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Abstract

Biologists collect and analyze phenomic (e.g., anatomi-
cal or non-genomic) data to discover relationships among
species in the Tree of Life. The domain is seeking to mod-
ernize this very time-consuming and largely manual pro-
cess. We have developed an approach to detect and localize
object parts in standardized images of bat skulls. This ap-
proach has been further developed for unannotated images
by leveraging knowledge learned from a few annotated im-
ages. The key challenge is that the unlabeled images show
bat skulls of “unknown” species that may have types, to-
tal numbers, and layouts of the teeth that differ from the
“known” species appearing in the labeled images. Our
method begins by matching the unlabeled images to the la-
beled ones. This allows a transfer of tooth annotations to
the unlabeled images. We then learn a tree parts model on
the transferred annotations, and apply this model to detect
and label teeth in the unlabeled images. Our evaluation
demonstrates good performance, which is close to our up-
per bound performance by the fully supervised model.

1. Introduction

“Phenomic characters” represent a rich source of infor-
mation for understanding biodiversity and evolution [15, 5],
especially for reconstructing the Tree of Life. For fossil
species, these data are the only way to discover the evo-
lutionary relationships among species. For living species,

phenomic data contribute to our understanding of evolution-
ary relationships and provide a window into the complex in-
terrelationships of form, environment, and genes. Phenomic
characters include anatomical characteristics of organisms,
such as presence or absence of shared or unique parts (e.g.,
horns, wings), shapes of parts (coiled versus straight horns),
relationships between parts (e.g., that the eye is superior to
the nose), and other features such as biochemistry and be-
havior. MorphoBank, a new web application and database
allows researchers to collect and archive images collabora-
tively in online matrices [8, 9]. MorphoBank now includes
thousands of scores and annotated images used in evolu-
tionary research. Columns in MorphoBank matrices rep-
resent characters, such as the presence/absence of a part
(e.g., horns) or more complex relationships (e.g., distance
between teeth). Rows in matrices are species. Scoring each
cell in a matrix, however, currently requires individual vi-
sual inspection by an expert, limiting the speed at which
these data can be analyzed. A goal of our research, the col-
laborative AVAToL 1 project, is to apply computer vision to
accelerate this process, which will significantly advance the
reconstruction of the whole Tree of Life containing tens of
millions of species [16].

Here, we use an image collection of three standardized
views of skulls (dorsal, ventral, and lateral anatomical ori-
entations) of eight species of bats (Chiroptera, Mammalia)
provided by researchers in the Department of Mammalogy
at the American Museum of Natural History. We attempt

1NSF - Assembling, Visualizing, and Analyzing the Tree of Life;
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to score the types and layout of teeth. Teeth vary widely
in mammalian evolution and their differences are important
distinguishing characteristics of species and larger groups.
Mammals, including bats, have four tooth types (incisors,
canines, premolars, and molars). Differentiating tooth type
and number can be especially problematic when teeth ap-
pear to be similar in texture and shape.

Few skull images show the ventral (bottom) or lateral
(side) view of a bat skull against an uniform background, as
illustrated in Figures 1 and 2. Note that teeth only show up
in these two views, thus only images of ventral and lateral
views are used in our experiments. Since manual annota-
tions are expensive, only a subset of images of a few bat
species were annotated with the locations and types of teeth
present. We refer to these species as “known bat species”.
Note that in our experiments, the image acquisition process
readily provides metadata about the species and view (ven-
tral or lateral) of each specimen/image. Thus, in this work,
image annotation does not pertain to the class label and
view of an object occurring in the image, as is typically the
case in the object recognition literature, but to the bound-
ing boxes (and associated part name) drawn around each
object part of interest in the image. Our goal is to detect
and localize the teeth present in the much more numerous
unannotated images of other “unknown” bat species. They
are “unknown” species, because we do not know a priori
the locations and types of teeth present in the unannotated
images.

