe 
their relationships (see Figure 1). These relationships can 
be spatial, temporal, causal, logical, or ontological. For 
efficient graph matching, the graph is further decomposed 
to sub-graphs and then indexed [4]. The sub-graphs are 
further learned and categorized in unsupervised manner 
using Latent Dirichlet Allocation (LDA) [2]. The novelty 
of this study is that: (1) unknown grouped video events 
with missing evidences are represented by a set of 
subgraphs; (2) contrasting other subgraph matching 
algorithms, subgraphs are grouped and matched by indexes 
after dimensionality reduction; and (3) the weights of 
subgraphs are learned based on their importance in video 
event corpus. The benefits of our method are: (1) Unknown 

and untagged grouped events can be matched; (2) Videos 
with both long and short duration events can be analyzed 
and matched by semantic reasoning (3) Even though video 
analyzer fails in finding the correct event, the sub modular 
activities of the event can be matched to find a similar 
event; (4) Combination of LDA and subgraph matching 
reduces disadvantage of each method and boost synergy of 
their advantages.  

 
Figure 1. Representation of loading event using Spaio- 
Temporal And-Or graph. The graphical data is indexed by 
sub-graphs for efficient and robust search. 

2.  Video Activity Analysis 
The And-Or Graph serves as a framework for analysis, 
extraction, and representation of the visual elements and 
structure of the scene, such as the ground plane, sky, 
buildings, moving vehicles, humans, and interactions 
between those entities. Image content extraction is now 
formulated as a graph parsing process to find a specific 
configuration produced by the grammar that best describes 
the image. The inference algorithm finds the best 
configuration by integrating bottom-up detection and 
top-down hypotheses. As illustrated in Figure 1, using a 
traffic scene as an example, bottom-up detection includes 
classification of image patches (such as road, land, and 
vegetation), detection of moving objects, and 
representation of events, which generate data-driven 
candidates for scene content. Top-down hypotheses, on the 
other hand, are driven by scene models and contextual 
relations represented by the AOG attribute grammar, such 
as the traffic scene model and human-vehicle interaction 
model. The fusion of both the bottom-up and top-down 
approaches results in a more robust video content 
extraction.   

2.1.  Scene Element Extraction 

Analysis of urban scenes benefits greatly from knowledge 
of the locations of buildings, roads, sidewalks, vegetation, 
and land areas. Maritime scenes similarly benefit from 
knowledge of the locations of water regions, berthing areas, 
and sky/cloud regions. From video feeds, a background 
image is periodically learned and it is processed to extract 
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scene elements. We first perform over-segmentation to 
divide the image into super-pixels using the mean-shift 
color segmentation method. Since adjacent pixels are 
highly correlated, analyzing scene elements at the 
super-pixel level reduces the computational complexity. 
For each super-pixel, a set of local features is extracted and 
super-pixels are grouped by Markov Random Field and 
Swanson Cut [1]. The example image of extracted scene 
elements is shown in bottom left of Figure 1. The extracted 
background scene element helps classification and tracking 
of a target in the scene after transferred to an action 
recognition routine.  

2.2.   Action recognition 

The video from the calibrated sensor is processed and 
metadata of target information is generated by detection, 
tracking, and classification of targets [4][6]. The metadata 
consists of a set of primitives, each representing target ID, 
target’s classification type, timestamp, bounding box and 
other associated data for a single detection in a video frame. 
From metadata, basic actions such as appear, move, or stop 
actions are further recognized by analyzing the 
spatio-temporal trajectory of a target. This is the most time 
consuming process in the system. To process vast amount 
of video data, MapReduce framework 
(http://hadoop.apache. org) is applied to detect basic 
actions in video data in a distributed system.  

2.3.   Event Recognition 
After recognizing basic actions, event related context is 
extracted, including: (i) agent (human, vehicle, or general 
agent), (ii) basic actions of agent (appear, disappear, move, 
stationary, stop, start-to-move, turn, accelerate, decelerate, 
etc.), (iii) properties of events such as time (in UTC) and 
location (in latitude/longitude), and (iv) subjects (human, 
vehicle, bag, box, door, etc).   
Objects, activities, and spatial (far, near, beside) and 
temporal (before, after, during, etc.) relationships are 
represented by a parsed graph after parsing And-Or graphs 
of complex events. From training data, parameters are 
learned (for example, threshold values of location and time 
are learned to determine spatial and temporal relationships), 
and the structures of And-Or-graphs of the following 
activities from basic actions to events are built especially 
for video surveillance applications: 

• Basic action: stop/start-to-move, turn, accelerate/ 
decelerate, hold-bag, carry-box, etc.   

