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Abstract

We propose a direct method for incrementally estimat-
ing a regular-grid ground surface map from stereo image
sequences captured by nearly front-looking stereo cameras,
taking illumination changes on all images into considera-
tion. At each frame, we simultaneously estimate a camera
motion and vertex heights of the regular mesh, composed
of piecewise triangular patches, drawn on a level plane in
the ground coordinate system, by minimizing a cost repre-
senting the differences of the photometrically transformed
pixel values in homography-related projective triangular
patches over three image pairs in a two-frame stereo im-
age sequence. The data term is formulated by the Inverse
Compositional trick for high computational efficiency. The
main difficulty of the problem formulation lies in the insta-
bility of the height estimation for the vertices distant from
the cameras. We first develop a stereo ground surface re-
construction method where the stability is effectively im-
proved by the combinational use of three complementary
techniques, the use of a smoothness term, update constraint
term, and a hierarchical meshing approach. Then we ex-
tend the stereo method for incremental ground surface map
generation. The validity of the proposed method is demon-
strated through experiments using real images.

1. Introduction

3D reconstruction of ground surfaces is one of the fun-

damental problems of mobile robotics, especially for the

vehicles and robots traversing off-road environments. An

important requirement from mobile robotics is the regular

square grid representation of the ground surfaces, so-called

Digital Elevation Map (DEM) [9, 17], where the ground

geometry is represented by the vertex heights of a regular

squared grid drawn on a level plane in the world (ground)

coordinate system. A DEM can directly provide per-unit-

length gradients of the ground, which is desirable for vari-

ous real-time robot applications, including traversable area

detection, path planning, and map extension. Our ultimate

goal here is to develop an efficient method for incrementally

estimating a DEM of a large ground area, no matter whether

the target ground is off-road or not, from stereo image se-

quences captured by in-vehicle nearly-front-looking stereo

cameras.

A DEM can be estimated by fitting a point cloud to a

regular-grid surface model. Considered with the require-

ment of computational efficiency in robotics, a possible

choice is to fit a regular-grid surface to the sparse point

cloud estimated by an efficient stereo SLAM technique (e.g.

[4, 8]), or to the denser point cloud estimated at each frame

by a fast dense stereo method (e.g. [6,11,15]) followed by a

visual odometry technique (e.g. [7]). Although these meth-

ods are effective for building 3D maps in urban environ-

ments, the validity for ground 3D geometry estimation is

not sufficiently considered. For estimating ground surfaces,

a global stereo approach is preferable to the local/semi-

global approaches adopted in the previous methods, since

roads and off-roads often have weakly textured surfaces and

repeated patterns (e.g. wheel tracks). More importantly, for

fast cost aggregation, these fast stereo techniques implic-

itly assume that the target surfaces are nearly front-parallel.

This assumption is completely corrupted for the ground

surface observed from in-vehicle front-looking cameras, as

clearly depicted in [16].

Other than obtaining point clouds, our choice is to di-

rectly estimate a DEM and camera motion at each frame

from a stereo image sequence. Its core idea lies in the pre-

vious stereo methods [12,14] for static scenes, in which sur-

face model parameters are estimated by direct image align-

ment. In these previous methods, however, the objective

parameters are the depths of the regular-mesh vertices (or

control points) drawn on a reference image, engendering a

ground mesh irregularity such that the surface is more de-

tailed near to the camera and rough far from the camera,

when we simply apply the previous methods to the ground

surface viewed from front-looking cameras. Moreover, in
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outdoor environments, extending the standard direct meth-

ods to the simultaneous estimation of a ground surface and

camera motion from a stereo image sequence often fails in

image registration, because the scene brightness changes

dynamically and dramatically, especially when the sunny

condition varies under scattered clouds.

In this paper we propose an efficient direct method for in-

crementally estimating a DEM of a large ground area using

stereo image sequences captured by in-vehicle nearly-front-

looking stereo cameras, while taking illumination changes

on all images into consideration. At each frame, we esti-

mate the visible vertex heights of a square grid mesh, in

which each square is divided into two triangular patches,

drawn on a level plane in the ground coordinate system,

along with camera motion parameters and photometric pa-

rameters. Our cost function includes a data term represent-

ing the sum of the squared differences of photometrically

transformed pixel values in homography-related projective

triangular patches over three image pairs in the two-frame

stereo image sequence. For improving the computational

efficiency, the data term is formulated by the inverse com-

positional trick [1, 2, 12] for all objective parameters (i.e.

surface, photometric, and motion parameters).

