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Abstract

Detection of positive and negative emotions can provide
an insight into the person’s level of satisfaction, social re-
sponsiveness and clues like the need for help. Therefore,
automatic perception of affect valence is a key for novel
human-computer interaction applications. However, robust
recognition with conventional 2D cameras is still not pos-
sible in realistic conditions, in the presence of high illu-
mination and pose variations. While the recent progress
in 3D data expression recognition has alleviated some of
these challenges, however, the high complexity and cost of
these 3D systems renders them impractical. In this paper,
we present the first practical 3D expression recognition us-
ing cheap consumer depth cameras. Despite the low fidelity
facial depth data, we show that with appropriate prepro-
cessing and feature extraction recognition is possible. Our
method for emotion detection uses novel surface approxi-
mation and curvature estimation based descriptors on point
cloud data, is robust to noise and computationally efficient.
Experiments show that using only low fidelity 3D data of
consumer cameras, we get 77.4% accuracy in emotion va-
lence detection. Fusing mean curvature features with lumi-
nance data, boosts the accuracy to 89.4%.

1. Introduction

Machines that can perceive human affect (emotional ex-

pression) will have an important role in future human-

computer interfaces. For instance, by detecting emotional

valence, a computer system can have a clear strategy based

on either positive, negative or neutral affect towards the sys-

tem or an object. Natural social interaction between a vir-

tual agent and human can be established by emotional per-

ception ability. Another application is to augment human

judgement with computerized automatic detection. As an

example, clinical diagnosis of psychological disorders may

be improved by computationally and objectively extracted

affect information.

Facial expression is one of the most direct mediums that

conveys affect information, making it the main motivation

for the considerable research in automatic facial expression

recognition, spanning over two decades. Although many

techniques have been developed to recognize expressions,

as surveyed in [3], it is still an active research area due to

the challenging nature of the problem, especially because

of out-of-plane head rotations and highly varying illumina-

tion conditions. Some researchers have considered the use

of 3D facial data in order to alleviate these difficulties. 3D

acquisition provides information about the 3D facial geom-

etry directly. Depending on the 3D technology, illumination

variation and shading can have negligible effect on 3D data

compared to 2D color images. Moreover, out of plane rota-

tions do not affect the data as in 2D where affect recognition

can be hindered greatly depending on the pose.

However, due to the high cost, size and operating condi-

tions of 3D systems used in previous expression recognition

studies [15, 21], their application remains very limited. Re-

cently, practical 3D acquisition became a possibility owing

to the development of consumer level depth cameras. How-

ever the data is not of high quality and resolution, and it

is unknown whether the low fidelity capture of faces that it

provides, would help in recognition.

In this paper, we propose a novel method to enable fully

automatic recognition of facial expressions using low qual-

ity 3D data composed of various processing steps including

face detection, alignment and feature extraction. To the best

of our knowledge, this is the first facial expression recog-

nition study that uses low fidelity depth data of consumer

level cameras, and hence the first practical 3D system. Our

method benefits from fusion of 3D and luminance data for

higher recognition accuracies in good illumination condi-

tions, but also can work using only the depth channel which

is crucial if the color/luminance channel is not usable due

to high illumination variations.
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2. Background

2.1. Affect Valence

In daily life, occurrence of pure prototypical expressions

of the basic discrete emotion categories described by Ek-

man [1], like happiness, surprise and fear, is rather rare.

First, categorical emotions frequently blend together, such

as pleasant and unpleasant surprise, making discrete emo-

tion classification inappropriate. Second, we exhibit com-

plex affective states, such as embarrassment, affection, de-

pression, boredom and confusion. These non-basic affec-

tive states can be expressed via a wide range of facial ex-

pressions, many of them can share similarities, and the dif-

ferences between them can be quite subtle. For these rea-

sons, Ekman’s theory [1] of basic emotion categories re-

mains limited in real-life expression recognition application

scenarios. Dimensional affect theory, on the other hand,

proposes a systematic continuous transition between vari-

ous emotions [6]. Russell [11] showed that many emotion

labels can be mapped to a circular configuration called as

Circumflex Model of Affect. This circumflex model has af-

fect valence in one axis and arousal on the other.