• Action: approach / move-away, lead / follow, catch-up, 
over-take, meet, etc. 

• Event  
• human-object interaction:  
� load / unload  

� hand-over 
� open/close door/trunk 

• human-vehicle interaction:  
� embark / disembark  
� park (a person disembarks a vehicle and the vehicle 

remains stationary.) / ride (a vehicle was stationary, 
a person embarks the vehicle, and the vehicle 
leaves.)  

� drop-passenger (a person disembarks a vehicle and 
the vehicle leaves.) / pickup-passenger (a vehicle 
arrives, a person embarks, and the vehicle leaves.)  

� loiter-around  
• multi-human-vehicle interaction: switch-driver, 

convoy, queuing. 
• Grouped Events: combination of multiple events. 

Every And-Or graph of listed activities is parsed to infer the 
events of each video data.  We use the simplified 
Earley-Stolcke parsing algorithm [8] to infer an event 
based on a particular event grammar iteratively. Figure 2 
illustrate a parsed graph of a pick-up event. When a vehicle 
appears in the scene and stops, a human approaches the 
vehicle and disappears, and then the vehicle leaves the 
scene, this event is defined by the pick-up event AOG and 
represented to the parsed graph. This semantic reasoning 
may assist videos with both long- and short-term activities 
to be matched robustly.  

 
Figure 2. Inference of a pick-up event using AOG. 

2.4. Group Events  

After inferring pre-defined events, a pair of events is again 
connected by checking spatial or temporal relationship of 
those events. By doing so, spatially close events or 
temporally sequential events are connected each other to 
build a grouped event. This is the important step to keep 
any unknown event and discover presumably higher-order 
complex event. The retrieval of those grouped events from 
the large scale video database is the objective of this work.  

3.  Video Event Modeling using Sub-Graphs 

Inferred scene structure and complex events in videos are 
represented by relational graphs and saved in database. 
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When a video is provided as a query, the video is processed 
to a set of parsed graphs describing activities. Therefore, 
querying a video becomes querying graphs using similarity 
search in graph database. This involves matching nodes and 
edges in graphs with similar attributes and topological 
structure. As discussed before, exact graph matching 
requires NP-complete complexity of computing time and 
yet still be vulnerable to system noises. Therefore, we 
approach this problem to using inexact graph matching 
method with subgraph indexing. In spectral graph theory, 
spectral decomposition is used to represent graphs in a 
vector space which encodes important structural properties 
of the graphs. Shearer et al. used subgraph indexing for 
video retrieval as well [15]. However, similar videos are 
retrieved by simply finding the largest common subgraph. 
We propose a new graph indexing method for 
video-content retrieval. A visual scene can be characterized 
by a set of subgraph structures. The subgraphs are indexed 
and further grouped by topics using LDA. The topics are 
then represented by a feature vector where each entry 
corresponds to topic distributions of video events. 
Matching is simply done by vector comparison. As feature 
vectors are pre-computed for all candidate graphs, 
searching is very efficient. A schematic illustration of this 
framework is shown in Figure 3.  

 
Figure 3. Scalable content indexing and retrieval using graph 
substructure similarity search. Indexed features are used to 
represent semantic labels and sub-graphs. 

3.1.  Subgraph Indexing 
All events that occurred in a video are parsed as a graph. A 
graph G=(V, E) is defined by a set of nodes V and a set of 
edges E. In the graph, each node v∈V represents an agent 
or an event, and each edge e∈E corresponds to the 
relationship between (1) two objects (e.g. ontological 
relationship), (2) an event and an object (e.g. has 
relationship), or (3) two events (e.g. spatio-temporal 
relationships).  An example of a parsed graph is shown in 
Figure 4 illustrating “a vehicle stops and a person comes 
out.” 

Then, the graph G is decomposed to subgraphs. First the 
node is selected for one-node subgraphs, then two-nodes 
connected with an edge are extracted for two-node 
subgraphs, and then n nodes connected by edges are formed 
for n-node subgraphs. Figure 5 shows the decomposed 

subgraphs of a single graph in Figure 4. Figure 5-(a) shows 
one-node subgraph, Figure 5-(b) shows two-node 
subgraphs, and Figure 5-(c) shows three-node subgraphs. 
After that, each subgraph is indexed and saved in a 
subgraph feature vocabulary.  