The main difficulty of this problem formulation lies in

the instability of the height estimation of the distant ver-

tices from the camera. This is because the pixel numbers

in the image projection triangles of the distant patches are

too small to contribute to the vertex height measurements.

Although an additional smoothness constraint term some-

what improves the estimation stability, the use of only two

terms cannot control flaps of the surface in the distant part

through iteration optimization. Therefore, we first develop

a stereo direct method [13] for robustly estimating a DEM

(described in Section 2). We show that the stability can

be effectively improved by the combinational use of an ad-

ditional update constraint term and a hierarchical meshing

approach. We also demonstrate the usability of the stereo

method for mobile robots by showing traversable area de-

tection results on the estimated ground surfaces. Then we

extend this method for incremental DEM estimation (in

Section 3).

2. Stereo Ground Surface Reconstruction

2.1. Preliminaries

We define coordinate systems as shown in Fig. 1. The

coordinate relationships of the ground x = (x, y, z)T , a

reference camera x0 = (x0, y0, z0)
T , and the other camera

x1 = (x1, y1, z1)
T are expressed by x0 = Rx + t and

x1 = Rsx0+ ts, where Rs, ts,R, and t are assumed to be

known.

We set a square grid mesh composed of triangular

patches on the x-y plane of the ground system. Each patch
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Figure 1. Coordinate systems and ground mesh.

and vertex position in the mesh are respectively denoted

by Sn, (n = 1, · · · , N) and xv = (xv, yv, zv)
T , (v =

1, · · · , V ) where xv and yv are known. Let z ≡
(z1, z2, · · · , zV )T represent the surface parameter vector to

be estimated.

Let I0[u] and I1[u] be the pixel values (gray levels) of

the reference image I0 and the other image I1, respectively,

where u = (u, v)T denotes an image point. For avoiding

complexity, let u0 and u1 be in the canonical image con-

figuration under the assumption that the stereo cameras are

fully calibrated.

Considered with possible instability in the estimation of

a large number of surface parameters, the pixel value dif-

ferences between I0[u0] and I1[u1] at corresponding points

u1 and u2, mainly caused by the differences of device char-

acteristics, are undesirable, even if the differences are sev-

eral gray-levels, since the ground often have weakly tex-

tured surfaces. We adopt a widely-used photometric trans-

formation represented by I0[u0] = αI1[u1] + β, where

α and β denote gain and bias, respectively. We write

I0[u0] = P(I1[u1];α), where α ≡ (α, β)T represent the

photometric parameter vector also to be estimated.

2.2. Cost Function

We define a cost function as

C(z,α) = CD(z,α) + CS(z), (1)

where CD and CS denote a data term and smoothness con-

straint term, respectively.

The data term CD is the SSD (sum of squared differ-

ences) of the photometrically transformed pixel values in

the homography-related projective triangular patches be-
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tween I0 and I1.

CD =
∑
S′
n

∑
u∈S′

n

κu
(
I0[u]− P (I1[wn(u; z)];α)

)2
,(2)

where S′n represents the projection of the n-th triangular

patch on the reference image, and κu denotes a binary mask

indicating whether the pixel u is available or not (we set

κu by checking the visibility of each patch and whether the

norm of the image gradient vector at the pixel is smaller

than a pre-defined threshold or not. The former checking is

done in each iteration process). We denote by wn(u; z) a

homography transform function of a reference image point

u, dropped in the projected triangle of the n-th surface

patch. The function wn(u; z) is represented by a homogra-

phy matrix Hn expressed by

Hn = Rs + tsm
T
n (z), (3)

where mn denotes the n-th patch’s plane parameter vector

define in the reference camera’s coordinate system. We ex-

press by writing mn(z) that m is a function of the n-th

patch’s three vertex heights in z.

Since the mesh grid is regular, we adopt a simple

smoothness term representing the sum of the squared Lapla-

cian convolution outputs over the mesh.

