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Abstract

Facial landmark detection in real world images is a diffi-
cult problem due to the high degree of variation in pose, fa-
cial expression and illumination, and the presence of occlu-
sions and background clutter. We propose a system that ad-
dresses the problem of head pose and facial expressions in
a guided unsupervised learning approach to establish mode
specific models. To detect 68 fiducial facial points we em-
ploy Local Evidence Aggregated Regression, in which local
patches provide evidence of the location of the target fa-
cial point using Support Vector Regressors. We improve an
earlier version of this approach by employing mode specific
models and substituting the original Local Binary Pattern
features with Local Gabor Binary Patterns. We show that by
using specialised model selection we are capable of dealing
with various head poses and facial expressions occurring in
the wild without the need for manual annotation of pose and
expression, and that our proposed detector performs signif-
icantly better than the current state of the art.

1. Introduction

Automatic face analysis is an important area of computer

vision due to the potential groundbreaking applications in

emotion recognition, face recognition, (mental) health as-

sessment, etc. One aspect of analysing the properties of

a face is by detecting certain unique fiducial facial land-

marks (see Fig.1) and using their locations and displace-

ments over time to infer higher level semantics. Hence al-

gorithms which can accurately detect such facial landmarks

are of great significance as they can improve the facial anal-

ysis in general. Detecting such points in “faces in the wild”,

that is faces in images captured in situations that would be

encountered by a real application, is particularly challeng-

ing because of the high variation in the appearance of fa-

cial points caused by different head poses and facial expres-

sions. These variations cause non-linear changes in the ap-

pearance of the area immediately surrounding a facial point,

making it difficult to learn facial point detectors.

There are generally two approaches to dealing with head

pose and facial expressions in facial point detection: para-

metric or mode specific. In a parametric approach, the ma-

chine learning model utilised is supposed to learn the differ-

ent modes of the facial point appearance and shapes from

a sufficiently rich dataset. However, even with training sets

containing many thousands of images these different modes

do not emerge [13]. On the other hand, mode specific ap-

proaches aim to explicitly separate the training data into

groups in which facial points have a significantly different

shape and/or appearance. Good examples of this are Cootes

et al. [7] and Zhu and Ramanan [22].

However, all existing methods for mode-specific facial

point detection use supervised learning to create the mode

specific models (MSMs). This is problematic, because both

pose estimation and facial expression recognition are noto-

riously time consuming and have relatively low inter-rater

reliability (i.e. noisy labels). This makes it hard to create

large datasets to train each separate MSM. In addition, su-

pervised labelling of the data is done under the assumption

that the different modes are known a priori, in our case the

head poses and facial expressions causing significant ap-

pearance and shape changes. Yet it is not at all evident how

to segment the space of head poses and expressions that best

separates the appearance and shape variation.

In the light of the shortcomings of existing approaches

to create MSMs, we propose to use guided unsupervised

learning, in which we employ unsupervised learning on a

different sets of points, depending on the type of mode we

aim to find (e.g. head pose, or facial expression). The unsu-

pervised learning is applied to the ground truth of the facial

points, and the goal is to reduce the shape variation in the

obtained modes as much as possible.

Our system builds upon the earlier works of [13] and [19]

but is extended to be able to cope with appearance variation

caused by non-frontal head poses and facial expressions by

using MSMs learned through guided unsupervised learning.

We also extend [13] to be able to detect 68 points, rather

than 20. This extension required us to formulate a hierar-
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chical Markov Random Field (MRF) shape model to ensure

the computation of the MRFs remains tractable. We com-

pared our new point detector to the current state of the art,

and evaluated it on the 300W dataset that forms the basis of

the 300 Faces in-the-Wild Challenge (300-W).

In summary, our main contributions are:

• Guided unsupervised learning of mode specific mod-

els (MSM), where each MSM corresponds to particu-

lar head pose and facial expression

• Learning a hierarchical shape model based on Markov

Random Field for increased run-time efficiency

• State of the art accuracy in facial point localisation

The remainder of the paper is as follows. Section 2

presents an overview of the related work. Section 3 de-

scribes our strategy to learn MSMs of head poses and facial

expressions, while section 4 details our full point detection

algorithm. Section 5 provides the details for our specific 68

point detection algorithm, which is evaluated in section 6.

