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Abstract

In this paper, we propose a novel saliency-aware stereo
images segmentation approach using the high-order energy
items, which utilizes the disparity map and statistical infor-
mation of stereo images to enrich the high-order potentials.
To the best of our knowledge, our approach is first one to
formulate the automatic stereo cut as the high-order ener-
gy optimization problems, which simultaneously segments
the foreground objects in left and right images using the
proposed high-order energy function. The relationships of
stereo correspondence by disparity maps are further em-
ployed to enhance the connections between the left and right
images. Experimental results demonstrate that the proposed
approach can effectively improve the saliency-aware seg-
mentation performance of stereo images.

1. Introduction
With the recent increase in 3D contents such as 3D

movies, which has ignited the rapid development of 3D dis-
plays and depth cameras. This has arisen the necessity in
3D image segmentation and creation approaches. However,
it is challenging to directly apply 2D image segmentation
approaches [16, 11] to stereoscopic images, because the ad-
ditional information such as disparity maps in stereoscopic
images introduces additional constraints for improving the
performance of stereo segmentation. Since the existing 2D
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image segmentation methods do not take these constraints
into account, simple extensions of existing methods usually
fail to produce good results for stereo images.
The representative and popular image segmentation

methods are the graph-based approaches which treat the
segmentation problem as a minimum cut or maximum flow
problem through a graph partitioning structure, such as the
normalized cuts methods [16, 7] and graph cuts framework
[11, 3, 1]. However, these approaches can not meet the re-
quirements of automatically segmenting the salient objects
as a binary labeling optimization problem from stereo im-
ages. The most related method to our work is the inter-
active stereo object selection approach using lower-order
graph cut method in [13]. But our approach is different to
their method in two aspects: one is our automatic saliency-
aware foreground objects segmentation, the other is the re-
cent high-order energy optimization [10, 8, 6] is developed
to improve the segmentation performance.
The topic of salient foreground objects detection and

segmentation is very active in recent years, which has been
used in numerous computer vision application scenarios
such as object detection [18]. Although many saliency-
aware segmentation approaches for 2D images have been
developed, including saliency-driven total variation seg-
mentation [5], conditional random field model [14] and
saliency filters [12], as well as saliency detection and seg-
mentation via low rank matrix [15], the solution of saliency-
aware stereo cut is still seldom mentioned and discussed.
Furthermore, the existing single-image saliency segmenta-
tion approaches still suffer from some limitations to be ap-
plied to stereo segmentation. The most limiting one is that
saliency segmentation results are obtained by thresholding
the saliency maps with an adaptive threshold [12] or by em-
ploying the graph cut as a post-processing step [14, 4]. The
segmentation performance of these approaches mostly de-
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pends on the performance of image saliency techniques. In
order to address the above problems, we propose a nov-
el saliency-aware stereo cut algorithm using our high-order
energy optimization for stereo image pairs.
Our method considers the stereo segmentation problem-

s as the labels distribution problem and utilizes the high-
order energy minimization method to solve it. The task of
saliency-aware stereo images cut is to build one st-graph to
simultaneously segment the left and right images. The o-
riginal low-order graph-cut method only uses the data term
and smooth term to measure the labels of every pixel. In
contrast, we add the high-order term to construct the high-
order energy function to optimize the segmentation result-
s. Our high-order term includes more prior information of
the stereo images, such as the set of corresponding pixel-
s, which will improve the performance of stereo segmenta-
tion, especially when the salient object has the similar color
and texture with the background. Our high-order energy
optimization approach has solved the problem of saliency-
aware stereo segmentation where the foreground objects are
simultaneously segmented out from both the left and right
images. The segmentation result is obtained by minimiz-
ing our high-order energy function, which is based on the
corresponding pixels and their neighboring pixels from the
disparity maps and saliency maps.