CS = λS |Fz|2, (4)

where λS denotes a user-defined weight, and F denotes a

V×V matrix whose v-th row fT
v contains a 8-neighbor dis-

crete Laplacian kernel for the v-th vertex. More specifically,

the row vector fT
v has an element 1 at the v-th vertex po-

sition, elements −1/8 at the 8-neighbors, and zeros at the

others.

Since the smoothness term is defined in the surface pa-

rameter space, the smoothness constraints work uniformly

over the mesh. On the other hand, the difference of the sizes

of projected triangles between a surface patch near from the

cameras and that far from the cameras results in the stronger

contributions of the data term to the vertex height measure-

ments for near patches. This is actually somewhat desirable

because we can reconstruct in high precision the surface

shape in the front area, which is more important for robot

safety than a distant area, while the shape in the distant area

is over smoothed but robustly estimated. However, the sim-

ple use of the two terms is insufficient for solving this prob-

lem. This is because there is an ambiguity in the surface

reconstruction, such that the heights of neighboring distant

vertices can go up and down at the same time while keep-

ing flatness (i.e. both two terms take small values) during

iterative cost minimization. We effectively improve the es-

timation stability by the additional use of update constraints

and a hierarchical meshing approach as described later.

2.3. Optimization

2.3.1 Inverse compositional formulation

For high computational efficiency, we formulate the data

term by using the inverse compositional trick [1,2] for both

surface and photometric parameters and apply a Gauss-

Newton optimization algorithm.

We follow the work [12] for formulating the inverse

compositional expression for the ground surface vector z.

We define the additive update rule for the surface param-

eter vector as z̄ ← z̄ + Δz, where z̄ and Δz respec-

tively denote a current estimate and update of z. We de-

note by Δwn(u0, z̄; Δz) a local homography transforma-

tion, which is only valid for a small parameter space around

a given surface vector z̄. Under the compulsion that

(
wn(z̄) ◦Δwn(z̄; Δz)−1

)
(u0) = wn(u0; z), (5)

where ◦ denotes functional composition, the function

Δwn(u0, z̄; Δz) is represented by a homography matrix

ΔHn as

ΔHn = I − anR
T
s tsΔmT

n (z̄,Δz), (6)

where an =
1

1 + (mn(z̄) + Δmn(z̄,Δz))
T
RT

s ts
(7)

Herein Δmn(z̄,Δz) denotes an additive update of mn,

as a function of a current and update vectors of the three

vertices of the n-th patch. The additive update rule gives

Δmn � (∂mn/∂z)Δz.

On the other hand, we follow [2] and adopt the inverse

compositional update rule, ᾱ← ( ᾱ
1+Δα ,

β̄−Δβ
1+Δα )

T , where ᾱ
and Δα respectively denote a current estimate and update

of α. For a pixel value p this update rule meets

(
ΔP(Δα)−1 ◦ P(ᾱ)

)
(p) = P(p;α), (8)

where

P(p; ᾱ) = ᾱp+ β̄, (9)

ΔP(p; Δα) = (1 + Δα)p+Δβ. (10)

Then we rewrite the data term as

CD(Δz,Δα) =∑
S′
n

∑
u∈S′

n

κ(u)
(
ΔP (I0[Δwn(u, z̄; Δz)];Δα)−

P (I1[wn(u; z̄)]; ᾱ)
)2
.(11)

2.3.2 Constraint on Δz and hierarchical meshing

The iterative estimation only with the data term and smooth-

ness term still engenders flaps of distant parts of the surface

in each iteration. This is because there is an ambiguity due

to the recession of the data term in the estimation of dis-

tant vertex heights. For improving the estimation stability,
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we add the update constraint term representing the norm of

Δz.

CU (Δz) = λU |Δz|2, (12)

where λU is a user-defined weight. It is possible to use a

set of weights so as to enforce harder update constraints on

more distant vertices. Eq. (12) indicates that we simply

set identical weights considering that the recession of the

data term actually plays a similar role as stronger update

constraints on distant vertices.

A possible drawback of the update constraint term would

be slow convergence. However, this simple scheme works

very well for rapidly obtaining preferable reconstruction re-

sults, when we combine the term with a hierarchical mesh-

ing approach. We first roughly estimate the target ground

surface using a mesh with large squares and the level-of-

detail of the mesh is increased in stages (see Fig. 3) while

keeping the same λS and λU . In the hierarchical meshing

strategy, a current level-of-detail is initialized by using the

result from the previous rougher level-of-detail, in which

the data term is more dominant than the current level-of-

detail. Therefore, the role of the update constraint term is

not only to prevent the surface from flapping during iter-

ative minimization, but also to keep the current surface as

similar as possible to the surface estimated by the previous

level-of-detail with a more dominant data term.