VALENCE characterizes if the emotion is positive or neg-

ative, i.e., unpleasant feelings vs. pleasant feelings. For

example, while happiness, pleasure, contentment and af-

fection are positive emotions, fear, anger, disgust and de-

pression are negative emotions. VALENCE is the most com-

monly analysed affect dimension among the psychology re-

searchers [11], and a comprehensive study has revealed that

it is the most important affect dimension [5].

Nevertheless, so far discrete emotion classification has

been the most common approach adopted for automatic af-

fect recognition. Only recently, realization of higher po-

tential of the dimensional affect theory in real world set-

tings has attracted many researchers [17], and it has been

observed that facial expressions are quite helpful for VA-

LENCE [14].

2.2. Facial Expression Recognition with 3D Data

Previous 3D facial expression research has only consid-

ered classification of posed expressions of prototypical ba-

sic emotion classes, or recognition of facial action units

(AUs). Most of these studies have been done on pub-

licly available 3D expression databases (BU-3DFE [22] and

Bosphorus [15] databases), and various methods using 3D

data were surveyed in [13]. For instance, Wang et al. [21]

divide 3D wire-frame faces into seven regions by means of

64 manual landmarks. Then, curvature related rule-based

labels were assigned to every vertex, and histograms of the

labels over these regions were used to classify six basic ex-

pressions. There are also several methods merely based on

3D landmark analysis, like in [18]. However, these methods

depend on the detection of high number of fiducial points

(83 landmarks), which can be tedious if done manually and

perhaps, inaccurate, if done automatically.

Another approach is to perform recognition by fitting

face models, for instance, morphable 3D face models as in

[10], which can be computationally quite expensive. Some

authors used 2D models, like Active Shape and Active Ap-

pearance models, to track facial points in the 2D luminance

images that are in correspondence with 3D data and then ex-

tracted 3D features [20], hence they have the disadvantage

of 2D luminance data dependency.

Comprehensive evaluations of 3D versus 2D recognition

by analysing 25 AUs are available in [15, 16], where Gabor

wavelets are applied on facial surfaces. It has been shown

that high quality 3D has significantly higher performance in

general, with the exception of some eye related AUs, even

under good illumination and under the same frontal pose.

Although there is considerable amount of expression

recognition work with 3D data, their applicability is limited

since the sensors used are very expensive and not practi-

cal to deploy for many application scenarios. Fortunately,

recently developed low cost 3D sensors have increased the

feasibility of low cost, high throughput acquisition. On the

other hand, low quality depth acquisition makes the extrac-

tion of facial expression related information highly chal-

lenging, compared to high fidelity data used in previous

work. Also, many of them perform experiments on man-

ually and carefully segmented 3D face data. Currently, face

detection on low fidelity depth data is possible with good ac-

curacy [2], however analysis of facial expressions on highly

degraded 3D data is major challenge.

3. SBIA RGB-D Affect Database

There is no any sufficiently large publicly available

database to study expression recognition with consumer

depth cameras, to the best of our knowledge. A recent

3D dataset acquired by a Kinect sensor is presented in [9],

where 451 video segments are labelled according to 12

complex mental states. However, there are only 7 subjects.

Also, it consists of many hand-over-face gestures, greatly

reducing the number of unoccluded faces. Therefore, we

prepared a sufficiently large database for our study 1.

Our database is composed of RGB images and depth

maps which were recorded in sync via Kinect sensor, in

640× 480 pixels resolution, and were registered in the spa-

tial domain. Distance of subjects to camera was about 100
cm, (depending on their movements, it can range from 80
to 120 cm). Consequently, the eye-to-eye distance of sub-

jects is about 40 pixels on average. All the sessions were

recorded in the same good illumination condition in a studio

environment. An example acquisition is shown in Figure 2.

1SBIA database is currently being prepared for release. Up to 5 subjects

can be made available for testing of algorithms, on a collaborative basis.

7676



The dataset is composed of semi-spontaneous facial ex-

pressions since it involves spontaneous interactions be-

tween actors and professional directors, as well as acting

based on scripts which were supervised by the directors.