This is a very challenging problem for state-of-the-art
computer vision. First, fine-grained recognition is required,
because certain types of adjacent teeth on a bat skull ap-
pear very similar. Second, tooth localization must be highly
accurate, since measuring relative displacement is impor-
tant for biological studies. These challenges could poten-
tially be addressed by leveraging contextual and spatial con-
straints (e.g., premolars are located between canine and mo-
lar teeth). However, in our setting, contextual reasoning is
very difficult, because the eight collected bat species have
totally different tooth numbers, spatial layouts, and types
of teeth (e.g., some species lack all but a single premolar).
One could learn these phenomic characters for the known
bat species in the annotated images. But, for the remaining
unknown bat species, learning the numbers, configurations,
and types of teeth must be accomplished without any train-
ing examples or supervision, i.e., zero-shot learning.

Because the known and unknown bat species share many
phenomic characters, it is reasonable to expect that trans-
ferring knowledge about the known species would enable
robust zero-shot learning of the unknown species. This, in
turn, would allow successful tooth detection and localiza-
tion in the unannotated images. Transfer learning provides
a framework to utilize prior knowledge so that a model of
a new class can be trained on only a few training exam-

Figure 1: Left: Annotated images of known bat species.
Middle: Annotated bounding boxes of known bat species
are transferred to the unannotated images by image match-
ing. Distributions of transferred annotations are estimated
(shown as circles). Right: A tree-structured part model
for the unknown species is learned from the distributions
of transferred part annotations.

ples and yet match the performance attained by standard
training on many training examples. Related work typically
focuses on transfer learning for image classification. For
example, transfer learning can be used to find a feature rep-
resentation that is shared by all image classes to address the
lack of training data for some image classes [12, 11]. Sim-
ilarly, learning shared scene parts [18], and shared training
examples [6] has been shown to produce successful trans-
fer learning in image classification. Transfer learning has
also been used for attribute recognition by finding a shared
classifier of object attributes [1, 14]. Zero-shot learning
has been achieved for image classification by mapping the
raw features of the unknown class into a common feature
space of the known classes [4]. However, most of these
approaches cannot be easily extended to address object de-
tection and localization. We are not aware of any approach
to zero-shot learning that is able to estimate unknown num-
bers, layouts, and types of parts of new objects.

In this work, we make the assumption that the set of an-
notated images is sufficiently large to provide information
about all the teeth types, so that no new types are expected
in the unannotated images. The teeth types include: incisors
(labeled I1), canines (C), premolars (P4, P5), and molars
(M1, M2). Since bat skulls exhibit approximate axial sym-
metry, we expect that if a specimen has a particular tooth
type, then a pair of teeth of that type occur symmetrically
on each side of the jaw. Since the labels of species and view
(ventral or lateral) are given for every unannotated speci-
men/image, we formulate zero-shot learning for the case
when the considered set of unannotated images show the
same view of skulls of only one species.

204204



Our approach is illustrated in Fig. 1. First, we match
the unannotated images to the annotated ones. This allows
a transfer of tooth annotations to the unannotated images.
Since image matching is subject to noise, for every tooth
type, we estimate a mixture of Gaussian distributions of lo-
cations of matches in the unannotated images. Second, the
Gaussian mixtures are used to robustly learn a part-based
model of the new bat species. The layout of parts is mod-
eled as a tree representing the symmetric arrangement of
the teeth along the jaw. The tree root represents the upper
mesial incisors. Third, to identify the total number of teeth
in the model, i.e., to perform model identification, we start
with the tree model which has all the tooth types. Then,
we conduct hypothesis testing to sequentially remove parts
from the tree model (and their symmetric pairs) whose dis-
placements relative to neighboring parts are significantly
different from those observed in the annotated images. The
resulting tree model is then employed for ultimate tooth de-
tection and localization. In this work, we do not integrate
the two tree models learned on ventral and lateral views of a
given “unknown” bat species. Instead, we treat the models
as two independent representations of the object class.

Contributions. To the best of our knowledge, this paper
presents the first approach to zero-shot learning for part de-
tection and localization. The related work of [7] uses dense
image matching to transfer labels of segments from anno-
tated images, but for the purpose of improving segmentation
of unannotated images — not for part detection and local-
ization. We formulate a novel soft loss for the structured
output learning of our tree model.

In the following, Sec. 2–4 specifies the tree model and
its inference and learning; Sec. 5 explains our annotation
transfer; Sec. 6 describes model identification; and Sec. 7
presents the dataset of bat skull images and our results.