2. Our approach
2.1. The generalized graph-cut optimization
The original graph-cut optimization method [3, 11]

adopts two energy terms, which includes the data term
Edata and the smooth term Esmooth to construct the en-
ergy function for the image segmentation problem. As de-
fined before, we represent the left and right images from the
stereo image pair as Il and Ir, the pixels of objects which
we want to segment out should be labeled 1, and the rest
pixels are set with the label 0. The original graph-cut based
optimization method for single image segmentation is nat-
urally extended for the task of stereo images segmentation
by adding the extra high-order energy item Ehigh, which is
based on the following energy function:

E = Edata + λsEsmooth + λcEhigh (1)

The specific form of Edata will be discussed in Section
2.3, and the classic form of Esmooth is defined as follows:

Esmooth =
∑

(p,q)∈N
exp{−||fp − fq||

2

2σ2
}V (Lp, Lq)

V (Lp, Lq) =

{
0, if Lp = Lq

1, otherwise (2)

where N is the set of all the neighborhood pixels, fp is the
feature vector of pixel p and σ is the variance of all the
neighborhood pixels.

2.2. High-order energy term

As mentioned before, our high-order energy term is em-
ployed to improve the stereo segmentation performance.
High-order term usually includes more variables than the
low-order one, therefore, more statistics information is con-
tained and exploited in the definition of high-order ener-
gy term. In our saliency-aware stereo image segmentation
method, the proposed high-order energy term will involve
more prior information of stereo images, such as the corre-
sponding pixels and the disparity map. Our high-order term
considers both the corresponding pixels and their neighbor-
ing pixels in stereo image pair. The proposed high-order ter-
m encourages the variables of both the corresponding pixels
and their neighboring pixels to get the same value.
As a result, neighborhoods of the corresponding pixels

are added in our high-order energy term and they are en-
couraged to take the same labels as well. Our high-order
energy term is defined according to all the corresponding
pixels and their neighboring pixels. The 4-connected neigh-
bors are taken into consideration in our experiments. Let
N1(p), N2(p), N3(p), N4(p) represent the up, down, left,
right neighbors of a certain pixel p, respectively. Then our
high-order energy item is defined as:

Ehigh =
∑

(p,q)∈C
ψ(p, q) ·

4∑
i=1

F [p, q,Ni(p), Ni(q)] (3)

ψ(p, q) = exp{−‖fp − fq‖
2

2σ2
} (4)

F [p, q,Ni(p), Ni(q)] = |Lp−Lq|+ |LNi(p)−LNi(q)| (5)
where p and q are the corresponding pixels from the left
and right images, respectively, and C is the pair set of the
correspondent pixels. ψ(p, q) measures the similarity of p
and q, and fp is the average features of square patch centered
in pixel p. F [.] is a penalty function, which measures the
difference of labels of p and q, and their neighboring pixels.
Since all the variables Lp, Lq, LN(p) and LN(q) in F [.] are
the binary labels, the value ofF [.] can only be 0, 1, or 2. For
example, when Lp = 1, Lq = 0, LN(p) = 1, LN(q) = 1,
then F [p, q,N(p), N(q)] = 1.
One good property of F [.] is that it can be transformed

into low-order energy term easily. However, the energy ter-
m may not perform well when we fixed the coefficients
of penalty function F [.]. Then F [.] should be adaptive
to the image contents. There are two pixel-pairs in the
high-order clique, which includes the pair of correspond-
ing pixels (p, q) and the pair of their neighboring pixel-
s (N(p), N(q)). We define three situations with different
values of f0, f1, and f2, which represent no pixel-pair, on-
ly one pixel-pair, and two pixel-pairs with different labels,
respectively. If these three variables f0, f1, and f2 can be
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determined adaptively according to different contents of lo-
cal regions in image, which will result in a better segmen-
tation performance. For example, the smooth image region
such as the backgrounds of sky and grass land belongs to
the aforementioned third situation of two pixel-pairs with
different labels. The penalty should be set with large values
at these regions so as to make the two pixel-pairs have the
same labels. However, we should use small penalty values
in the edge regions to make pixel-pairs have the same labels.
Since data term and smooth term will play the predominan-
t role for achieving the segmentation performance in these
boundary regions, which is further analyzed and illustrated
in Fig.1.
According to the aforementioned analysis, a new and

more flexible form of high-order penalty F [.] is then de-
signed as follows:

F [p, q,Ni(p), Ni(q)] = F(u) (6)

u = |Lp − Lq|+ |LNi(p) − LNi(q)| (7)