 
Figure 4. A parse graph for a complex event (disembark event)  

 
(a) Subgraphs with one node 

 
(b) Subgraphs with two nodes 

 
(c) Sample of Subgraphs with three nodes 

Figure 5. Example of a set of subgraph features from the 
graph in Figure 4. 

3.2. Subgraph Matching 
After converting video data to a graph, the video event 
search problem between query video and videos in database 
becomes the graph matching problem. Given a query graph, 
Gq, finding the closest graph from graphs in database, DB, 
is determined by maximizing energy function E. 

),(max)( rqDBrq GGEGQ
∈

=            (1) 

where Gr is one of graphs in the video repository DB. A 
graph with maximum energy is selected as a matching 
graph.  Now we define the energy function E as subgraph 
matching: 
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where E is the correspondence energy between two graphs, 
Gq and Gr. gq is a set of subgraphs of Gq and gr are 
subgraphs of Gr. x∈(0,1) (x=1 when there is matching 
subgraph in both Gq and Gr, x=0 otherwise) indicates 
corresponding subgraph features with one node xa, two 
nodes xab and n nodes xab…n. in both Gq and Gr. θ  is a weight 
for the correspondence.   

In Equation (2), the graph matching problem is 
decomposed by matching subgraphs with one node (first 
term), two nodes (second term) or n nodes (last term). More 
nodes in subgraph represent more complex relationships 
among the nodes. However, computational time and the 
number of subgraphs increase exponentially as the node 
size increases. More subgraphs can have more redundant 
and conceptually duplicated subgraphs. In experiment 
results in Figure 11, subgraphs with one and two nodes 
were optimal on performance, speed, and memory for video 
event search.  

After indexing subgraphs, the equation becomes much 
simpler since a set of subgraphs in a video are represented 
by a vector.  
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where qs is an indexed subgraph in a query video, rs is an 
indexed subgraph in database, the size of subgraph 
vocabulary is S, x(qs, rs)=1 when both qs and rs exist, 0 
otherwise.  

In Equation (3), the most important factor is θ. When a 
node is a visual feature, θ  can be appearance measure 
(shape context, SIFT, HOG, or color histogram, or 
bag-of-words in a bounding box of human, vehicle, or 
object) or geometric distance. When a node is a semantic 
node,  θ can be ontological distance (the distance in an 
ontological family tree such as WordNet) or importance of 
the subgraph itself.  

Since a node represents semantic context in our case, we 
use θ  as weight or importance of subgraphs. Rather than 
having one θ  value for a corresponding subgraph, we set 
different values with respect to each video. We learn such θ  
from the corpus of video database, applying tf-idf, pLSA, 
and LDA.  

Tf-idf finds relationship between word and document using 
frequency in a document and inverse document frequency 
in a discriminative manner. In our application, tf-idf builds 
a subgraph-by-video matrix which defines correlation θ 
between subgraphs and videos.  

}:{
log

max vsv
V

f
f

wvvw

sv
sv ∈∈

⋅=
∈

V
θ                  (4) 

Where V is video corpus and V is its number. fsv is 
frequency of subgraph s in video v. The first term is 
subgraph frequency and the second term is inverse video 
frequency. Unlikely having constant θ over a video as 
shown in Equation (3), frequency and video related matrix 
θ is defined. The matrix is shown in Figure 6-(a). However, 
the constructed matrix is too large and characteristic of 
documents are not captured.  

 
(a) A subgraph-by-video matrix of weight parameter θ  in 
tf-idf. The dictionary size is SV. 

 
(b) A subgraph-by-topic matrix and topic-by-video matrix 
in pLSA or LDA. The dictionary size is (ST+VT). 
Figure 6. Illustration of database size comparison between 
tf-idf and LDA or pLSA. 

To reduce the large scale matrix and find characteristics of 
each video, pLSA is introduced [11]. In pLSA, a video is 
modeled by a set of latent variables (so called topics) which 
is built from Gaussian mixture of subgraphs. This mixture 
model divides a big subgraph-by-video matrix to two 
smaller matrices, subgraph-by-topic and topic-by-video. 
However, pLSA has an issue such that the number of 
parameters increases as data size increases, which may 
cause overfitting and requires more time for re-learning 
new dataset [2].   