2.3.3 Computation of Δz

The Gauss-Newton Hessian of the stereo ground surface re-

construction is the summation of three Hessian matrices de-

rived from the three terms. Although the data term is for-

mulated by the inverse compositional trick, unfortunately,

the Hessian of the data term should be re-computed in each

iteration process, since the local function Δwn(u0, z̄; Δz)
depends on a current estimate z̄ (Hessian matrices from the

other two terms are constant). However, when we write

∂I0/∂Δz = (∂I0/∂Δhn)(∂Δhn/∂Δz) where hn de-

notes 9-vector of the homography parameters of the n-th

patch, the pixel-dependent Jacobian matrix ∂I0/∂Δhn is

constant in each iteration, as indicated by [12]. On the other

hand, ∂Δhn/∂Δz, derived from Eq. (6), is not constant but

independent of pixel coordinates u. That is, thanks to the

inverse compositional trick, we do not need per-pixel Ja-

cobian computations but per-patch Jacobian computations,

which result in a much more computationally efficient algo-

rithm than the case without the trick.

The computational cost at each iteration is increased as

the mesh is detailed because of the increase of dimension of

the linear system to be solved and the number of per-patch

Jacobian computations. On the other hand, the number of

iteration we need at each meshing level is generally quite

few except the first roughest meshing level, since the resul-

tant surface of the previous level is always a good initializer

Ground mesh

R  , ts s

x3

x2

x0

I
0

I
2

I
3

R, t

x

At frame τ

At frame τ+1

R  , tg g

Figure 2. Moving stereo cameras

for a current one. In addition, for all meshing levels, the

per-pixel Jacobians are constant, and thus we do not need

any pre-computations at each meshing level except the first

one.

3. Motion Estimation and Map Generation
We extend the proposed stereo ground surface recon-

struction method in Sec. 2 to ego-motion estimation and

ground surface map generation. Fig. 2 shows the coordi-

nate relationships of the ground and moving stereo cameras

in consecutive frames. We estimate R, t between x0 and x2

(i.e. the left camera at frame τ and at frame τ +1), and then

update Rg, tg between x and x0 (i.e. the ground and the

left camera at frame τ ). Let a camera motion vector we es-

timate be μ ≡ (ωT , tT )T , where ω is a standard angle-axis

vector of rotation.

We denote by I2 and I3 the images taken by the left and

right cameras at time τ + 1. We also estimate the photo-

metric parameters α2 between image I0 and I2, and α2 be-

tween image I0 and I3, in addition to α1 between image I0
and I1.

3.1. Data term

We replace the data term in Eq. (2) with

CD =
∑
S′
n

∑
u∈S′

n

κu
∑

j=1,2,3

D2
j , (13)

where

Dj = I0[u]− P
(
Ij [w

(j)
n (z,μ)];αj

)
(14)

Herein we denote by w
(j)
n (z,μ) homography functions of

an image point u. The above expression is somewhat infor-

mal since w
(1)
n , identical to wn(u; z) in Eq. (2), dose not
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depends on μ. The functions w
(j)
n (z,μ) are represented by

homography matrices H(j)
n . In the case j = 3, we write

H(3)
n = RsR+ (Rst+ ts)m

T
n (z). (15)

Those in the cases of j = 1, 2 are derived from (15) by

setting R = I, t = 0 and Rs = I, ts = 0, respectively.

Although inverse compositional expressions and ESM-

based direct ego-motion estimation for single plane tracking

has been proposed (e.g. [5, 10]), these approach cannot be

directly applied to the case with stereo epipolar constraints

nor surface model parameter reconstruction. We rewrite

(14) into inverse compositional forms by using the same

manner to Eq. (5).