F(u) =
⎧⎨
⎩

f0, if u = 0
f1, if u = 1
f2, if u = 2

(8)

where f0, f1 and f2 are the three parameters that control
the penalty values, which represent no pixel-pair, only one
pixel-pair, and two pixel-pairs with different labels, respec-
tively. Therefore, the values of f0, f1 and f2 satisfy the re-
lationship f0 < f1 < f2. There is no penalty when f0 = 0
and the labels of the corresponding pixels and their neigh-
borhoods are exactly the same. When f2 = 2f1, Equ(6) is
equal to Equ(5) bymultiplying a factor, which can be solved
by low-order graph-cut technique. Since the value of F [.] is
in the range of [0, 2], we then set f2 = 2 in our experiments
to make the value of F [.] to be in the same range. f1 will be
changed adaptively according to the image contents of the
corresponding pixels in stereo images pair.
It is difficult to directly reduce the order of Equ(6) be-

cause F(.) is not linear. Fortunately, we can use the min-
imum selection reduction method [11, 8, 6] to solve this
problem well. We begin by defining the labels of corre-
sponding pixel-pair in left and right images as x0 and y0,
and the labels of their related neighbors as x1 and y1, where
x0, y0, x1, y1 ∈ {0, 1}. Then Equ(6) is rewritten as:

F [x0, y0, x1, y1] = F(|x0 − y0|+ |x1 − y1|) (9)

By introducing the new auxiliary binary variables w i

(i = {0, 1, 2, 3, 4}), Equ(9) can be reduced.
Lemma. In the energy minimization condition,F(|x0−

y0|+ |x1 − y1|) can be reduced by following equations:
Define a = f2 − 2f1

if a > 0

F(|x0 − y0|+ |x1 − y1|) =
(f1 + 6a)(x0 + x1 + y0 + y1)+

(−2)a(w1 + w2 + w3 + w4) + (−12a)w0+

(−3a)(x0x1 + x0y1 + x1y0 + y0y1)+

(−4a− 2f1)(x0y0 + x1y1)+

(−2a)[w1(x0 + x1 + y0) + w2(x0 + x1 + y1)+

w3(x0 + y0 + y1) + w4(x0 + x1 + y0 + y1)]+

4aw0(x0 + x1 + y0 + y1)

(10)

if a < 0

F(|x0 − y0|+ |x1 − y1|) =
f1(x0 + x1 + y0 + y1)+

4a(w1 + w2 + w3 + w4) + 12aw0+

5a(x0x1 + x0y1 + x1y0 + y0y1)+

(4a− 2f1)(x0y0 + x1y1)+

(−2a)[w1(x0 + x1 + y0) + w2(x0 + x1 + y1)+

w3(x0 + y0 + y1) + w4(x0 + x1 + y0 + y1)]+

(−8a)w0(x0 + x1 + y0 + y1)

(11)

It is clear that when a = 0, F(.) becomes linear and can
be simplified to f1(x0+x1+ y0+ y1)−2f1(x0y0+x1y1).
If a �= 0, the original high-order term can also be reduced
by this Lemma. Then a st-graph is built and the final so-
lution is computed by the min-cut/max-flow algorithm. For
each corresponding pixel-pair p and q, there is four high-
order energy terms. We use the method in [19] to get the
disparity map, and then find the set of corresponding pixels
C in Equ(3).
Instead of fixing the three parameters (f0 = 0 f1 = 1