Finally, we present our closing remarks in section 7.

2. Related work
Face shapes are typically modelled using a statistical shape

model [6]. Variations in face shape depend on two different

sets of parameters: rigid shape transformations are param-

eterised using a Procrustes transformation, i.e. using in-

plane rotation, translation and uniform scaling. Non-rigid

transformations are those that cannot be eliminated through

Procrustes analysis, and include transformations caused by

facial expressions and out-of-plane head rotations.

Other shape models include graphical models, where fa-

cial point detection is posed as a problem of minimising the

graph energy. For example, [22] use a tree to model the

relative position between connected points. Here conver-

gence to the global maximum is guaranteed due to the ab-

sence of loops in the graph. Similarly, a MRF-based shape

model was proposed in [13, 19], where the relative angle

and length ratio of the segments connecting pairs of points

are modelled, making it invariant to both scale and rotation.

A linear model might not be enough to approximate the

space of all 2D shapes in the presence of head pose and

expression variations. Both Cootes et al. [7] and Zhu &

Ramanan [22] propose pose-wise models to handle out-of-

plane head poses. Unlike our proposal, the poses are manu-

ally annotated, making it hard to collect a large set of train-

ing data. In addition, these approaches do not have MSMs

for facial expressions.

When it comes to the modelling of appearance, ap-

proaches vary significantly. The most common trends

with respect to the way texture information is used in-

clude Active Appearance Models (AAMs), Active Shape

Models (ASM)/Constrained Local Models (CLMs) 1, and

regression-based algorithms.

AAMs [14] try to match the whole face appearance with

a reference face model. To this end, the facial points are

used to define a mesh, and the appearance variations of each

triangle within the mesh is modelled using PCA. Face align-

ment consists on finding the optimal shape and texture pa-

rameters so that the reconstruction error is minimised. The

appearance models trained for AAMs are often incapable

of reconstructing generic faces. Furthermore, the error of

the reconstruction is typically measured using the L2 norm,

which is not a robust error measure. Therefore, reconstruc-

tion errors dominate alignment errors, resulting in a poor

performance. As a consequence, it is common practise to

apply AAMs in person-specific scenarios.

In the ASM framework, the face appearance is repre-

sented as a constellation of patches local to the facial points.

That is, face locations are represented by extracting a rep-

resentation over a local patch centred at it. A classifier is

trained per point to distinguish between the true target lo-

cation and surrounding locations. An example of a well-

optimised ASM is the work by Milborrow and Nicolls [15].

Alternatively, Saragih et al. [17] proposed the Con-

strained Local Models (CLM), where the authors use a non-

parametric distribution to approximate the response map.

Accordingly, the resulting gradient ascent shape fitting is

substituted by a mean-shift algorithm. It is therefore an ef-

ficient algorithm that can run in real time. Although the

fitting offered is not very precise, it can offer a good trade-

off as it can run in real time and offers high robustness. An

extension of the CLM was presented in [2], which substi-

tutes the Mean-Shift fitting by a discriminative shape fitting

strategy in order to avoid the convergence to local maxima.

The work by Zhu and Ramanan [22] can be categorised

within the ASM/CLM methodology as it uses local appear-

ance models. The authors use a tree-based shape model so

that the maximum a posteriori likelihood can be attained

without using an iterative procedure, and trained a large

number of pose-specific experts. This results in a very ro-

bust algorithm, capable of performing facial point detection

on faces with up to 90 degrees of jaw rotation. However, the

precision of the algorithm is often limited and, in particular,

it is usually unable to adapt to the presence of expressions.

In regression-based methods the local appearance is

analysed by a regressor instead of a classifier. More specif-

ically, given a feature vector, regressors are trained to di-

rectly infer the displacement from the test location to the

facial point location. Although regression-based models are

very recent, they are one of the dominating trends nowadays

and yield the best results to date [4, 5, 9, 13, 19].