The subjects were free to rotate their heads in any direc-

tion or to speak as in a real-world setting. The samples are

the short segments of the facial expressions cropped from

the original footage which give rise to positive and negative

feelings, as well as the segments without emotional expres-

sions. The apex frames of the facial expressions are also

annotated.

There are 707 segments from 20 subjects. The dataset is

divided into three affect valence classes as positive, nega-

tive and neutral valence. The sample size of positive, neg-

ative and neutral classes are 317, 337 and 53, respectively.

The samples of positive and negative emotions involve var-

ious emotions, such as joy, happiness, affection, pleasure

and pleasant surprise as positive samples, and anger, dis-

gust, dislike, fear, startled surprise, and unpleasant surprise

as negatives. Some instances from our dataset are shown in

Figure 1. In each class, there are different type of expres-

sions with various intensity levels and considerable out-of-

plane head rotations are involved.

4. Fully Automatic 3D Expression Recognition
The basic stages of our 3D system are depicted in Fig-

ure 2. The initial stage is pre-processing, where smooth

3D point clouds are extracted from the facial surfaces (Sec-

tion 4.1). In the next stage, we approximate facial surfaces

by local robust estimation (Section 4.2) in the form of point-

based surfaces. Our meshless surface approximation algo-

rithm provides sub-sampling for fast processing, smoothes

the point cloud and estimates normals for each point, all in

one iteration loop. The third stage is alignment. Having

obtained filtered and segmented facial surface point clouds,

we can safely apply standard Iterative Closest Point (ICP)

algorithm to align the faces to a common coordinate frame.

We employ a neutral face as the alignment target as shown

in Figure 2. Our descriptors require curvature values, there-

fore, the fourth stage is curvature estimation (Section 4.3).

The curvature estimation method is based on normal sec-

tion curvature approximation and can efficiently work on

point-based surface approximations. Finally, we design

histogram-based curvature descriptors to train valence clas-

sifiers, using feature selection, as described in Section 4.4.

This creates a fully automatic 3D valence recognizer. We

now describe each of these steps in broader detail.

4.1. Pre-processing

It is crucial to perform adequate filtering for both 3D face

alignment and feature extraction. Solution of automatic ICP

alignment can be trapped in local minima because of high

noise, and because of dissimilarities due to head rotations or

Figure 2. Flowchart of the fully automatic 3D emotion valence rec-

ognizer. After 3D reconstruction, the operations in order are: pre-

processing, surface approximation, face alignment, curvature esti-

mation, descriptor extraction, feature selection and classification.

For visualization, intermediate output faces are rendered as mesh

surfaces with artificial lighting, however the system only works on

depth maps and point clouds.

surrounding non-face regions like hair, neck, etc. Recogni-

tion performance can also be affected from degradation on

the features due to excessive noise and holes. To alleviate

these issues, we perform several filtering operations both on

the noisy depth maps and reconstructed point clouds.

Preprocessing starts with detecting faces using the depth

maps. We apply a face detection method which uses ran-

dom regression forests [2]. In the next step, point clouds

are reconstructed from depth maps using sensor calibration

parameters, and to remove most of the non-facial points,

point clouds are cropped by a polyhedron (height: 200mm,

width: 140mm, depth: 170mm) which is positioned where

the face detector finds the face. Finally, Euclidean distance

clustering [12] is applied and the biggest cluster is selected

as the face region. Thus, possible non-facial parts like hair,

neck and ears are removed.

In addition, we do hole filling and noise smoothing on

the depth map images. Holes are closed by gray-scale mor-

phological closing. Then, Gaussian filtering is applied to

obtain smooth facial depth maps. However, before apply-

ing the smoothing mask, face boundaries are extrapolated

appropriately by morphological operations so as not to in-

troduce abrupt artefacts at the face boundaries.
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Figure 1. Representative expressions from our experimental dataset. Emotion such as joy, happiness, affection, pleasure and pleasant

surprise are categorized in the positive class; while emotions such as anger, disgust, dislike, fear, startled surprise, and unpleasant surprise

are categorized in the negative class.

