
Getting Feasible Variable Estimates From Infeasible Ones:
MRF Local Polytope Study

Bogdan Savchynskyy
University of Heidelberg, Germany

bogdan.savchynskyy@iwr.uni-heidelberg.de

Stefan Schmidt
schmidt@math.uni-heidelberg.de

Abstract

This paper proposes a method for the construction of ap-
proximate feasible primal solutions from infeasible ones for
large-scale optimization problems possessing certain sepa-
rability properties. Whereas the infeasible primal estimates
can typically be produced from (sub-)gradients of the dual
function, it is often not easy to project them to the primal
feasible set, since the projection itself has a complexity com-
parable to the complexity of the initial problem. We pro-
pose an alternative efficient method to obtain feasibility and
show that its properties influencing the convergence to the
optimum are similar to the properties of the Euclidean pro-
jection. We apply our method to the local polytope relax-
ation of inference problems for Markov Random Fields and
discuss its advantages over existing methods.

1. Introduction

Convex relaxations of combinatorial problems appearing

in computer vision, processing of medical data, or analysis

of transport networks often contain millions of variables and

hundreds of thousands of constraints. It is also quite com-

mon to employ their dual formulations to allow for more

efficient optimization, which due to strong duality deliv-

ers also primal solutions. Indeed, approximate primal so-

lutions can usually be reconstructed from (sub-)gradients of

the dual objective. However, these are typically infeasible.

Because of the problem size, only first order methods (based

on the function and its (sub-)gradient evaluation only) can

be applied. Since feasibility is not guaranteed up to the op-

timum, it is hardly attainable for such methods because of

their slow convergence. The classical trick — (Euclidean)

projection to the feasible set — can not be used efficiently

because of the problem size.

A striking example of such a situation, which we explore

in this paper, is the reconstruction of feasible primal esti-

mates for local polytope relaxations of Markov random field

(MRF) inference problems [32, 40, 37].

Motivation: Why Feasible Relaxed Primal Estimates
Are Needed. It is often the case for convex relaxations

of combinatorial problems that not a relaxed solution, but

an integer approximation thereof is used in applications.

Such integer primal estimates can be obtained from the dual

ones due to the complementary slackness condition and us-

ing heuristic local search procedures [40, 16, 26]. However

such integer estimates do not converge to the optimum of

the relaxed problem in general.

In contrast, a sequence of feasible solution estimates of

the relaxed problem converging to the optimum guarantees

vanishing of the corresponding duality gap, and hence (i)

determines a theoretically sound stopping condition [4]; (ii)

provides a basis for the comparison of different optimiza-

tion schemes for a given problem; (iii) allows for the con-

struction of adaptive optimization schemes depending on

the duality gap, for example adaptive step-size selection in

subgradient-based schemes [18, 15] or adaptive smoothing

selection procedures for non-smooth problems [29]. An-

other example is the tightening of relaxations with cutting-

plane based approaches [35].

Related Work on MRF Inference. The two most impor-

tant inference problems for MRF’s are maximum a poste-

riori (MAP) inference and marginalization [37]. Both are

intractable in general and thus both require some relax-

ation. The simplest convex relaxation for both is based on

exchanging an underlying convex hull of the feasible set,

the marginal polytope, by an approximation called the lo-

cal polytope [37]. However, even with this approximation

the problems remain non-trivial, though solvable, at least

theoretically. A series of algorithmic schemes were pro-

posed to this end for the local polytope relaxations of both

MAP [18, 30, 26, 27, 33, 15, 29, 21, 20] and marginaliza-

tion [36, 12, 10, 9]. It turns out that the corresponding dual

problems have dramatically less variables and contain very

simple constraints [40, 41], hence they can even be formu-

lated as unconstrained problems as it is done in [30] and

[15]. Therefore, most of the approaches address optimiza-

tion of the dual objectives. A common difficulty for such

approaches is the computation of a feasible relaxed primal

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.43

267

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.43

267



estimate from the current dual one. Infeasible estimates can

typically be obtained from the subgradients of the dual func-

tion as shown in [18] or from the gradients of the smoothed

dual as done in [13], [41], and [27].

Even some approaches working in the primal domain

[10, 20, 33, 21] maintain infeasible primal estimates, whilst

feasibility is guaranteed only in the limit.