and f2 = 2), we set f1 free and let the local region to
decide its value in our high-order term. We adopted such
strategy for obtaining the adaptive penalty function with
the following reason. As shown in Fig.1, p1 and q1 are
in the sky region with low gradients, but p2 and q2 are
on the boundaries of sun umbrella. From the labels of
these pixels, we can see that F [p1, q1, N(p1), N(q1)] = f1
and F [p2, q2, N(p2), N(q2)] = f1. According to the la-
bel distribution of p1, q1, N(p1), N(q1), and f1 in this sit-
uation should be given a large value. However, the labels
of p2, q2, N(p2), and N(q2) are the same with the ones of
ground truth. As a result, f1 should have a small value to
reduce the role of high-order penalty. Then, the values of
f1 for every high-order clique should be adaptive to their
local patches. Generally, the variance of pixels in the 3 × 3
local patches can determine whether the patch is smooth or
contains edges, then f1 is computed by the variance var of
local patches in our experiments. The higher var is, the
more possible one edge is there, the smaller f1 is. The s-
maller var is, the smoother the patch is, and the larger f1
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Figure 1. An example explaining the reason that f1 adaptively
takes different values at different patches. (a) Input stereoscop-
ic images with two pairs(p1,q1) (p2,q2) of corresponding pixels;
(b) the ground truth segmentation of foreground objects; (c) and
(e) are the zoomed local patches in (a); (d) and (f) are the zoomed
ones in (b).

should be. In summary, the values of f1 should still be in
the range [0, 2] where f1 is adaptively computed for all the
high-order cliques.

2.3. Automatic saliency-aware stereo cut

As shown in Fig.2, our automatic saliency-aware stereo
cut by our high-order energy term has the ability to segment
the foreground objects from the input stereo image pairs.
Based on the pre-computed saliency maps (Fig.2, middle
row), our approach simultaneously segments out the same
foreground objects in both the left and right images.
The most important part in our data term is the likeli-

hood measurement of one pixel in the image pair belong-
ing to the foreground objects. We use the saliency feature
to measure such likelihood of the data term in our energy
function. The saliency of both images in the stereo pair (S l

and Sr) can be pre-computed. In our experiments, we have
used the contrast-based saliencymeasurementmethod [4] to
produce the saliency estimations for computational efficien-
cy. Since there are numerous saliency estimation approach-
es developed by the researchers in the society of computer

Figure 2. An example of foreground objects segmentation in stere-
o image pair. Top: input stereo image pair; middle: the computed
saliency maps; bottom: the segmented foreground objects (sign-
post).

and human vision, our approach is not limited one particu-
lar saliency measure approach and other methods can also
be employed [9]. We have the two following observation-
s about the relationships between the image saliency and
the foreground objects, which is inspired by the perceptual
research [2]. The first is that the more possible one pixel
belongs to the foreground, the larger saliency value it gets.
The second is that the more similar the color of one pixel is
with the color of the foreground objects, the more possible
it belongs to the foreground region. According to these two
observations, we define the data item as follows:

Edata = wsEs + wcEc

= ws

( ∑
p∈Pl

Us(Lp, S
l
p) +

∑
p∈Pr

Us(Lp, S
r
p)
)

+ wc

∑
p∈Pl

⋃Pr

Uc(Lp, cp)

(12)

where P l and Pr are the pixel sets from the left image and
right one. sp and cp are the saliency and color features of
pixel p. This data term contains two unary terms U s and U c

wherews andwc are their weights. U s encourages the pixel
having the high saliency value to get the label 1. Accord-
ing to the prior of foreground objects having large saliency
values, then the specific form of U s is defined as:

Us(Lp, Sp) = δ(Lp, 1)(1− f(sp)) + δ(Lp, 0)f(sp) (13)
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Figure 3. Visual comparison of our approach to previous single-image saliency segmentation approaches. The first row is the input stereo
pairs. The second, the third and the fourth rows are the segmentation results by [14], [4] and our method respectively; The last row is the
ground truth masks.

δ(p, q) =

{
1, if p = q
0, otherwise

where δ(., .) is the delta function and f(.) is a non-
decreasing linear function as f(sp) = sp.
Another unary termU c encourages that one pixel having

the similar features with the foreground objects will get la-
bel 1. Therefore, the color distributions of foreground and
background pixels using the saliency values should be com-
puted first, which constructs the histograms of foreground
and background objects as the weights. As mentioned be-
fore, the foreground objects tend to own a high saliency val-
ue, then the form of U c is defined as follows:

U c(Lp, cp) = −δ(Lp, 1) · loghc1(cp)− δ(Lp, 0) · loghc0(cp)
(14)

where hc1 and hc0 are the weighted histograms of foreground
and background pixels.