For the case j = 3, we write

D3 = ΔP
(
I0[Δw(3)

n (u, z̄, μ̄; Δz,Δμ)];Δα3

)
−

P
(
I3[w

(3)
n (u; z̄, μ̄)]; ᾱ3

)
, (16)

where Δw
(3)
n denots a local homography function. Then

Δw
(3)
n is represented by a homography matrix ΔH(3)

n as

ΔH(3)
n = (H(3)

n )−1H̄
(3)
n − I, (17)

where

H(3)
n = RsR̄ΔR+

(Rs(R̄Δt+ t̄) + ts)(m̄n +Δmn)
T , (18)

H̄
(3)
n = RsR̄+ (Rst̄+ ts)m̄

T
n . (19)

The dependency on Δz appears in Δmn(z̄,Δz). Those in

the cases of j = 1, 2 are also derived from (17).

Since the homography-based derivation indicates that we

do not need to compute per-pixel Jacobian matrices in each

iteration, the basic procedure in the optimization is the same

as the stereo case described in 2.3.3.

3.2. Step-by-step estimation for robustness

In the sequential estimation of a ground surface and cam-

era ego-motion using consecutive two frames, we can ini-

tialize the current surface at frame τ by using the surface

and motion parameters estimated at the previous frame.

However, a direct use of the cost (13) with the finest mesh-

ing level often engenders an undesirable result, especially

when optical flows between two frames are totally large

and/or scene brightness between two frames dramatically

changes. The former is possibly engendered by a relatively

large camera rotation, while the latter happens under clear

weather with scattered clouds or by auto-brightness-control

setting which we generally need on a standard camera for

outdoor scenes. On the other hand, the stereo reconstruc-

tion method using hierarchical meshing presented in Sec. 2

is quite robust and successful. Considered with these ad-

vantage and drawbacks, we use a four-step estimation algo-

rithm as follows.

We first estimate z and α1 by the method described in

Sec. 2. We initialize z at the finest meshing level by using

the result estimated at the previous frame and then down-

sample the mesh into the roughest mesh (we initialize the

height of each newcomer vertex by the same value at its

nearest vertex which has a height). Starting with the rough-

est meshing level is somewhat redundant, but we take the

advantage of its robustness for ground areas far from the

cameras.

Then we estimate α2 by the cost (14) of j = 2 and

μ = 0, using z estimated at the previous step. Generally, a

method for photometric parameter estimation based on [2]

is successful even for a somewhat large brightness change.

However, in an outdoor scene, an image brightness change

is often too conspicuous to simultaneously estimate with

motion parameters. For handling such a case we first adjust

total image brightness of the two frames. Even though the

camera motion vector is an incorrect one and the resultant

α2 would also be incorrect in this step, these parameters

are recoverable after the decrease of a too large brightness

difference.

Next, we estimate μ and α2 by the cost (14) of j = 2,

using the same z. We initialize μ = 0 and α2 by the one

from the previous step. We use a standared image pyramid

approach [3] for handling a large image motion.

Finally, we estimate all parameters by the cost (1) whose

data term is replaced with (13). We also add the update

constraint term in the optimization process. We initialize

α3 = α2, which is reasonable because image brightness of

two stereo images is generally almost the same.

3.3. Ground Surface Map Generation

At each frame, we estimate a ground surface in a cer-

tain ground area (a region in x-y plane) in front of the cam-

era. The area is simply defined by a rectangle, one of whose

side is parallel to the perpendicular projection of the camera

view direction on the x-y plane. For the first frame without

any previous frame result, we initialize z by using the cam-

era installation height (i.e. we set a current ground level in

the ground coordinate system). The ground area generally

includes invisible patches whose projection on the image I0
lie outsize of the image. The vertex heights of such patches

are estimated without the data term.

In each frame τ , we the compute weighted sums for all

vertices estimated.

ẑv =
∑
τ

ωτzvτ , where ωτ =

bvτ

d2
vτ∑τ

k=0
bvk

d2
vk

(20)

where zvτ is the height of v-th vertex estimated at τ -th

frame, bvτ denote a binary flag representing whether the

v-th vertex is visible at τ -th frame or not, and dvτ is the dis-

tance between the v-th vertex position and the optical center
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(a) Reference image (Left) (b) Initial mesh (2m sides) (c) Result (2m sides)

(d) Result (1m sides) (e) Result of (50cm sides) (f) Result (25cm sides)

(g) Result (12.5cm sides) (h) Patch clustering (12.5cm)

Figure 3. Result of the stereo ground surface reconstruction method (Sec. 2) using hierarchical meshing. The image (h) shows the angle

between the plane normal and the z-axis of each patch in the final hierarchical meshing results (g) (12.5cm). Blue: smaller than 10. Cyan:

10∼15, Yellow: 15∼20, Orange: 20∼25, Red: larger than 25 (in degrees).

of the left camera at τ -th frame. The computed height of

each vertex is set to a ground surface map.