Quite efficient primal schemes based on graph cuts pro-

posed in [5] do not solve the problem in general and opti-

mality guarantees provided by them are typically too weak.

Hence we do discuss neither these here, nor the widespread

message passing and belief propagation [16, 38] methods,

which also do not guarantee the attainment of the optimum

of the relaxed problem.

Forcing Feasibility of Primal Estimates. The literature on

obtaining feasible primal solutions for MRF inference prob-

lems from infeasible ones is not very vast. Apart from the

papers [27, 33, 29] describing special cases of our method in

application to the MRF local polytope, we are aware of only

three recent works [31, 42, 22] contributing to this topic.

The method proposed in [31] is formulated in the form

of an algorithm able to determine whether a given solu-

tion accuracy ε is attained or not. To this end it restricts

the set of possible primal candidate solutions and solves an

auxiliary quadratic programming (QP) problem. However,

this approach is unsuited to compute the actually attained
ε directly and the auxiliary QP in the worst case grows lin-

early with the size of the initial linear programming prob-

lem. Hence obtaining a feasible primal solution becomes

prohibitively slow as the size of the problem gets larger.

Another closely related method was proposed in [42]. It

is, however, only suited to determine whether a given solu-

tion of the dual problem is an optimal one. This makes it

non-practical, since the state-of-the-art methods achieve the

exact solution of the considered problem only in the limit,

after a potentially infinite number of iterations.

The very recent method proposed in [22] is simple yet

efficient. However as we show in Section 2 (Theorem 2)

our method applied on top of any other, including the one

proposed in [22], delivers better primal estimates, except for

the cases when the estimates of the other method coincide

with ours.

Contribution. We propose an efficient and well-scalable

method for constructing feasible points from infeasible ones

for a certain class of separable convex problems. The

method guarantees convergence of the constructed feasible

point sequence to the optimum of the problem if only this

convergence holds for their infeasible counterparts. In the

case of the MRF local polytope our method coincides with

the one proposed in [27]. We formulate our results in a gen-

eral way, which allows to apply them to arbitrary convex

optimization problems having a similar separable structure.

Content and Organization of the Paper. In Section 2 we

describe a general formulation and analyze mathematical

properties of the proposed method. We do this without re-

lating it to inference in MRFs. This allows to keep the expo-

sition simple and shows the generality of the method. Sec-

tion 3 is devoted to the local polytope relaxations of the

MAP and marginalization inference problems for MRF’s

and specifies how the feasible estimates can be constructed

for them. In particular, in Section 3.4 we discuss different

optimization schemes for the local polytope relaxation for

which the primal estimates can be reconstructed from the

dual ones. The last Sections 4 and 5 contain the experimen-

tal evaluation and conclusions, respectively.

Due to space constraints we refer to the technical re-

port [28] for proofs of all theoretical results.

2. Optimizing Projection

Let us denote by ΠC : Rn → C an Euclidean projection

to a set C ⊂ R
n. Let X ⊆ R

n and Y ⊆ R
m be two subsets

of Euclidean spaces and C ⊂ X×Y be a closed convex set.

We will denote as CX the set {x ∈ X |∃y ∈ Y : (x, y) ∈
C}, that is the projection of C to X .

The main definition of the paper introduces the notion

of the optimizing projection in its general form. A possible

simplification and the corresponding discussion follow the

definition.

Definition 1. Let f : X × Y → R be a continuous convex
function of two variables. The mapping Pf,C : X×Y → C
such that Pf,C(x, y) = (x′, y′) defined as

x′ = ΠCX
(x) , (1)

y′ = argminy : (x′,y)∈Cf(x
′, y) , (2)

is called an optimizing projection onto the set C w.r.t. the
function f .

This definition provides the way to get the feasible point

(x′, y′) ∈ C from an arbitrary infeasible one (x, y). Of

course, getting just any feasible point is not a big issue

in many cases. However, as we will see soon, the intro-

duced optimizing projection possesses properties similar to

the properties of a standard Euclidean projection, which

makes it a useful tool in cases when its computation is eas-

ier than the one needed for the Euclidean projection. To this

end both the partial projection (1) and the partial minimiza-

tion (2) should be efficiently computable.

The role of projection (1) is to make x “feasible”, i.e.

to guarantee for x′ that there is at least one y ∈ Y such

that (x′, y) ∈ C, which guarantees the definition to be well-

defined. If this condition holds already for x, it is easy to

see that x′ = x and hence computing (1) is trivial. We will

call such x feasible w.r.t. C. Indeed, in (1) one can apply

an arbitrary projection, since they all satisfy the mentioned
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property. However, we provide our analysis for Euclidean

projections only.