2. The Tree Model
This section specifies our tree model for detection and

localization of object parts. Let D = {Im : m = 1, 2, . . . }
denote the set of our bat skull images (all assumed to have
the same size of H × W pixels). Each image shows ei-
ther the ventral view or lateral view of a bat skull with
the teeth V = {Vi : i = 1, . . . , n}, where Vi is an in-
stance of a particular tooth type. The teeth occur in an im-
age in a particular symmetric configuration, as illustrated in
Fig. 1, which can be modeled as a directed tree, G = (V, E),
where E is the set of edges connecting the neighboring teeth
(i.e., nodes). As the tree root, we specify a part of the bat
skull that is assumed always present in all the images. In
particular, the root represents the upper mesial incisors in
the skull. Each tooth Vi ∈ V is characterized by location
si ∈ Si = {1, · · · , H} × {1, · · · ,W} in the image.

We define structured output space S = S1 × · · · × S|V|,
and cast part detection and localization as a structured pre-

diction problem. Specifically, the true teeth locations S =
{si : i = 1, . . . , n} are assumed to maximize the score,
f(I, S), defined as

f(I, S) =
∑
Vi∈V

θi(I, si) +
∑

(Vi,Vj)∈E

θij(si, sj), (1)

where θi(I, si) is the appearance score, and θij(si, sj) is
the deformation score, as in the pictorial structure and de-
formable parts models [2, 3]. Thus, part detection and lo-
calization amounts to estimating Ŝ = arg maxS∈S f(I, S).

We specify θi(I, si) and θij(si, sj) as linear functions:

θi(I, si) = 〈wi,ψi(I, si)〉, (2)
θij(si, sj) = 〈wij ,ψij(I, si, sj)〉, (3)

where ψi is a feature descriptor vector associated with Vi,
and ψij is a pairwise feature vector.

In this paper, ψi(I, si) represents the standard HOG
(histogram of oriented gradients) descriptor extracted from
a window centered at si. ψij(I, si, sj) is defined as the stan-
dard vector of displacements between windows centered at
si and sj , ψij(I, si, sj) = [dx, dy, dx2, dy2].

All ψi(I, si) and ψij(I, si, sj) are concatenated to form
a joint feature map, Ψ = [· · · ,ψi, · · · ,ψij , · · · ].
The corresponding parameter vector is w =
[· · · ,wi, · · · ,wij , · · · ]. From (1), the prediction score is
f(I, S) = 〈w,Ψ(I, S)〉.

3. Inference
For the tree model defined in Sec. 2, we perform infer-

ence, Ŝ = arg maxS∈S f(I, S), overH×W possible coor-
dinates for each part Vi, using the well-known generalized
distance transform algorithm [2]. The complexity of our
inference is O(H +W ).

4. Learning
This section explains how to learn the parameter vec-

tor, w, of our tree model from the unannotated images in
the dataset. We formulate zero-shot learning as regularized
risk minimization. Specifically, w is learned by the struc-
tured output SVM (SOSVM) [13]. SOSVM requires: 1)
User-defined loss function ∆ : S × S → R; and 2) Loss
augmented inference, as specified below.

First, recall that we do not have access to ground-truth
locations of the teeth S = {si}. As mentioned in Sec. 1, we
could only transfer annotations of tooth locations from the
annotated images to the unannotated ones. Therefore, we
define ∆(S, Ŝ) as an average of distancesK(si, ŝi) between
the transferred annotations and predictions for each tooth as

∆(S, Ŝ) =
γ

|V|

|V|∑
i=1

K(si, ŝi), (4)
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where γ is a constant. For addressing noise in the annota-
tion transfer along with meeting the domain requirements
for highly accurate tooth location estimation, K is specified
as a mixture of truncated Euclidean distances:

K(si, ŝi) =
∑
k

πk

[
(µi;k − ŝi)

TΣ−1i;k (µi;k − ŝi)
T
]
η
, (5)

where πi;k are mixing parameters, and µi;k and Σi;k denote
the kth mean and covariance of locations of the ith tooth
transferred from the annotated images (see Fig. 1). Also,
in (5), η is the minimum tolerable error in estimating part
locations, such that [c]η = c, if c > η, and [c]η = 0, other-
wise.