To overcome pLSA’s issues, LDA is designed. Like pLSA, 
LDA also reduces dimension, and model the topics as 
shown in Figure 6-(b). Besides, generative semantic 
meanings are modeled from a set of video and subgraphs. 
Another main advantage of LDA is that when a new video 
is added in database, update of the system is much faster 
and simpler than other methods. Applying LDA, the energy 
function is further simplified to compare topics rather than 
all subgraphs. In LDA, topic distribution θv ={θv1, θ v2, 
…,θvt …,θvT} is learned, where θvt represents relationship 
between video and topics. The learned dictionary is 
illustrated in Figure 6-(b)-left. The other parameter, θts, 
represents relationship between topics and subgraphs (See 
Figure 6-(b), right). We infer these parameters using 
EM-algorithm as discussed in [2].  

791791



 

 

Using LDA, all subgraphs are transferred to topics and 
topics are, again, indexed and modeled in a topic vector. 
After all, subgraph matching is simply done by comparing 
topic distribution over videos.  

),(),(),( rqrqrq DistTTEGGE ��=≈      (5) 

where θq is topic distribution vector of Gq and θr is topic 
distribution vector of Gr. Dist(⋅) is the distance function 
between θq and θr. The distance function can be L-1, L-2, 
Chi square or earth mover’s distance. The performance of 
each distance function is discussed in next section.  

4.   Experimental Results 

We implemented a video event search system that accepts 
video as a query and provides closest videos in a sorted 
order. For learning, a video is fed to multiple processors 
and processed to detect scene elements, actions, and 
complex events by parsing AOG. The detected events are 
described in parsed graphs and subgraphs are built and 
indexed. Those processes are performed in a distributed 
computing system for the fast and reliable system. After 
that, the subgraph features are learned to extract topic and 
learn parameters. The learned parameters are used for 
video-to-video search. The pipeline is shown in Figure 7.  

 
Figure 7. Pipeline of video event search engine. 

In our knowledge, there was no baseline method for 
complex grouped video events retrieval or those dataset for 
evaluation, even though the need of video event search 
increases. Using one node subgraph can be considered as 
bag-of-word based method as a baseline method. 
TRECVID dataset (http://trecvid.nist.gov) is widely used 
for video retrieval evaluation. However, the dataset focuses 
on detection of basic actions (e.g. PersonRun, CellToEar, 
or Pointing) or scene categorization rather than recognition 
of grouped events. For that reason, TRECVID dataset does 
not fit in this evaluation. Therefore, we used 262 
web-collected surveillance video clips including VIRAT 
dataset containing grouped events [13]. The play time of 
each video clip is around 2 minutes and they are mostly 
taken at different sites in different times. Among them, 212 
videos are selected for training and database videos and 
other 50 video clips, from which majority of human 
annotators could select their closest video in database, are 

selected as test query videos. In the query videos, the events 
includes from basic actions (e.g. “vehicle-passing-by”) to 
grouped events (e.g. “vehicle park, a human_A get off, 
unload box, human_B meet human_A, human_A hand over 
a box to human_B, human_B disappear, human_A ride the 
car, the car disappear.”). We plan to have this dataset 
available to the public.  

 
Figure 8. Snapshots of some test videos 

After processing training video dataset, the number of one 
node subgraph was 33, that of two node subgraphs was 
1384, and that of three node subgraph was 37431 as shown 
in Figure 9.   
 

 
Figure 9. The example of subgraphs with one, two, and three 
nodes from video surveillance data. 

 
Figure 10. Example of topics and nine most relevant 
subgraphs for each topic. 

We evaluated performance with different topic size from 10 
to 1000, the performances were quite similar but 100 topics 
gave the best result. Therefore, we set topic size to 100. The 
example of extracted topics after applying LDA is shown in 
Figure 10. Topic_11 consists of subgraphs with events with 
human and vehicle. Topic_14 is about vehicles’ lead/follow 
events, Topic_76 consists of a vehicle’s turning events.  

We also evaluated our video event retrieval algorithm using 
subgraph indexing with different (1) subgraph node sizes 
(2) weighting and grouping schemes with tf-idf, pLSA, and 
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LDA, and (3) distance functions. We conducted 
experiments with all three dimensions, but some of them 
are shown here for clearer display.  

Experiment 1: Different subgraph node sizes  

The retrieval rate with different node size is shown in 
Figure 11. The retrieval rate shows the correct matching 
rate between query video and corresponding groundtruth 
video as the retrieved rank increases. Using one-node 
subgraphs as features can be considered as a general 
bag-of-word based approach. Using two-node subgraphs 
denotes retaining relationship between two nodes. 