We will deal with objective functions, which fulfill the

following definition:

Definition 2. A function f : X×Y → R is called Lipschitz-
continuous w.r.t. its first argument x, if there exists a finite
constant LX(f) ≥ 0, such that ∀y ∈ Y, x, x′ ∈ X ,

|f(x, y)− f(x′, y)| ≤ LX(f)‖x− x′‖ (3)

holds. Similarly f is Lipschitz-continuous w.r.t.

• y if |f(x, y)− f(x, y′)| ≤ LY (f)‖y − y′‖ for all x ∈
X, y, y′ ∈ Y and some constant LY (f) ≥ 0;

• z = (x, y) if |f(x, y)− f(x′, y′)| ≤ LXY (f)‖z − z′‖
for all z, z′ ∈ X×Y and some constant LXY (f) ≥ 0 .

The following theorem specifies the main property of the

optimizing projection, namely its continuity with respect to

the optimal value of the function f .

Theorem 1. Let f be convex and Lipschitz-continuous w.r.t.
its arguments x and y and let f∗ be the minimum of f on
the set C. Then for all z = (x, y) ∈ X × Y

|f(Pf,C(x, y))− f∗| ≤ |f(x, y)− f∗|
+ (LX(f) + LY (f))‖z −ΠC(z)‖ (4)

holds. If additionally x is feasible w.r.t. C the tighter in-
equality holds:

|f(Pf,C(x, y))−f∗| ≤ |f(x, y)−f∗|+LY (f)‖z−ΠC(z)‖ .
(5)

Theorem 1 basically states that if the sequence zt =
(xt, yt) ∈ X × Y, t = 1, . . . ,∞, weakly converges to the

optimum of f , then the same holds also for Pf,C(x
t, yt).

Moreover, the rate of convergence is preserved up to a mul-

tiplicative constant. Please note that Pf,C(x, y) actually

does not depend on y, it is needed only for the convergence

estimates (4) and (5), but not for the optimizing projection

itself.

Remark 1. Let us provide an analogous bound for the Eu-
clidean projection to get an idea how good the estimate
given by Theorem 1 is. Let zp = ΠC(z) denote the Eu-
clidean projection of z ∈ X × Y . Then

|f(zp)− f∗| ≤ |f(zp)− f(z)|+ |f(z)− f∗|
≤ |f(z)− f∗|+ LXY (f)‖z − zp‖ . (6)

We see that bounds (4) and (6) for the optimizing mapping
and Euclidean projection differ only by a constant factor: in
the optimizing mapping, the Lipschitz continuity of the ob-
jective f is considered w.r.t. to each variable x and y sep-
arately, whereas the Euclidean projection is based on the
Lipschitz continuity w.r.t. the pair of variables (x, y).

The following technical lemma shows the difference be-

tween these two Lipschitz constants. Together with the next

one it will be used in Section 3:

Lemma 1. The linear function f(x, y) = 〈a, x〉 + 〈b, y〉
is Lipschitz-continuous with Lipschitz constants LX(f) ≤
‖a‖, LY (f) ≤ ‖b‖ and LXY (f) ≤

√
LX(f)2 + LY (f)2.

Lemma 2. The function f(z) = 〈a, z〉 + ∑N
i=1 zi log zi,

where log denotes the natural logarithm, is Lipschitz-
continuous at [ε, 1]N � z, ε > 0, with Lipschitz-constant

LXY (f) ≤ ‖a‖+N |1 + log ε| . (7)

An important property of the optimizing projection is its

optimality. Contrary to the Euclidean projection it can de-

liver better estimates even when applied to already feasible
point (x, y) ∈ C, which is stated by the following theorem.

Theorem 2 (Optimality of optimizing projection). Let
(x, y) ∈ C then f(Pf,C(x, y)) ≤ f(x, y) and the equal-
ity holds iff y ∈ argminy′ : (x,y′)∈Cf(x, y

′).

Proof of this theorem follows directly from (2).

3. Inference Problems over Local Polytope and
Corresponding Optimizing Projections

In this section we consider optimization problems related

to inference in MRF’s and construct corresponding optimiz-

ing projections. We switch from the general mathematical

notation used in the previous sections to the one specific for

the considered field, in particular we mostly follow the book

of [37].