Note that in the special case, when k = 1, η = 0, and Σ
is the identity matrix,K becomes the Euclidean distance. A
similar truncated Euclidean loss was used for training part
locations in [3]. It is also worth noting that our loss ∆(S, Ŝ)
is different from that used for learning a Deformable Parts
Model (DPM) of human poses, presented in [17]. Their loss
accounts only for root predictions. In contrast, our learning
controls performance of part localization by directly penal-
izing all individual incorrect part predictions.

Second, following the formulation of SOSVM [13], our
learning requires loss-augmented inference of hidden teeth
locations in the unannotated images, h(Im, Sm), which is
defined as

S∗ = arg max
Ŝ

[
∆(S, Ŝ) + f(I, Ŝ)

]
, (6)

where S denotes the noisy teeth annotations transferred to
image I , and Ŝ denotes the estimated teeth locations. Thus,
the learning objective F (w) is given by

min
w

λ

2
‖w‖22 +

∑
m

max(0, h(Im, Sm)− f(Im, Sm)). (7)

where λ is a constant, and the second term represents the
surrogate hinge loss, i.e., a convex upper bound of ∆(S, Ŝ).

As in [10], we solve (7) using subgradient descent. By
Danskin’s theorem, a subgradient of the loss term in (7) is
equal to (Ψ(Im, S

∗
m)−Ψ(Im, Sm)). Thus, the subgradient

of the objective function in (7) is

∂F

∂w
= λw +

∑
m

(Ψ(Im, S
∗
m)−Ψ(Im, Sm)). (8)

For computing Ψ(Im, Sm), we estimate the mean locations
of the transferred annotations Sm and extract their HOG
features. We obtain the model parameters w by performing
gradient descent.

5. Annotation Transfer
This section explains how to transfer available part an-

notations of known objects to the unlabeled images. To

(a) (b) (c) (d)

Figure 2: Matching: (a) Source images; (b) Resulting dis-
placement fields; (c) Source images warped by the displace-
ment fields to look like target images; (d) Target images.

this end, we use dense image matching. Matching pixels
of the annotated images with pixels of the unannotated ones
allows a transfer of tooth annotations from the set of anno-
tated images. Note that, in our case, differences in the skulls
of distinct bat species occurring in the images give rise to
matching errors, even in the case of ideal matching. These
errors in transferring tooth annotations could negatively af-
fect our zero-shot learning. Consequently, we transfer tooth
annotations only from a subset of known bat species whose
image matching is estimated to be successful. Thus, our an-
notation transfer consists of two steps. We first match all
annotated images of a known bat species to the set of unan-
notated images. Then we make a decision whether to use
the matching results based on the estimated quality of the
matching. Below, we formulate dense image matching.

Let x = [x, y] denote a pixel’s coordinate in the source
image I . For every pixel in I , we seek displacement dx,
such that x + dx is that pixel’s corresponding location in
the target image I ′. Thus, the matching between I and I ′

can be defined as an energy minimization problem:

min
d

∑
x∈I

[
‖g(I(x))− g(I ′(x + dx))‖+ β‖dx‖

+ν
∑

y∈N(x)

min(‖dx(x)− dy(x)‖, ξ)
]

(9)
where d = {dx : x ∈ I} is the displacement field, g(I(x))
is the HOG descriptor extracted from image I at pixel loca-
tion x, N(x) is the set of neighoring pixels of x, and β, ν,
ξ are constants. The first term in (9) penalizes large appear-
ance differences between the candidate locations in I and I ′

for matching. The second regularization term in (9) models
our domain knowledge that I and I ′ are generally similar,
and thus the matching displacements should not be large.
Finally, the last smoothness term in (9) penalizes matches
that are inconsistent with the matches of neighbors. A sim-
ilar formulation of dense image matching is presented in
[7]. We solve (9) using tree-weighted max product message
passing [7]. Examples of the resulting displacement fields
are shown in Figure 2.

In the second step of our annotation transfer, we esti-
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mate the quality of image matching. We expect that large
errors in matching can be reliably detected by analyzing the
resulting energy in (9). We sum the energy values of all im-
age pairs of a given known species and the unknown species
and then exclude the known species from annotation trans-
fer when the energy sum is above a threshold. In our ex-
periments, we adaptively set this threshold to remove from
annotation transfer the one known species with the lowest
matching energy.