  
Figure 11. Retrieval rate using 5 different combinations of 
subgraphs’ node size (one, two, three, one+two, and 
one+two+three nodes) using LDA. 
From the evaluation results, we could observe that the 
bag-of-word method with a single node gives worst results 
as the relationship of nodes is ignored. On the other hand, 
the subgraphs with a single node and two nodes gave best 
results. The performance gets slowly worse as node’s size 
increases. The larger size of nodes captures higher-order 
relationships but exponentially increased subgraphs are 
more conceptually duplicated each other and become less 
discriminative across video corpus. An application, which 
requires more complex relationships among nodes, may 
require subgraphs with more nodes. We conducted the 
experiments with tf-idf and pLSA with varying node sizes 
and they provided the same trend, where one+two nodes 
gave the best retrieval rate.  

Experiment 2: tf-idf, pLSA, and LDA  

The performance of tf-idf, pLSA, and LDA are shown in 
Figure 12. The experimental results show that LDA models 
video events best among three of them. Using LDA with 
1+2 nodes, 22 out of 50 (44%) videos are correctly 
retrieved as a first rank and 40 videos (80%) are correctly 
retrieved within top 20 ranks, which can be shown in a first 
page in our browser-based video retrieval system. Other 10 
videos retrieved with lower ranks were videos containing 
only common events which most of database videos 
contain such as car-passing-by or human-walk.  

 
Figure 12: Retrieval rate of LDA, tf-idf and pLSA with 1+2 
nodes are compared as video rank is increased. 

Experiment 3: Distance functions  

We compared five different distance functions of LDA’s 
topic distributions or tf-idf’s subgraphs in Equation (5), 
Euclidean, Earth mover distance, Cosine, L1 and Chi 
square. Their performances are shown in Figure 13. LDA 
with Chi square and L1 distances gave the best results 
among 5 distance metrics. The results were similar for 
pLSA.  

 
Figure 13. Retrieval rate with different distance functions, 
Euclidean, Earth mover distance, Cosine, L1 and Chi square 
with either LDA or tf-idf.  
Examples of query and best two matching videos are shown 
in Figure 14. The query video contains, “a car appears, the 
car stops, a human dismounts the car, the human comes 
back to the car, the human mounts the car, the car goes 
away.” as shown in Figure 14-(a). After subgraph matching, 
the first rank video is shown in Figure 14-(b), which has 
exactly the same event including some other events (“other 
vehicles are parked.”). The second rank video is in Figure 
14-(c), which has quite similar events however two 
vehicles and two persons are involved. Since substructures 
of a graph are matched, a set of graphs with similar 
subgraphs can be extracted with high matching score. 
However, since Figure 14-(b) keeps more structurally 
similar relationships among the nodes, it gets higher score 
than a set of subgraphs in Figure 14-(c).  

The average time of processing a query video was around 
10 minute for 2 minute video using 2.8 GHz Intel Xeon 
CPU spending most of times on video analysis and basic 
action recognitions. For the pre-processed query videos, the 
retrieval time was less than 1 second over networks.  
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(a) A query video (a car stops, a person gets off the car, he
comes back to the car, he gets into the car, and the car leaves.) 

(b) First rank video, which contains the same events with a
query video as well as other events (other car parks). 

(c) Second rank video, which has different events but very
close to the query event. (A person gets into a different car.) 

Figure 14: Snapshots of query and retrieved video clips. The 
yellow bounding boxes indicate noisy data.  

5.  Conclusion 
A novel framework for video modeling and video event 
search has been developed. The closest grouped events are 
retrieved even with noises from data and missing detections. 
Video event retrieval is converted to a graph matching 
problem and solved using novel subgraph grouping and 
matching. Topics of each subgraph are modeled by a 
generative probabilistic framework and relevance and 
importance of topics are learned over videos. The 
experimental results show that subgraphs with one and two 
node sizes, LDA for learning, and Chi square distance 
function over topic distributions provided best performance. 
The method and system were robust with most of both short 
and long duration videos. When the event of interest is 
spatially and temporally scattered (e.g. a human take a bag 
in one city and put it down in the other city 2 hours later.), 
those spatial and temporal relationships needs to be 
connected for recognition. The experimental data was 
mostly surveillance videos. Nonetheless, the method can be 
applied to any type of videos such as news, movies, or 
personnel video clips when their video analysis methods 
are available. The proposed method can be also extended to 
matching on any graphical structure. Future research 
includes combining user’s text description of a video and 
automatically extracted semantic context for video event 
search. Other research contemplates extending the 
subgraph indexing algorithm to other applications such as 
multiple target tracking across multiple cameras. 
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