3.1. Primal Relaxed MAP Problem

Let G = (V, E) be an undirected graph, where V is

a finite set of nodes and E ⊂ V × V is a set of edges.

Let further Xv, v ∈ V , be finite sets of labels. The set

X = ⊗v∈VXv , where⊗ denotes the Cartesian product, will

be called labeling set and its elements x ∈ X are label-
ings. Thus each labeling is a collection (xv : v ∈ V) of la-

bels. To shorten notation we will use xuv for a pair of labels

(xu, xv) and Xuv for Xu ×Xv . The collections of numbers

θv,xv
, v ∈ V , xv ∈ Xv and θuv,xuv

, uv ∈ E , xuv ∈ Xuv ,

will be called unary and pairwise potentials, respectively.

The collection of all potentials will be denoted by θ.

Denoting R

∑
v∈V |Xv|+

∑
uv∈E |Xuv| as R(M) and the cor-

responding non-negative cone R

∑
v∈V |Xv|+

∑
uv∈E |Xuv|

+ as

R+(M), one writes [32, 40] the local polytope (linear pro-

gramming) relaxation of a MAP inference problem as

min
μ∈R+(M)

∑

v∈V

∑

xv∈Xv

θv,xvμv,xv +
∑

uv∈E

∑

xuv∈Xuv

θuv,xuvμuv,xuv

s.t.

∑
xv∈Xv

μv,xv = 1, v ∈ V ,∑
xv∈Xv

μuv,xuv = μu,xu , xu ∈ Xu, uv ∈ E ,∑
xu∈Xu

μuv,xuv = μv,xv , xv ∈ Xv, uv ∈ E .
(8)
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The constraints in (8) form the local polytope, later on de-

noted as L. Slightly abusing notation, we will briefly write

problem (8) as minμ∈LE(μ) := minμ∈L 〈θ, μ〉 .
Optimizing Projection. We will denote as θw and μw, w ∈
V ∪ E , the collections of θw,xw and μw,xw , xw ∈ Xw, re-

spectively. Hence the vectors θ and μ become collections

of θw and μw, w ∈ V ∪ E . The n-dimensional simplex

{x ∈ R
n
+ :

∑n
i=1 xi = 1} will be denoted as Δ(n).

Problem (8) has a separable structure, that is for suitably

selected matrices Auv it can be written as

min
μ∈R(M)

∑

v∈V
〈θv, μv〉+

∑

uv∈E
〈θuv, μuv〉

s.t.
μv ∈ Δ(|Xv|), v ∈ V ,
Auvμuv = μv, μuv ≥ 0, uv ∈ E . (9)

Note that under fixed μv , the optimization of (9) splits into

small independent subproblems, one for each uv ∈ E . We

will use this fact to compute the optimizing projection onto

the local polytope L as follows.

Let μV and μE be collections of primal variables corre-

sponding to graph nodes and edges respectively, i.e. μV =
(μv, v ∈ V), μE = (μuv, uv ∈ E) and μ = (μV , μE).
The corresponding subspaces will be denoted by R(MV)
and R(ME). Then according to (9) and Definition 1, the

optimizing projection PE,L : R(MV)× R(ME)→ L maps

(μV , μE) to (μ′V , μ
′
E) defined as

μ′v = ΠΔ(|Xv|)(μv), v ∈ V , (10)

μ′uv = arg min
μuv≥0

〈θuv, μuv〉
s.t. Auvμuv = μ′v

, uv ∈ E . (11)

Note that both (10) and (11) can be computed very ef-

ficiently. Projection to a simplex in (10) can be done e.g.

by method described in [23]. The optimization problem

in (11) constitutes a small-sized transportation problem
well-studied in linear programming, see e.g. [2].

Let us apply Theorem 1 and Lemma 1 to the optimiz-

ing projection PE,L introduced in Definition 1. Accord-

ing to these, the convergence rate of a given sequence

μt ∈ R(M) in the worst case slows down by a factor

LMV (E) + LME (E) ≤ ‖θV‖ + ‖θE‖. This factor can be

quite large, but since the optimum E∗ grows together with

the value ‖θV‖+‖θE‖, its influence on the obtained relative
accuracy is typically much less than the value itself.