6. Model Identification

As described in Sec. 4, we initially learn an all-teeth
model of the unknown bat species. This section describes
how to estimate the correct number of teeth in the model.
We first detect tooth instances in the unannotated images
using the all-teeth model, as described in Sec. 3. Then, we
use these detections to identify particular tooth types to be
removed from or kept in the model.

We expect that the tooth detections are placed in the
images at random distances from one another, where the
relative tooth-tooth distances in all the images are gov-
erned by an unknown distribution. Consequently, identify-
ing whether a particular tooth type is present in the unknown
bat species can be performed as a statistical hypothesis test
of distances between the corresponding tooth detections in
the unannotated images. We use the following two-sample
t-test.

Let P = {pl : l = 1, . . . , L} denote a set of all tooth
types that appear in at least one bat species. For a particular
tooth type, pl, the null hypothesis H0 states that the esti-
mated distances in the unannotated images between pl and
its two nearest neighbors N(pl) ⊂ P come from the same
underlying distribution as the corresponding distances in the
annotated images. The alternative hypothesisH1 states oth-
erwise. We set the significance level to 5%, which means
that we are confident that H0 is true if p-value is greater
than 0.05. If the t-test fails for a particular pl, we remove pl
from the model and directly connect its two nearest neigh-
bors N(pl) ⊂ P in the tree model. We keep performing the
t-test until all the teeth in P are examined.

7. Experiments

The image dataset used for evaluation in this work has
been collected by researchers in the Department of Mam-
malogy at American Museum of Natural History. The
dataset consists of 160 × 2 images of 160 different speci-
mens of bat skulls, each imaged from the ventral and lat-
eral views. While the specimens are placed on a relatively
uniform background, detecting certain skull parts of inter-
est (in our case the teeth) is challenging due to their low
contrast and very subtle differences in their shapes and tex-
tures. The specimens belong to 8 bat species, where each

species is represented by 20 × 2 images. The eight species
include: Artibeus jamaicensis, Desmodus rotundus, Glos-
sophaga soricina, Noctilio albiventris, Molossus molossus,
Mormoops megalophylla, Saccopteryx bilineata and Tra-
chops cirrhosus. Each of these species has a subset of the
following teeth: incisors (labeled I1), canines (C), premo-
lars (P4, P5), and molars (M1, M2). Table 1 summarizes the
tooth presence/absence characters for each species. Teeth of
the same type differ in shape, texture, and layout across the
eight bat species.

In our experiments, we use the “leave-one-out” (LOO)
setting, where one bat species is treated as “unknown”, and
the remaining seven bat species are considered “known”.
Note that ground-truth tooth annotations of the selected
“unknown” species are used only for evaluation, not for our
zero-shot learning. For the “unknown” bat species, we zero-
shot-learn two independent models on the ventral and lateral
views. Then, the two models are used to detect and localize
the tooth types in the corresponding views. The zero-shot
learning is conducted on a subset of 12 randomly selected
images per species. Our evaluation of detection and local-
ization is performed on the remaining 8 images. Below,
we first present our detection results, then, dense matching
performance, and, finally, localization results. All results
are averaged over the ventral and lateral views. We also de-
scribe three baselines and compare them with our approach.

Table 1 shows our results of estimating the right number
of the tooth types for each bat species when it is treated as
“unknown”. In our experiments, learning of the two mod-
els on the ventral and lateral views identified the same set
and number of teeth. Therefore, Table 1 does not make a
distinction between the two models. As can be seen, our
model identification is highly accurate with at most 1 falsely
included and 1 falsely excluded tooth type per species.

Next, we test dense image matching by evaluating the
Euclidean distances between the transferred annotations
and the ground truth in the unannotated images. These dis-
tances are normalized to the distance between the centers of
the nasal aperture and the incisor tooth (I1), which are typ-
ically 8-10 pixels apart. Ideally, the normalized Euclidean
distances should be zero. Fig. 3a shows the box plots of
the normalized Euclidean distances averaged for every tooth
across all eight bat species. The x-axis of the box plots enu-
merates 12 teeth belonging to teeth. On each box, the cen-
tral red mark is the mean distance; the box edges correspond
to 25% and 75% of the distances; the dashed lines extend
to the most extreme data points not considered outliers; and
outliers are plotted individually as red crosses. As can be
seen, most means of the normalized Euclidean distances are
greater than 0.5. A few outliers in the transferred annotation
have the normalized distance greater than 2.5. These results
demonstrate that the transferred annotations are noisy.