A popular option is to use of random forests regression

and fern features to obtain shape estimates (e.g.[9, 4, 5]).

1CLMs can be considered a generalisation of ASM [17]
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Figure 1. Average shape of face in each cluster obtained for head

poses (second row) and facial expressions (third row) due to mouth

and eyes. The red coloured dots indicates the facial point which

were used to obtain that cluster.

This results in very fast algorithms, ideal for low computa-

tional cost requirements. Among them, [9] uses conditional

random forests to perform regression conditioned to the cur-

rent face shape. [5] uses random forest voting to generate

a response map in combination with the shape alignment

strategy of [17]. [4] uses random forests in a cascade regres-

sion strategy [10], and they directly regress the full shape,

avoiding the shape alignment step. Alternatively, [19] and

[13] use Support Vector Regression to obtain point location

estimates from stochastically selected local appearance, and

aggregate them into a final prediction.

3. Learning Modes

In order to learn relevant MSMs, modes related to pose and

expression were found by guided unsupervised learning and

pose and expression detectors were built from those data.

These detectors generated subsets of the training data to

learn the actual MSMs used in detecting facial landmarks in

a particular combination of head pose and expression. Par-

titioning the training data into these mode specific clusters

reduces the variance in the appearance and the relative lo-

cations of the facial points. This makes the learning process

more efficient and increases the point detection accuracy.

3.1. Learning head poses

We assume that the training images are only labelled with

facial points without any labels for head pose or facial ex-

pression. Since the head poses are not explicitly labelled,

a guided unsupervised approach is applied to learn a head

pose detector using the labelled facial points. It is guided in

the sense that only those points whose location depend on

the head pose, but not facial expression, are used to find the

top level modes of head poses. The x and y coordinates of

these facial points are concatenated to form a feature vector.

The feature vectors from all the face images in the training

set are clustered using Ward’s minimum variance algorithm

[20]. These clusters represent the modes in the data corre-

sponding to head poses.

Since the clustering is done on the basis of facial point

locations in the training set, it is not possible to classify a

test image into one these clusters as the facial points loca-

tions will be unknown in the test images. For this reason,

a mapping is learnt from the appearance features of a face

image to the modes of head poses obtained from clustering.

This mapping is learnt using a multi-class Support Vector

Machine (SVM).

3.2. Learning facial expressions

To further reduce the variance in the shape and appearance

of the facial points, the face images present in each head

pose cluster obtained in section 3.1 are clustered again to

learn the top level modes of facial expressions. Cluster-

ing for the expressions is done independently for differ-

ent expressive regions of the face, e.g. the mouth and the

eyes. In order to guide the expression clustering process

, only the points located in that specific region are used.

As features the concatenated pairwise distances between the

points from a region are calculated, and used again for clus-

tering using Ward’s method.

As with pose estimation, a mapping is learnt from the

appearance descriptors of a face image to the facial expres-

sion modes determined from the clusters. Sets of multi-

class SVMs are learnt separately for each set of clusters ob-

tained for a specific head pose mode, and separate SVMs

are learned for each expressive region. This results in learn-

ing MSMs which are specialised in estimating facial expres-

sions for a specific head pose.

4. Facial Point Detection

The facial point detection algorithm used here is the regres-

sion based Local Evidence Aggregation (LEAR) [13]. This

algorithm learns separate regressors for each facial point to

estimate the target point location. The output from these re-

gressors are used as evidences and an aggregation of these

evidences is used to detect the facial points. These regres-

sors are used in combination with a shape model to localise

the the facial points in a test image. The shape model is used

to avoid infeasible relative arrangements of facial points.
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Figure 2. Hierarchical grouping of facial points for computing

shape models.