Remark 2. However, if θ contains ”infinite” numbers, typ-
ically assigned to pairwise factors θE to model ”hard” con-
straints, both optimizing and Euclidean projections can be
quite bad, which is demonstrated by the following simple
example: V = {v, u}, E = uv, Xv = Xu = {0, 1},
θ00 = θ11 = θ01 = 0, θ10 = ∞. If now μv,1 > μu,1, opti-
mizing w.r.t. μuv leads to θ10 · μvu,10 =∞ · (μv,1 − μu,1),

whose value can be arbitrary large, depending on the ac-
tual numerical value approximating ∞. And since neither
the optimizing projection nor the Euclidean one take into
account the actual values of pairwise factors when assign-
ing values to μV , the relation μv,1 > μu,1 is not controlled.

We provide an additional numerical simulation related to

infinite values of pairwise potentials in Section 4.

Remark 3 (Higher order models and relaxations). The gen-
eralization of the optimizing projection (10)-(11) for both
higher order models, and higher order local polytopes in-
troduced in [37, Sec. 8.5] is quite straightforward. The un-
derlying idea remains the same: one has to fix a subset of
variables such that the resulting optimization problem splits
into a number of small ones.

Remark 4 (Efficent representation of the relaxed primal so-

lution). Note that since the pairwise primal variables μE
can be easily recomputed from unary ones μV , it is suffi-
cient to store only the latter if one is not interested in spe-
cific values of pairwise variables μE . Because of possible
degeneracy, there may exist more than a single vector μE
optimizing the energy E for given μV .

3.2. Relaxed Dual MAP Problem
In this section we consider the Lagrange dual to the prob-

lem (8). Let us denote as N (v) = {u ∈ V : uv ∈ E} the
set of neighboring nodes of a node v ∈ V . We consider the
dual variable ν ∈ R(D) to consist of the following groups
of coordinates: νv, v ∈ V; νuv, uv ∈ E ; and νv→u,xv ,
v ∈ V, u ∈ N (v), xv ∈ Xv . In this notation the dual to (8)
reads [32, 40]:

max
ν∈R(D)

∑

v∈V
νv +

∑

uv∈E
νuv (12)

s.t.
θv,xv −∑

u∈N (v) νv→u,xv ≥ νv , v ∈ V, xv ∈ Xv ,

θuv,xuv + νu→v,xu + νv→u,xv ≥ νuv, uv ∈ E , xuv ∈ Xuv .

We will use the notation U(ν) := ∑
v∈V νv +

∑
uv∈E νuv

for the objective function of (12).

Optimizing Projection. The dual (12) possesses clear sep-

arability as well: after fixing all variables except νv, v ∈ V ,

and νuv, uv ∈ E , the optimization w.r.t. the latter splits into

a series of small and straightforward minimizations over a

small set of values

νv = min
xv∈Xv

θv,xv −
∑

u∈N (v)
νv→u,xv , v ∈ V , (13)

νuv = min
xuv∈Xuv

θuv,xuv
+ νu→v,xu

+ νv→u,xv
, uv ∈ E .

(14)

The formula (13) can be applied directly for each v ∈ V ,

and (14) accordingly for each uv ∈ E .

We denote by D the dual feasible set defined by con-

straints of (12). We split all dual variables into two groups.
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The first one will contain ”messages” ν→ = (νv→u, v ∈
V, u ∈ N (v)), that are variables, which reweight unary and

pairwise potentials leading to improving the objective. The

vector space containing all possible values of these vari-

ables will be denoted as R(D→). The second group will

contain lower bounds on optimal reweighted unary and pair-

wise potentials ν0 = (νw, w ∈ V ∪ E). The total sum

of their values constitutes the dual objective. All possible

values of these variables will form the vector space R(D0).
Hence the optimizing projectionPU,D : R(D→)×R(D0)→
R(D) maps (ν→, ν0) to (ν′→, ν′0) as

ν′v→u = νv→u, v ∈ V, u ∈ N (v) , (15)

ν′v = min
xv∈Xv

θv,xv
−
∑

u∈N (v)
ν′v→u,xv

, v ∈ V , (16)

ν′uv = min
xuv∈Xuv

θuv,xuv
+ νu→v,xu

+ ν′v→u,xv
, uv ∈ E .

(17)

Equation (15) corresponds to the projection (1), which

has the form ΠR(D→)(ν→) = ν→0 and is thus trivial.