4. Experimental results

We first show ground surface reconstruction results for

real environments by using the method described in Sec 2.

Then we show ground surface map reconstruction results

by using the method described in Sec 3. The algorithms

were implemented in C++-language with single thread and

run on a Windows7 PC (Xeon E3-1225 3.1GHz, 16GB).

All images with the size of 640×480 pixels were cap-

tured by Point Gray Research Bumblebee2 with the base-

line length of about 12cm, looking slightly down the ground

at the height of about 1.0m. We experimentally set λS =
104, λU = 5 ∗ 103 for all experiments.

4.1. Stereo surface reconstruction

Fig. 3 (a) shows an input reference (left) image which ob-

serves an asphalt road side where its ground level is raised

by a long time growth of a tree in the right side of the scene.

Fig. 3 (b) ∼ (g) shows results of our hierarchical meshing

approach for the scene of (a). We set a mesh in the range of

{−2 ≤ x ≤ 2} × {1 ≤ y ≤ 9} (in meters) in front of the

reference camera, and started the estimation algorithm with

a mesh grid with sides 2 meter long. At each level the target

surface was well approximated. The final mesh (g) (with

12.5cm sides) recovered the raised ground level in the cen-

ter area while keeping other flat areas very well. Fig. 3 (h)

shows an patch clustering result from the result (g). Each

color represents the angle between the plane normal of each

patch and z-axis. The blue-colored patches indicate safely

traversable area for mobile robots.

Fig. 4 shows three stereo reconstruction results for other
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(a) Reference image (b) Result of (a)

(c) Reference image (d) Result from (c)

(e) Reference image (f) Result from (e)

Figure 4. Results of the stereo ground surface reconstruction

method (Sec. 2) for other three scenes. Left: reference image.

Right: estimated surface and clustered colored patch.

scenes. Fig. 4 (a) shows an asphalt road with a sidewalk

bump in the right of the scene. The reconstruction result (b)

shows a preferably recovered the bump position. Fig. 4 (c)

shows an off-road scene with very small hole and hillock

on the ground surface, which were well recovered by the

proposed method as shown in (d). Fig. 4 (e) and (f) also

show an off off-road and a recovered large slope in the right

part of the scene. Note that these colored regular-grid repre-

sentations directly obtained from the stereo images are very

helpful for traversable area detection and path-planning of

robot systems.

The total computational time was about 1.2 second over

the five hierarchical meshing levels (the final mesh had 3185

vertices and 6144 patches).

4.2. Motion estimation and Surface map generation

Fig. 5 shows a sequence of surface and motion estima-

tion results for an off-road scene. The left image sequence is

shown in the right column, and the ground surface estimate

at each frame is overlapped in the right column. By using

the camera ego-motion parameters estimated at each frame,

these surfaces are well aligned on all images. We also

101-th frame

111-th frame

121-th frame

131-th frame

141-th frame

Figure 5. Surface and motion estimation result. Left: original im-

ages. Right: overlapped with estimated surface mesh.

show the ground surface map recovered from 300 frames in

Fig. 6. We can see small holes and hillocks on the ground

surface.

5. Conclusions
We have proposed a method for directly reconstruct a

ground surface with a regular square grid from stereo im-

ages. Then the method has been extended to motion es-

timation and ground surface map generation using stereo

606606



Figure 6. Ground surface map from Fig. 5. Two views from different positions

image sequences. We iteratively minimized a cost func-

tion composed of a data term formulated by the inverse

compositional trick, a smoothness term, and an update con-

straint term, by Gauss-Newton optimization and a hierar-

chical meshing approach. The experimental results have

shown that ground surfaces could be preferably recovered

from stereo images even in the parts far from the cameras.

The current computational time for surface reconstruc-

tion using stereo images is promising for real-time applica-

tions since it is possible to highly parallelize the per-patch

computation in our proposed method. Such an acceleration

and fusion with feature-based methods will be studied dur-

ing future research work.
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