4.1. Appearance model

The local appearance features xl at a test location l close

to the target location t are used to estimate the location of a

target facial point. For this purpose, Support Vector Regres-

sion (SVR) is used to learn 3 different regressors for each

facial point. One regressor rx is trained for predicting the

distance in the horizontal direction (Δx = tx − lx) and one

regressor ry for predicting the distance in the vertical direc-

tion (Δy = ty − ly). Hence the predicted target location is

given as t̂ = l + v̂, where v̂ = (Δx,Δy). A third regressor

rd is trained for assessing the quality of the prediction by

estimating the distance d̂ = rd(xt̂) between the estimated

target location t̂ and the true target location. The estimated

distance d̂ is used to calculate a likelihood given by:

flik(t̂) = e−d̂/σ2
lik (1)

where the variance σ2
lik is a fixed parameter.

4.2. Hierarchical shape model

A probabilistic graphical shape model is used to capture the

spatial relationship between the facial points. This shape

model is used to avoid searching for points in impossible

spatial configurations. It detects if the constellation of a

subset of facial points is possible, and if not, suggests a

maximum a posteriori probability (MAP) location estimate

as a solution to the inconsistency. A spatial relation ri,j be-

tween 2 points is defined as the line segment joining the 2

points expressed in polar coordinates as,

ri,j = (αi,j , ρi,j) (2)

A probabilistic network of these spatial relations is built

using Markov Random Fields (MRF) to encode their inter-

actions. The MRF is constructed with binary states si,j indi-

cating whether the relation ri,j is a valid shape or not. Each

node of the network represents a spatial relation and so the

probability of the network is decomposed as the pairwise

interaction between the nodes given by:

p({si,j}) = 1

Z

∏
ϕi,j,k,l(si,j , sk,l)

∏
ψi,j(si,j) (3)

where Z is a normalisation factor, ϕi,j,k,l is a function

which encodes the compatibility of si,j and sk,l depending

upon the configuration of points in the training images, and

ψi,j denotes the likelihood of si,j being 0/1 before consid-

ering other nodes. For more details please refer to [13].

The joint MRF is maximised using the Belief Propaga-

tion (BP) algorithm, to test a configuration of facial points.

The complexity of a fully connected network considering

all possible relations, increases quadratically with the num-

ber of nodes and hence becomes infeasible if the number of

facial points considered is large. In order to make the algo-

rithm more efficient, a hierarchical approach is used to learn

the shape model. The facial points are split into smaller

groups and a hierarchy of these groups is constructed. A

shape model is learnt from the points in a particular group

combined with all the points in its parent group. This results

in a hierarchy of shape models which is used in combina-

tion with the appearance model to detect the facial points in

a test image (see Fig. 2).

The points are detected following the same hierarchy, i.e.

the points in a particular group I are detected after the de-

tection of all the points in its parent group. The points at the

upper levels of the hierarchy seeks to preserve the global

shape of the face (for e.g. location of eyes and mouth w.r.t.

each other), while the points at the lower levels seeks to pre-

serve the local shape of a smaller region of the face (for e.g.

the location of points in the mouth region w.r.t each other).

This hierarchical shape model allows an efficient modelling

of the shape by keeping the number of points used in con-

structing any Markov Network, considerably low.

4.3. Detection by Specialised Model Selection (SMS)

Prior to the actual facial point detection process, the head

pose and facial expressions are estimated for a face image.

The SVM learnt for head pose estimation is used to classify

the face image into one of the head pose modes. Depend-

ing on the estimated pose, we apply the appropriate SVMs

for estimating facial expression. Specialised shape and ap-

pearance models are selected depending on the predicted

head pose and facial expression. The regressors trained on

the partition corresponding to the estimated head pose and

expressions were employed in detecting the facial points.

Similarly, shape models computed specifically for the par-

ticular head pose and facial expressions estimated from the

test image were applied during the detection process. This

specialised model selection (SMS) procedure ensures that

appropriate models are applied to a face image having a spe-

cific pose and expression.

The facial point detection process starts with the initial-

isation of a sampling region for each facial point. Points

sampled from the region are used for evaluating the regres-

sors to obtain target estimates (local evidences). The sam-

pling region for a particular facial point is initialised from
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a Gaussian fitted to the prior distribution of the location of

that point in the training images.