Applying Theorem 1 and Lemma 1 to the optimizing

projection PU ,D yields that the convergence of the projected

νt slows down no more than by a factor LD0
≤ |√V|+|√E|

and does not depend on the potentials θ. However, since an

optimal energy value grows often proportionally to |V|+|E|,
the influence of the factor on the estimated related precision

is typically insignificant.

3.3. Entropy-Smoothed Primal Problem

Let H : Rn
+ → R be an entropy function defined as

H(z) = −∑n
i=1 zi log zi and the dimensionality n will be

defined by dimensionality of the input vector z. The prob-

lem

min
μ∈R+(M)

〈θ, μ〉 −
∑

w∈V∪E
cwH(μw)

s.t.

∑
xv∈Xv

μv,xv
= 1, v ∈ V ,∑

xv∈Xv
μuv,xuv

= μu,xu
, xu ∈ Xu, uv ∈ E ,∑

xu∈Xu
μuv,xuv = μv,xv , xv ∈ Xv, uv ∈ E ,

(18)

is closely related to the primal relaxed one (8) and ap-

pears, e.g. when one applies the smoothing technique [24,

14, 27, 29, 10] to the problem or considers approxima-

tions for marginalization inference [37, 36, 12]. We refer

to [11, 39, 10] for description of the sufficient conditions

for convexity of (18). Assuming a precision ε = 10−16 to

be sufficient for practical needs, we equip (18) with an ad-

ditional set of box constraints μ ∈ [ε, 1]|M|, where |M| is

the dimensionality of the vector μ. This is done to obtain a

finitely large Lipschitz constant according to Lemma 2.

Optimizing projection. Denoting the objective of (2) as

Ê and the constraint equipped with the box-constraints

μ ∈ [ε, 1]|M| as L̂ we define the corresponding optimizing

projection PÊ,L̂(μ) as

μ′v = ΠΔ(|Xv|)∩[ε,1]|Xv|(μv), v ∈ V , (19)

for uv ∈ E :
μ′uv = arg min

μuv∈[ε,1]|Xuv|
〈θuv − cuv log(μuv), μuv〉

s.t. Auvμuv = μ′v ,
(20)

where log z, z ∈ R
n, is defined coordinate-wise. Applying

Theorem 1 and Lemma 2 one obtains that the convergence

rate of a given sequence μt ∈ R(M) in the worst case slows

down by a factor ‖θV‖+ ‖θE‖+
∑

w∈V∪E |Xw||1 + log ε|,
where the last item describes a difference to the optimizing

projection PE,L for the primal MAP-inference problem (8).

Remark 5. Indeed, the additional constraints μ ∈ [ε, 1]|M|

are needed only for the theoretical analysis of the projected
estimate PÊ,L̂(μ) to show that when the true marginals μ
become close to 0 the optimizing projection (and Euclidean
one indeed also) behaves worse.

However there is no reason to force these constraints in
practice: due to continuity of the entropy H the projected
feasible estimates will converge to the optimum of the prob-
lem together with the non-projected unfeasible ones even
without the box constraints. It is only the speed of con-
vergence of the projected estimates, which will decrease
logarithmically. Moreover, omitting the box constraints
μ ∈ [ε, 1]|M| simplifies the computations (19) and (20). The
first one corresponds then to projection to the simplex and
the second one - to a small-sized entropy minimization, effi-
ciently solvable by the Newton method after resorting to its
corresponding smooth and unconstrained dual problem.

Moreover, we suggest to threshold μv by setting μv,xv

to zero if it is less than the precision ε. It decreases the
size of the subproblem (20) and allows to avoid numerical
problems.

3.4. Application to Algorithmic Schemes

In previous sections we concentrated on the way to com-

pute the optimizing projection assuming that a weakly con-

verging (but infeasible) sequence is given. In this section

we briefly discuss where these infeasible sequences come

from.

Prox-Point Primal-Dual Algorithms (First-Order
Primal-Dual, ADMM, ADLP). In the simplest case the

(infeasible) optimizing sequences for the primal (8) and

dual (12) problems are generated by an algorithm itself, as

it is typical for primal-dual saddle-point formulation based

algorithms. Some of these algorithms consider a slightly

different dual formulation then (12) and maintain feasible

dual variables [20, 21, 7], some do not [33]. However

to the best of our knowledge none of these algorithms

maintains feasibility of the primal estimates with respect

to the problem (8). One can obtain the feasible estimates

and respectively, the duality gap estimation, by applying
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the optimizing projection PE,L defined by (10)-(11) and if

needed PU ,D defined by (15)-(17) respectively.