Our tooth localization results using the tree model are
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Part Name N I1 C P4 P5 M1 M2 # incorr

Artibeus
1 1 1 1 1 1 1
1 1 1 1 1 1 1 0

Desmodus
1 1 1 0 1 1 0
1 1 1 0 0 1 1 2

Glossophaga
1 1 1 1 1 1 1
1 1 1 0 1 1 1 1

Molossus
1 1 1 0 1 1 1
1 1 1 1 1 1 1 1

Mormoops
1 1 1 1 1 1 1
1 1 1 1 1 1 1 0

Noctilio
1 1 1 0 1 1 1
1 1 1 1 1 1 1 1

Saccopteryx
1 1 1 1 1 1 1
1 1 1 1 1 1 1 0

Trachops
1 1 1 1 1 1 1
1 1 1 1 1 1 1 0

Table 1: Results of our model identification using the t-test
(Sec. 6). The 8 bat species are organized in rows. For each
species, the top row indicates the ground truth presence “1”
or absence “0” of the tooth, and the bottom row indicates
our results. The teeth are: I1: mesial upper incisor; C: up-
per canine; P4: central upper premolar; P5: distal upper
premolar; M1: mesial upper molar; M2: central upper mo-
lar. For the ventral views, we also account for a special part,
N: nasal aperture.

(a) (b)

Figure 3: Box plots of (a) annotation transfer error, and
(b) our part localization error measured as normalized Eu-
clidean distances from the ground truth locations of every
tooth averaged over the eight bat species. The x-axis enu-
merates 1: I1, 2: Nose, 3: C right, 4: P4 right, 5: P5 right,
6: M1 right, 7 M2 left, 8: C left, 9: P4 left, 10: P5 left, 11:
M1 left, 12 M2 left. On each box, the central red mark is
the mean distance, the edges of the box are 25% and 75% of
the distances, the dashed lines extend to the most extreme
errors not considered outliers, and outliers are plotted indi-
vidually as red crosses.

shown in Fig. 3b. Localization of only correctly predicted
tooth types is tested. As in the above image matching eval-
uation, localization error is measured as the normalized Eu-
clidean distance between the centers of detected teeth and
their ground truth in the unannotated images. Fig. 3b shows

Species DPM MED Ours SOSVM+GT
Artibeus 0.12 0.10 0.10 0.08
Desmodus 0.42 0.91 0.55 0.06
Glossophaga 0.33 0.21 0.19 0.11
Molossus 0.25 0.17 0.18 0.12
Mormoops 0.55 0.34 0.31 0.17
Noctilio 0.17 0.15 0.12 0.12
Saccopteryx 0.31 0.19 0.19 0.09
Trachops 0.16 0.18 0.09 0.06
Average 0.29 0.28 0.22 0.10

Table 2: Tooth localization error measured by normalized
Euclidean distance from ground truth locations and aver-
aged over all the teeth. DPM [17]: the mean of transferred
annotations is used for initialization in training; MED: a
variant of our approach that uses a mixture of Euclidean
distances for the loss function in training; Ours: our ap-
proach; SOSVM+GT: SOSVM that uses ground truth part
annotations for training.

the box plots of the average localization error for every tooth
across all eight bat species. The mean localization errors are
about 0.2 (i.e., 4–5 pixels), which is roughly a 65% reduc-
tion compared to the errors in annotation transfer (Fig. 3a).
This shows that our zero-shot learning greatly improves lo-
calization accuracy compared to the naive approach of just
transferring the annotations without learning.