The local evidences obtained from the regressor esti-

mates are used to update the evidence distribution and the

sampling region in an iterative manner. The shape model

checks the correctness of the point configuration at each it-

eration and provides a new sampling region if the shape gets

violated. The evidence distribution is modelled as a mixture

of Gaussian distributions where each evidence for the facial

point i adds a component Si
k(x) at the iteration k. The esti-

mate of the target location at the iteration k is given as,

T̂ i
k = argmax

x
Si
k(x) (4)

The confidence on the estimated target location T̂ i
k is given

as:

p(T̂ i
k) = max(Si

k)/θacc (5)

where θacc is a predefined acceptance threshold. This pro-

cess is repeated iteratively until p(T̂ i
k) > θacc or a prede-

fined maximum number of iterations has passed.

5. Methodology
The training of our models was based on the 68 points mark-

up definition of Multi-PIE [11] data set (see Fig. 1). We

first describe the training of our head pose detector and head

pose specific facial expression detectors which were used to

partition the training data. We then give details of our mode

specific point detection models.

5.1. Head pose estimation

In order to find the modes of head poses in our training data

we clustered the face images using the concatenated coordi-

nates of selected facial points. For this purpose, we selected

facial points that do not move due to expressions and hence

can be used to get clusters corresponding to different head

pose modes. We also wanted to keep the dimensionality of

our feature vectors to be low and therefore we used only a

subset of all such so-called ’stable’ points for this purpose,

i.e. the points numbered 1,17,31,32,36,37,40,43 and 46.

The average facial point locations in each of the 3 clus-

ters obtained at the top level of the cluster hierarchy are

shown in Fig. 1. In this figure, one can clearly see that each

of the 3 clusters correspond to a particular head pose (out of

plane rotations of the face). The average variance of the lo-

cation of facial points within the clusters are shown in table

1. From this table, we can clearly see that the average vari-

ance within the clusters is significantly lower compared to

the entire training data, indicating that the shapes are more

similar and thus should be easier to detect.

We trained our head pose detector using appearance de-

scriptors extracted from the face images. We used Local

Gabor Binary Pattern (LGBP) [21] to extract the appearance

All points Mouth points Eye points

Entire data 2.88 0.93 0.31

After clustering for head poses 1.36 0.44 0.15

After clustering for expressions - 0.40 0.14

Table 1. Variances in the locations of facial points in the entire

dataset, in head pose clusters and in clusters obtained for facial

expressions in the eyes/mouth region.

features from face images normalized to 200 × 200 pixels.

LGBP features are extracted by applying Gabor filters of

various frequencies and orientations on an image before ap-

plying the LBP transform and computing histograms.

5.2. Facial expression estimation

We restricted ourselves to expressions involving eyes and

mouth region because for these points the facial point lo-

cation variation due to facial expressions is largest. For ex-

pressions involving the mouth region, the pairwise distances

between the points from the inner mouth region (labelled

61-68) were calculated in each face image. The concate-

nated pairwise distances were used as features for cluster-

ing the faces into 2 groups, using Ward’s method. A simi-

lar method was applied for clustering expressions related to

the eyes. Assuming symmetrical expressions, the pairwise

distances between the points from the left eye (labelled 37-

42), were concatenated to form feature vectors, and clus-

tered into 2 groups using Ward’s method.

Fig. 1 shows the average shape of face in each of the

clusters obtained for facial expressions due to eyes and

mouth. The reduced variance for the points belonging to

eyes and mouth region are also shown in table 1.

As for head pose estimation, the eyes/mouth expression

detectors were trained by extracting LGBP features from

face images in each cluster and learning a 2 class SVM. This

procedure was repeated for each of the 3 groups of training

images obtained from head pose clustering as described in

section 3.1. Hence a total 3 SVMs was learnt, each spe-

cialised in detecting expressions for a particular head pose.

5.3. Mode specific appearance modelling

The SVMs learnt for estimating the head pose and

eye/mouth expressions were used for partitioning the train-

ing data. The regressors rx, ry and rd for each facial point

(described in section 4.1) were trained on each partition sep-

arately. The partitioning was done separately for each facial

point. Regressors for points which do not depend on the

eye/mouth expressions were trained on 3 separate partitions

belonging to the different head poses. Regressors for other

points were trained on 3 × 2 partitions, each partition be-

longing to a particular head pose and eye/mouth expression.