Subgradient Descent. Sub-gradient descent 1 was one of

the first optimization algorithms with convergence guaran-

tees, proposed in [30] and [17] for the dual problem defined

by (12) and an equivalent dual based on the dual decompo-

sition technique [17].

It is shown in [19] and later applied in [18] and [34,

Sec.1.7.1] that time-averaged subgradients can be used

to reconstruct the primal solution of the relaxed MAP-

inference problem (8) and hence form the infeasible primal

estimates, which can be turned to feasible ones with the op-

timizing projection PE,L defined by (10)-(11).

Methods Based on Smoothing/Methods for Marginal-
ization Problem. There is a group of methods [27, 29,

12, 10, 26, 36, 13] addressing optimization of the entropy-

smoothed primal problem (18) or its dual, which can be for-

mulated as smooth and unconstrained one (see e.g. [27] for

details). In the latter case gradient of the smooth dual func-

tion can be used to reconstruct infeasible primal estimates,

as it is done in e.g. [27, 29]. Applying the optimizing pro-

jection PÊ,L̂ defined by (19)-(20) provides feasible primal

estimates converging to the optimum of the problem (18).

Remark 6. If the final objective of the optimization is
not the entropy-smoothed primal problem (18), but the
primal MAP-inference (8), and the smoothing is used as
an optimization tool to speed up or guarantee conver-
gence [27, 29, 10, 13], one can obtain even better primal
bounds for a lesser computational cost. Namely, the op-
timizing projection PE,L can be applied to approximate
the optimal solution of the primal MAP-inference prob-
lem (8). Denote μ̂′ = (μ̂′V , μ̂

′
E) = PÊ,L̂(μV , μE) and

μ′ = (μ′V , μ
′
E) = PE,L(μV , μE).

Ignoring the box-constraints according to recomenda-
tions of Remark 5, from the definitions (10) and (19) it
follows that μ̂′V = μ′V , and thus due to (11) and (20)
E(μ′) ≤ E(μ̂′). This means that the projection PE,L is
preferable for approximating the minimum of E overL even
in the case when the smoothed problem (18) was optimized
and not the original non-smooth (8). As an additional ben-
efit, one obtains faster convergence of the projection even
from the worst-case analysis, due to a better estimate of the
Lipschitz constant for the function E compared to the func-
tion Ê, as provided by Lemmas 1 and 2.

Non-smooth Coordinate Descent: TRWS, MPLP and
others. We are not aware of methods for reconstructing pri-

mal solutions of the relaxed problem from dual estimates for

non-smooth coordinate descent based schemes like TRW-

S [16] and MPLP [8]. Indeed, these schemes do not solve

the relaxed MAP problem in general, hence even if one

1We use the term subgradient descent also for maximization of concave

functions

would have such a method at hand, it would not guarantee

convergence of the primal estimates to the optimum.

4. Experimental Analysis and Evaluation
The main goal of this section is to show how Theorem 1

works in practice. Hence we provide only two experiments

to evaluate our method. Both concentrate on reconstructing

of feasible primal estimates for the MAP inference algo-

rithms considered in Section 3.4. In the first experiment we

show how the projected primal MAP-solution converges to

the optimum for three different algorithms. In the second

one we show how the bound (4)-(5) allows for at least qual-

itative prediction of the objective value in the (feasible) pro-

jected point. We refer to [27, 33, 15, 29] for the experiments

with an extended set of benchmark data.

For the experiments we used our own implementa-

tions of the First Order Primal Dual Algorithm (acronym

FPD) [6] as described in [33], the adaptive diminishing

smoothing algorithm ADSAL proposed in [29], the dual

decomposition based subgradient ascent SG with an adap-

tive step-size rule according to [15, eq.17] and primal es-

timates based on averaged subgradients, and finally Nes-

terov’s accelerated gradient ascent method NEST applied

to smoothed dual decomposition based objective studied

in [27]. All implementations are based on data structures

of the OpenGM library [1].

The optimizing projection to the local polytope w.r.t. to

the MRF energy (10)-(11) is computed using our implemen-

tation of a specialization of the simplex algorithm for trans-

portation problems [2]. We adopted an elegant method by

Bland [3], also discussed in [25], to avoid cycling.