4.2. Robust Surface Approximation

To obtain smooth representation of facial surfaces and

for efficient processing, we have developed a meshless sur-

face approximation algorithm. Various techniques have

been proposed for point based implicit surface reconstruc-

tion. For instance, Hoppe et al. [7] perform principal com-

ponent analysis to obtain least squares fitting of tangent

planes, which serves as local linear surface approximation.

Many authors developed techniques based on moving least

squares (MLS) approach. Since approximations in least

square sense are sensitive to outliers, there is also MLS-

based work dealing with the robustness issues [4]. How-

ever, existing methods are mostly proposed for computer

graphics applications where aesthetics are crucial. On the

other hand, our goal here is to develop a fast method which

makes it sufficiently suitable to analyse noisy facial surface

points for automatic expression recognition.

With this goal in mind, we follow the tangent plane

approximation approach due to its low complexity. Our

method performs robust estimation to handle noisy range

data, and does not require the initial normal estimation step

in contrast to MLS methods. Also, data is sub-sampled

during surface approximation to reduce computations in the

following stages.

In order to approximate the facial surface computation-

ally efficiently, we use a representation based only on a set

of points and tangent planes. This implicit surface represen-

tation is formally defined as a zero-set Z(f) = {x | f(x) =
0} where f(x) : �3 → � is a signed distance function. The

distance between an arbitrary point p ∈ �3 and the sur-

face is calculated by measuring the distance from p to the

closest point on the surface, and the sign of the distance is
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determined according to the side of the surface that p lies.

The signed distance function fi(p) is evaluated by finding

the tangent plane Tpi with normal ni whose center qi is

the closest point on the point-based surface S as

fi(p) = ni · (p− qi). (1)

By estimating these tangent planes, we obtain local linear

approximation of the surface. Hence, our goal is to find a

set of points and normals S = {qi;ni | fi(qi) = 0 | i =
1, . . . ,m}.

If we are given an input point cloud P = {pi ∈ R3 |
i = 1, . . . , n}, then we obtain the tangent plane at any point

pi ∈ P , via robust estimation over the support set of point

pi determined according to radius rS ,

NPi = {pj ∈ P | i �= j | |pi − pj| ≤ rS}. (2)

For robust estimation of the tangent planes, we use M-

estimator Sample and Consensus (MSAC) [19], which is

a variant of the robust RANSAC algorithm by utilizing M-

estimator. It employs quadratic loss at small error and con-

stant loss at large error to prevent huge loss due to the out-

liers. Therefore, at each iteration of MSAC, we construct

a plane using three points, {ps0,ps1,ps2}, which are sam-

pled from the support set NPi (Equation 2) by rejection.

The plane is defined by the normal vector ni and the con-

stant offset di = −ni.ps0. The error at each support point

is the signed distance given by Equation 1.

However, the direction of the tangent planes are in-

evitably ambiguous; because, there are two planes passing

through three non-collinear points in 3D space, which are

located at the same position but have opposite directions.

Knowing the viewpoint v (in our case v = 0), this actu-

ally can be resolved since the normals should be toward the

viewpoint. This correction is realized by orienting the tan-

gent planes so that they satisfy ni · (v − pi) > 0. Once the

best fitting tangent plane is found by MSAC, the approxi-

mated surface point q satisfying fi(q) = 0 is obtained by

projecting the evaluation point pi onto the tangent plane.

q← pi − ni(pi · ni + di)/(ni · ni) (3)

Finally, we integrate sub-sampling functionality into our

point-based approximation method. This is simply achieved

by keeping track of the neighbourhood of the evaluated

points in P , during the iterations, so that those neighbour-

ing points are skipped. Neighbourhood set is defined as

Di = {pj ∈ P | pi �= pj | |pi − pj| ≤ rsub}
and point density is controlled by the neighbourhood radius

rsub. Pseudo-code of our surface approximation algorithm

is as follows (Note that the algorithm is implemented by

using k-d tree structure for fast processing).

P : input point cloud

S: point based surface approximation

Figure 3. Point-based surface approximations shown for raw and

depth filtered inputs by mesh-based surface rendering.