The original algorithm uses LBP features as the local

appearance descriptor for training the regressors. In this

work, we have used LGBP features to extract the local ap-
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Figure 3. Example results from our method on our internal evaluation test set. The first 3 images shows the best detections measured by

normalised mean error. The last 3 are the worst images measured by normalised mean error.

pearance. The LGBP features have been found to be more

robust to noise and lighting variation [21] and have been

shown to perform better than LBP features for facial Action

Units (AUs) recognition [1].

5.4. Mode specific hierarchical shape modelling

As is the case for appearance modelling, the shape models

were computed on each training partition separately result-

ing in shape models which are specialized for a particular

head pose and facial expression. For points which depend

only on head pose, shape models were computed on 3 dif-

ferent partitions, while for points whose location depends

on both head pose and facial expression, shape models were

computed from 3× 2 partitions.

As explained in section 4.2, facial points are split into a

hierarchy of smaller group of points and the shape model

for each group is computed following that hierarchy. At the

top of the hierarchy are the stable points. Stable points are

those points which are easy to detect because of their unique

local appearance and their invariance to facial expressions.

These points are detected first in a test image followed by

an affine image registration step. We decided to classify the

points 31, 32, 36, 37, 40, 43 and 46 as stable. All other

points were classified as unstable.

We selected only these points as stable because firstly,

we wanted to keep the number of stable points to be as low

as possible as they are detected before the image registration

step and hence chances of error are high. Secondly, some

points are difficult to detect because the appearance of the

area immediately surrounding them may not be unique (e.g.

points 28-30). Since the stable points are used for register-

ing the image, any error in detecting them may lead to errors

in image registration.

Stable points are followed by all other points as we move

down the hierarchy. In order to further reduce the com-

plexity, a set of composite points are computed from the

detected stable points using the mean of left eye points

(37,40), right eye points (43,46) and nose points (31,32,36).

These composite points are used for computing the shape

models for points further down the hierarchy. As discussed

in section 4.2, the shape model for a group is computed us-

ing all the points in that group and all the points in its parent

group. In case of groups at the second level of the hierar-

chy, only the composite points from their parent group (root

node) are used in computing the shape model.

The complete hierarchy of the facial point groups can be

seen in Fig. 2. Facial points were split into smaller groups,

each group belonging to smaller part of the face namely left

eyebrow, right eyebrow, left eye, right eye, nose , mouth and

face boundary. Since the mouth and face boundary consists

of many points, they were further split into smaller groups.

For e.g. the mouth region was split into mouth initial, left

mouth and right mouth. Similarly, the face boundary re-

gion was split into initial boundary, left boundary and right

boundary. This hierarchical grouping of points limits the

maximum number of points used in any Markov network to

13 and hence makes the algorithm more efficient.

6. Evaluation
We trained our model using approximately 3300 face im-

ages from LFPW [3] and HELEN [12] datasets which were

re-annotated with facial landmarks [16] using the Multi-PIE

[11] 68 points mark-up (see Fig. 1) . The evaluation of our

trained model was done in 2 separate ways. One was an in-

ternal evaluation in which we tested our model on a test set

selected by the authors. The other was an external evalua-

tion in which our model was tested by the organisers of the

300-W Challenge, on the 300-W testset (unknown to us). In

both evaluations, the error for a facial point was calculated

as the Euclidean distance between the detected location T̂i
of the point and the ground truth location Ti, normalised by

the inter-ocular distance dIOD :

ei =
||Ti − T̂i||
dIOD

(6)

Here the inter-ocular distance dIOD was defined as the

distance between the outer corner of the eyes i.e. the dis-

tance between the points 37 and 46. The mean error from

each image was used for computing the Cumulative er-

ror distribution (CED) curves for performance evaluation.