Feasible Primal Bound Estimation. In the first series, we

demonstrate that for all three groups of methods discussed

in Section 3.4 our method efficiently provides feasible pri-

mal estimates for the MAP inference problem (8). To this

end we generated a 256 × 256 grid model with 4 variable

states (|Xv| = 4) and potentials randomly distributed in the

interval [0, 1]. We solved an LP relaxation of the MAP

inference problem with FPD as a representative of meth-

ods dealing with infeasible primal estimates, subgradient

method SG and ADSAL as the fastest representatives of

smoothing-based algorithms. The corresponding plots are

presented in Fig. 1. We note that in all experiments the time

needed to compute the optimizing projection PE,L did not

exceed the time needed to compute the subgradient/gradient

of the respective dual function and required 0.01-0.02 s on

a 3GHz machine. The generated dataset is not LP tight,

hence the obtained relaxed primal solution has a signifi-

cantly smaller energy than the integer one. In contrast to

the cases where only non-relaxed integer primal estimates

are computed, the primal and dual bounds of the relaxed

problem converge to the same limit value. Due to the feasi-

bility of both primal and dual estimates, the primal and dual
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Figure 1. Convergence of the primal (dashed lines) and dual (solid

lines) bounds to the same optimal limit value for ADSAL and FPD
algorithms and SG. The obtained integer bound is plotted as a dot-

ted line.

objective functions’ values bound the optimal value of the

relaxed problem from above and below, respectively.

Evaluation of Convergence Bound. The second experi-

ment is devoted to the evaluation of the convergence bounds

provided by Theorem 1. To this end, we generated four LP-

tight grid-structured datasets with known optimal labeling.

We refer to [33, pp. 95-96] for a description of the gen-

eration process. The resulting unary and pairwise poten-

tials were distributed in the interval [−10, 10]. We picked

up a random subset of edges not belonging to the optimal

labeling and assigned them “infinite” values. We created

four datasets with “infinities” equal to 10 000, 100 000,

1 000 000 and 10 000 000 and ran NEST for inference. Ac-

cording to Theorem 1 the energy E evaluated on projected

feasible estimates PE,L(μt
V , μ

t
E), t = 1, . . . ,∞, where the

infeasible estimates μt were reconstructed from gradient of

the dual function, can be represented as

E(PE,L(μt
V , μ

t
E)) = F (μt) + LY (E)‖μt −ΠLμt‖ (21)

for a suitably selected function F . Since NEST is a purely

dual method and “infinite” pairwise potentials did not make

any significant contribution to values and gradients of the

(smoothed) dual objective, the infeasible primal estimates

μt (with t denoting an iteration counter) were the same

for all four different approximations of the infinity value.

Since according to Lemma 1 the Lipschitz constant LY (E)
is asymptotically proportional to the values of the binary po-

tentials θE we plotted the values logE(PE,L(μt
V , μ

t
E)) as a

function of t for all four datasets in Fig. 2. As predicted by

Theorem 1 the corresponding energy values differ by ap-

proximately a factor of 10, as the “infinite” values do. Due

to the logarithmic energy scale this difference corresponds

to equal log-energy distances between the curves in Fig 2.

5. Conclusions
We presented an efficient and quite general optimizing

projection method for computing feasible primal estimates

for dual and primal-dual optimization schemes. The method
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Figure 2. Convergence of the obtained primal feasible solution

for four datasets which differ only by the values used as “infinity”.

The energy values are plotted in logarithmic scale. From bottom to

top: optimal log-energy, primal bounds corresponding to infinity

values equal to 10 000, 100 000, 1 000 000 and 10 000 000.

provides convergence guarantees similar to the ones of the

Euclidean projection, but contrary to it, it allows for effi-

cient computations, when the feasible set and the objective

function posses certain separability properties. As any op-

timization tool it has also certain limitations related to the

Lipschitz continuity of the primal objective, however ex-

actly the same limitations are characteristic also for the Eu-

clidean projection. Hence they can not be considered as

disadvantages of particularly this method, but rather as dis-

advantages of all projection methods in general and can be

overcome only by constructing algorithms, which intrinsi-

cally maintain feasible primal estimates during iterations.

The construction of such algorithms has to be addressed in

future work.
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