I: set of indices to keep track of occupied points

Initializations: S ← ∅, I ← ∅
for all pi ∈ P do

if i ∈ I then
skip to next iteration

end if
Construct support set of point pi, NPi, with radius rS
Tpi ←MSACPlane(pi, NPi)
n← normal of tangent plane Tpi

if n · (v − pi) < 0 then
n← flip n towards viewpoint v

end if
q← Projection of pi on tangent plane Tpi

S ← S ∪ (q;n)
Construct rsub neighbourhood of points, Di

I ← I ∪Di

end for
We set rS = 4mm in order to retain as much detail

as possible while keeping sufficient number of points for

estimation. The sub-sampling radius parameter is set as

rsub = 2.5mm so that substantial reduction is achieved

on the number of points that approximates the underlying

surface. We determined these parameters by visual obser-

vation, as well as by recognition tests. For instance, surface

approximation outputs of raw and depth filtered inputs are

shown in Figure 3. For the filtered inputs, average number

of points in the dataset is reduced from 7358 points to 2911.

4.3. Curvature Estimation on Point Clouds

A plethora of curvature estimation algorithms exist in

the literature, mostly because curvature is quite sensitive to

noise. The estimation problem becomes even more crucial
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with low cost range acquisition devices since underlying

surfaces are severely noisy. A comparison of several meth-

ods for range data is provided in [8], though they consider

relatively higher quality data. Most of the methods require

triangular mesh representation of the surfaces, or fit polyno-

mial surface patches for estimation, often quadric or cubic.

To handle the noise some authors use methods like robust

statistical estimation techniques, while others prefer to ap-

ply pre-processing on normal and curvature tensor fields, or

post-processing. However, these techniques introduce addi-

tional complexity and increased computation times.

In our study, we estimate curvatures by fitting to normal

section curvatures [23]. Estimation runs directly on a point

cloud with normal vectors, i.e., there is no mesh reconstruc-

tion or polynomial surface patch fitting requirement, and

thus computational burden is lower. We apply curvature

estimation on the point-based surface approximation (see

Section 4.2), S, where the normal vector at each point is

already available.

Estimation of curvature at the surface point pi ∈ S is

carried out over a neighbourhood within radius rC , defined

by the set NCi = {qj ∈ S | i �= j | |qi − qj| ≤ rC}. The

neighbouring point obtained by fast k-d tree search. The

procedure has two steps. First, for every neighbour point

qi ∈ NCi, a normal section circle is constructed (osculat-

ing circle) that connects qi to qj according to the normal

vectors ni and nj at these points. The osculating circles are

used to estimate the normal section curvatures kjn.

In the second step, least squares fitting on the normal

section curvatures is done through the Euler formula of the

curvature.

kjn = k1 cos
2(βj) + k2 sin

2(βj) (4)

Here, (k1, k2) are the unknown principal curvatures. βj is

the angle between the normal section direction and the first

principal direction. Though βj is unknown, it can be ex-

panded as a sum of a known angle and the unknown angle

which depends on the first principal coordinate. Then, it

is re-written in the form suitable for least squares solution

of the unknowns. The details of the procedure, to obtain

principal curvatures and directions, are given in [23].

We empirically determined the best working curvature

estimation radius as rC = 8mm. On average 18 points fall

within this radius when applied on the simplified surface

point clouds via the method described in Section 4.2.

4.4. Recognition with Curvature Descriptor

We design simple local histogram-based descriptors us-

ing estimated curvatures. Expressions deform the facial

surface, and surface curvature is a good indicator of these

deformations since it is the measure of local surface bend-

ing. Being the second-order local surface feature, curvature

also has the advantage of rotation invariance. It has been

shown previously [15] that, in facial expression recognition,

mean curvature performs better than other curvature fea-

tures, such as Gaussian curvature, Shape Index and curved-

ness. Therefore, we employ mean curvatures.

We first create local histograms Hi of mean curvatures,

mc = (k1 + k2)/2, over a neighbourhood of the surface

point qi ∈ S within a radius rH defined by NHi = {qj ∈
S | i �= j | |qi − qj| ≤ rH}. We found the histogram

parameters empirically, as rH = 16mm, 32 bins, and quan-

tization range of [−0.2, 0.2]. Values outside of this range

are clipped.