Finally, we compare our localization error with that of
the following three baselines. The first baseline is the DPM
presented in [17]. For initialization of latent locations of the
DPM parts, we use the mean locations of the transferred an-
notations for each tooth. The second baseline, called MED,
is a simpler variant of our approach that uses a mixture
of Euclidean distances (η = 0), instead of our mixture of
truncated Euclidean distances, for the loss function. The
third baseline is the SOSVM trained directly on the ground
truth annotations, denoted as SOSVM+GT. Table 2 com-
pares our method against these three baselines. Note that
in 7 of the 8 species, our method is at or near the best. We
make serious errors only on Desmodus, a highly derived bat
species adapted to blood feeding that has a very unusual set
of teeth. For 4 of the species, our method is within 0.05 of
SOSVM+GT, although unlike SOSVM+GT we do not have
access to ground truth annotations. Interestingly, training
with mean transferred annotations (MED) is slightly better
than the DPM. This suggests the importance of employing
a part-level loss function. But for some cases, MED obtains
worse results. In particular, when image correspondences
are poor, it tends to fail.
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8. Conclusion
We present a new approach to zero-shot learning for

detection and localization of object parts. This approach
aimed to facilitate biological studies on tooth types and
location in images of skulls from eight bat species. For
the “unknown” bat species, we learn a tree model of the
bat’s teeth by transferring tooth annotations from images
of “known” bat species to the unannotated images of the
“unknown” bat species. The model is then applied to de-
tect and localize the teeth in the unannotated images. Our
experiments on 320 images of skulls of eight bat species
demonstrate that we generally outperform baselines and of-
ten achieve performance close to an upper bound tree model
trained on full ground truth annotations.

Acknowledgements

This research has been sponsored in part by NSF DEB
1208272 to T. G. Dietterich, NSF DEB 1208270 to M. A.
O’Leary and NSF DEB 1208306 to N. B. Simmons.

References
[1] A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recog-

nition for cross-category generalization. CVPR, 2010. 2
[2] P. Feltzenswalb and D. Hutenlocher. Pictorial structures for

object recognition. IJCV, 61(1):55–79, 2005. 3
[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part
based models. PAMI, 2010. 3, 4

[4] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between-class attribute trans-
fer. CVPR, 2009. 2

[5] P. O. Lewis. A likelihood approach to estimating phylogeny
from discrete morphological character data. Syst. Biol.,
50(6):913–925, 2001. 1

[6] J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learn-
ing by borrowing examples for multiclass object detection.
NIPS, 2011. 2

[7] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing: label transfer via dense scene alignment. CVPR, 2009.
3, 4

[8] M. A. O’Leary, J. I. Bloch, J. J. Flynn, T. J. Gaudin, A. Gial-
lombardo, N. P. Giannini, S. L. Goldberg, B. P. Kraatz, Z.-X.
Luo, J. Meng, X. Ni, M. J. Novacek, F. A. Perini, Z. Ran-
dall, G. W. Rougier, E. J. Sargis, M. T. Silcox, N. B. Sim-
mons, M. Spaulding, P. M. Velazco, M. Weksler, J. R. Wible,
and A. L. Ciranello. Response to comment on “the placental
mammal ancestor and the post-k-pg radiation of placentals”.
Science, 341:613, 2013. 1

[9] M. A. O’Leary and S. Kaufman. Morphobank: phylophe-
nomics in the “cloud”. Cladistics, 27:1–9, 2011. 1

[10] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Subgradient
methods for structured prediction. AISTATS, 2007. 4

[11] R. Salakhutdinov, J. Tenenbaum, and A. Torralba. Learning
to learn with compound hd models. NIPS, 2011. 2

[12] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing fea-
tures: efficient boosting procedures for multiclass object de-
tection. CVPR, 2004. 2

[13] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-
tun. Support vector machine learning for interdependent and
structured ouput spaces. ICML, 2004. 3, 4

[14] Y. Wang and G. Mori. A discriminative latent model of ob-
ject classes and attributes. ECCV, 2010. 2

[15] J. Wiens. The role of morphological data in phylogeny re-
construction. Syst Biol, 53:653–661, 1999. 1

[16] E. O. Wilson. The encyclopedia of life. Trends in Ecology
and Evolution, 18:77–80, 2003. 1

[17] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. CVPR, 2011. 4, 6

[18] L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille.
Part and appearance sharing: Recursive compositional mod-
els for multi-view multi-object detection. CVPR, 2010. 2

209209