These mean errors were computed separately for 51 points

(points on the face boundary excluded) and 68 points in

each image.
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Figure 4. CED curves for 51 landmarks (left) and 68 landmarks

(right) computed on our internal evaluation test set.

6.1. Internal evaluation

In our own internal evaluation of our model , we com-

pared the performance of our model with other existing ap-

proaches on a test set consisting of 370 face images from

AFW [22] and IBUG [18] datasets. These datasets consist

of real world images of faces in various head poses and fa-

cial expressions. The images also have a wide variation in

illumination and image quality and many of the them con-

tains occlusions (e.g. sunglasses, hair, etc.). Overall, the

images are quite challenging and can be considered a good

test set for benchmarking facial point detection algorithms.

We compared the performance of our model with 2 other

approaches. The first approach is the regression based local

evidence aggregation (LEAR) [13], the second is the part

based approach of Zhu and Ramanan [22], which uses a

mixture of trees to detect face, pose and facial landmarks.

The third method we compared against was the CLM of

Saragih et al. [17].

It should be noted that although the AFW and IBUG

datasets contains a total of 472 face images annotated with

facial landmarks, we had to remove 102 images because in

those images the implementation from [22] either doesn’t

detects any face or detects only 39 facial landmarks due to

incorrect head pose estimation corresponding to 90 degree

out of plane rotation of the face. Hence, in order to have a

fair comparison we prepared a common ground by selecting

only those images in which [22] detects a face with all 68

facial landmarks.

In addition, we found that the CLM was often unable to

initialize properly. Because the face locations were given

for this test set but CLM detects faces internally, we pre-

sented the CLM with the image patch surrounding and in-

cluding the face by growing the face region by 50% in all

directions. However, even with this intervention the average

point detection error of the CLM was 1.64, and the cumu-

lative error graph was off the scale of Fig. 4. It is entirely

possible that this is a problem with the initialization of the

CLM rather than the point detection quality though.

Fig. 4 shows the CED curves from the 3 approaches on

our test set. The CED curves were computed separately for
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Figure 5. CED curves for landmark detection on the 300-W test

set. The first column shows the CED curves for 51 landmarks and

the second column shows the CED curves for 68 landmarks. The

baseline model corresponds to the approach in [14, 8].

LEAR [13] Zhu-Ramanan [22] Our model

51 points 0.0883 0.0790 0.0494

68 points 0.1379 0.1223 0.0886

Table 2. Comparison of the mean errors on our test set from the 3

approaches.

51 facial landmarks (labelled 18-68) and the 68 facial land-

marks. Both the plots clearly show that our model outper-

forms the other 2 approaches. The mean errors on the test

set for all the 3 approaches can be seen in table 2, which

shows that our model is performing significantly better than

the other 2 approaches. Fig. 3 shows the 3 best and worst

images measured by normalized mean error. It shows that

most errors are caused due to poor face detection.

6.2. External evaluation

Our model was also evaluated independently by the orga-

nizers of the 300-W challenge on their own 300-W testset

which was not disclosed to any of the participants of the

challenge [18]. Their test set was divided into 3 subsets,

one consisting of indoor images, another one consisting of

outdoor images and the third one consisting of a mixture of

indoor and outdoor images. Our model was compared to
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their baseline model which was based on the project-out in-

verse compositional AAM algorithm [14] implemented us-

ing the edge-structure features described in [8]. The CED

curves comparing the performance of our model with the

baseline, for each subset of the test set are shown in Fig.

5. The curves were plotted separately for 51 and 68 facial

landmarks. From the curves one can clearly see that the per-

formance from our model is much higher than the baseline

performance.

7. Conclusion
We presented a novel facial point detection approach using

mode specific models, which were found using clustering

by guided unsupervised learning. Experts defined the facial

points that would result in either clusters corresponding to

head pose variations or facial expressions. This approach

allows the creation of mode specific facial point detection

models without the need for manual annotation of head pose

or facial expression. Our approach was applied to the Local

Evidence Aggregated Regression framework, and showed

significant improvements both over the current state of the

art in facial point detection as well as compared to the base-

line results of the 300-W facial point detection challenge.
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