The local histograms are extracted according to a uni-

form rectangular grid laid in front of a facial surface after

alignment (see Figure 2). The size of the rectangular grid is

determined by the mean of the face bounding boxes, which

is 137 mm in width and 198 mm in height. A ray is cast

at each grid node which is then intersected with the point

cloud. We employ a 16× 16 grid. In order to find the inter-

section points rapidly, we transform point clouds to octree-

voxel representation which partitions the space covered by

point cloud into voxels. To obtain octree partitioning, we

use the implementation in Point Cloud Library [12]. His-

tograms are evaluated at the intersection points, are normal-

ized and the surface point cloud descriptor is constructed by

concatenating the normalized bin values of every histogram

into a single vector.

We apply state-of-the-art AdaBoost in combination with

Support Vector Machine (SVM) method [15] for recogni-

tion of positive, negative and neutral valence states. As de-

scribed in Section 3, positive and negative classes are com-

prised of different kind of facial expressions while the neu-

tral class only contains neutral faces. Training is performed

on the apex frames of which annotations are given with the

database. We first train binary classifiers and then apply

one-vs-all strategy for three-class classification. Decision

is made by choosing the output of the classifier with the

maximum score. AdaBoost is applied for the purpose of

feature selection. It runs with the nearest mean classifier

on the training set until either there is no performance gain

observed or a maximum 200 features are selected. After se-

lecting the discriminative features, i.e., histogram bins, via

Adaboost, linear SVM classifiers are trained. Training in-

volves hyper-parameter optimization via cross validation on

the training sets.

5. Experimental Results and Discussions
We do experimental evaluations in two lanes. First,

we compare our point cloud based 3D-only method with

state-of-the art 3D recognition. The importance of 3D-only

recognition is that, it can robustly work in wide range of

illumination conditions, even in pitch-black dark rooms,

whereas color channel degrades severely. Secondly, we

evaluate use of luminance data, to see the gain via fusion
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of 3D+2D as well as to compare with 2D-only recognition

in good illumination conditions.

We perform the comparisons by 10-fold subject-

independent cross validation, i.e., test subjects are not seen

in the training sets. Training and testing are performed on

the apex frames of facial expressions. Accuracy of each

method with its standard error is calculated for evaluation.

5.1. 3D Point Cloud Based Recognition

We compare three types of 3D-only feature extraction.

The pre-processing operations, i.e., face detection, align-

ment and filtering, are all the same for these three methods.

The first row in Table 1 is the surface curvature image based

recognition described in [15]. In that method, first, a trian-

gular mesh is generated, and mesh-based discrete curvature

estimation is applied. Next, the surface mesh is mapped

onto 2D domain in 96 × 96 pixel resolution image by or-

thographical projection. Then mean curvature value at each

image pixel is obtained by interpolation using barycentric

coordinates of mesh triangles. Finally, for each pixel, mag-

nitudes of various Gabor wavelet filter responses are calcu-

lated. 20 wavelets, corresponding to four orientations and

five scales from four to 16 pixels in half-octave intervals, are

applied at each pixel. This results in total 184320 features.

We refer [15] for further details of this method.

In the second row of Table 1 we again apply the same

Gabor wavelet features, however curvature values are esti-

mated using normal section curvature approximation as ex-

plained in Section 4.3 instead of mesh-based discrete cur-

vature estimation. On the other hand, the method in the

third row is our completely point cloud based method. Fea-

ture vector size of point cloud descriptors is only (16 ×
16)(gridsize) × 32bins = 8192, far less than of the Ga-

bor wavelets.

We see in Table 1 that our point cloud descriptor based

method (third row) obtains 77.4% accuracy, which is larger

than the 74.2% accuracy of the surface image Gabor method

(first row). However, the Gabor method attains 77.2% ac-

curacy if we estimate curvatures over the point clouds. This

result points out the importance of curvature estimation

component of our method for recognition using low fidelity

data of consumer level depth cameras. On the other hand,

while the accuracy of our point cloud descriptor is at par

with the Gabor method if the same curvature estimation

is employed, it provides substantial reductions in compu-

tations. This is due to far less number of features, surface

point cloud simplification, and no need for surface image

feature extraction operations (i.e., mesh formation, surface

image generation and Gabor filtering).

5.2. Fusion with Luminance Data

We fuse our 3D-only features with luminance-based fea-

tures in order to benefit from information provided by facial

Curvature Est. Features Accuracy
Mesh Surface Image Gabor 74.2 ± 2.91

Point Cloud Surface Image Gabor 77.2 ± 2.91

Point Cloud Point Cl. Descriptor 77.4 ± 3.10

Table 1. Recognition accuracies with standard errors for 3D-only

methods. For all the methods, features are based on estimated

mean curvature values.

texture. For luminance-based feature extraction, we use Ga-

bor wavelets since it is a well proven technique as shown in

various studies [15]. To apply Gabor wavelets, surface tex-

ture images are created by mapping luminance values on the

point clouds using orthographical projection and triangular

meshes. Exactly the same procedure and parameters as we

do in Section 5.1 while extracting mean curvature image

Gabor wavelets, is applied for this purpose. The luminance

feature vector is concatenated with the 3D feature vector

to obtain a hybrid feature vector. Then we run AdaBoost

which treats each element in the hybrid feature vector as a

weak classifier. Thus, the most discriminative and comple-

mentary feature set is selected. AdaBoost is terminated at

200 features, hence the number of features are the same for

all the methods. Finally, we apply standard normalization

on those selected features and train SVM classifiers.

In Table 2, we see that 3D+2D feature fusion achieves

89.4% accuracy, which is a big improvement compared

to the 3D-only performance of 77.4%. Improvements by

3D+2D fusion are frequent in previous work, however they

are small compared to our comparison (2% in [15]). We at-

tribute this difference to the use of low fidelity depth data. In

contrast to high quality 3D data of previous work, amount of

facial expression related information is less and also more

difficult to extract with low quality data. Therefore, missing

information must be compensated from the texture channel.

We also compare with the 2D-only performance of con-

sumer level cameras. The same Gabor wavelets are used

on luminance images for the 2D-only method. Facial im-

ages are registered by aligning 2D eye coordinates which

are found by OpenCV eye detector, and then by scaling to

96×96 pixels resolution. In Table 2, we see that the 2D-only

method obtains 84.9% accuracy, which is below than the

3D+2D fusion accuracy while higher than the 3D-only ac-

curacy. The fusion gain with respect to the 2D-only shows

the benefit of 3D provided by consumer depth cameras.

6. Conclusion

We have established the use of 3D data from consumer

depth cameras for automated recognition of facial expres-

sions, by demonstrating their applicability on the affect va-

lence detection problem. We have developed the first fully

automatic and practical 3D expression recognition system.
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Method Accuracy
3D+2D (feature fusion) 89.4 ± 2.21

3D-only (mean curvature) 77.4 ± 3.10

2D-only (luminance) 84.9 ± 2.72

Table 2. Recognition accuracy comparisons (with standard errors)

of 3D+2D fusion with 3D-only and 2D-only methods for con-

sumer level depth cameras.

Although these new sensors are very affordable as well as

practical, they have the handicap of capturing low quality

3D facial data. Our 3D processing alleviates this difficulty.

We first showed that our 3D-only method obtains sig-

nificantly higher accuracy than the state-of-the-art Gabor

wavelets based 3D recognition. Our experiments revealed

that this improvement is due to robust curvature estimation.

Another contribution of our method is its computational ef-

ficiency since it works directly on point clouds, and employs

surface approximation and less number of features.

Second, we showed that under good illumination condi-

tions, fusion of 3D with luminance channel improves both

3D-only and 2D-only performances. While the 2D-only

performance is better than the low quality 3D-only perfor-

mance, this is realistic in good illumination conditions, as

we are using only surface features for 3D. However, be-

cause of that, the 3D-only features will perform well in bad

illumination conditions, where color/luminance images will

fail. In addition, 3D helps alleviate the challenge of head

pose. In future, we propose to bridge this performance gap

by more suitable 3D surface features and recognition meth-

ods, or using temporal information. The improvement pro-

vided by the fusion underlines the importance of the infor-

mation provided by 3D.
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