3. Experimental results
In order to evaluate our saliency-aware stereo segmen-

tation method, we build a new data set of 100 stereo pairs,
which contains stereo images with a variety of scene con-
tents and their ground truth. The stereo image pairs in
our data set are all downloaded from Flickr. Three user-
s are asked to indicate the most salient regions with a
rectangle in both left and right images, then we use the

most consistent 100 images with the above labeling rect-
angles by three users. The final ground truth of salien-
t objects are manually segmented by a user using Photo-
shop, which takes about five minutes on average to seg-
ment a pair of stereo images. Our source code and sup-
plementary materials will be publicly available online at
http://cs.bit.edu.cn/shenjianbing/hoe.html .
We first compare our saliency cut method with the recent

state-of-the-art methods of single-image saliency segmen-
tation in [14] and [4] so as to demonstrate the advantage of
the proposed method. As shown in Fig. 3, our approach
achieves the best segmentation performance than the other
single-image saliency segmentation methods [14, 4]. The
segmented regions by our approach (Fig. 3, fourth row)
have the most accurate foreground region with the ground
truth masks (Fig. 3, last row). Though the other two al-
gorithms can segment out the most part of the foreground
objects from stereo images, however, the background pix-
els are more or less split into the salient foreground ob-
jects incorrectly, such as the guitar object (Fig. 3, second
row) and child in the toy cars (Fig. 3, third row). Our ap-
proach is essentially different from the other approaches for
single-image saliency segmentation. Our method simulta-
neously segments the left and right images by considering
the disparity maps and statistical information of stereo im-
ages in our high-order energy optimization, while the ex-
isting single-image saliency segmentation approaches just
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Figure 4. Illustration of our algorithm with different saliency maps: (a) the input image pair; (b), (c), and (d) the saliency maps from the
methods in [4], [14] and [9], respectively; (f) the ground truth masks; (g), (h), and (i) the segmentation results by our approach via different
saliency maps in (b), (c) and (d); (e), (j) the single-image saliency segmentation results by [4] and [14].

segment the left and right images separately and does not u-
tilize the corresponding depth information between left and
right images. Therefore, our method successfully cut out
the correct foreground objects with the high saliency val-
ues.
Our algorithm is insensitive to saliencymaps, which is il-

lustrated in Fig. 4. We perform the comparison experiments
by using the same high-order energy function but using d-
ifferent saliency detection approaches [14, 4, 9]. Our algo-
rithm can still obtain the same good segmentation results
(Fig. 4(g)-(i)) with different saliency maps (Fig. 4(b)-(d)).
Our segmentation performance is also better than the result
by these single-image cut approaches (Fig. 4(e),(j)), since
these approaches are essentially based on the conventional
graph-cut algorithm. In contrast, our approach designs the
high-order energy item, which helps to optimize the seg-
mentation results. Fig. 5 gives the comparison results to
demonstrate the advantage of our high-order energy. The
results in Fig. 5(c) and (d) have the same data term and s-
mooth term. Our full approach using the high-order item
achieves the better segmentation result (Fig. 5(d)) than the
one without it (Fig. 5(c)). Our high-order energy encour-
ages the corresponding pixels by the disparity maps to have
the same labels after optimization. Therefore, the segmenta-
tion accuracy will be further improved by finding the corre-
sponding pixels in the left and right stereo images according
to our high-order energy.
Finally, we quantitatively evaluate the segmentation re-

sults using our new stereo data set. We adopt two quality
measures: error rate (ER) and boundary recall (BR), to
evaluate the performance of segmentation accuracy. ER
measures the percentage of pixels from the results that have
different labels as the ground truth. The smaller ER is, the
better segmentation performance is. ER is defined as fol-
lows:

ER =
|D|

|Ll|+ |Lr| ;D = {p|Ll
p �= GT l

p} ∪ {p|Lr
p �= GT r

p }
(15)

where L andGT are the label distributions of segmentation
result and ground truth where the superscripts l and r denote
the left and right one of them. D is the set of pixels which

Figure 5. Comparison results with and without our high-order en-
ergy item. (a) Input stereo pair; (b) saliency maps; (c) segmenta-
tion result by our approach without high-order term; (d) segmen-
tation result via our full approach with high-order term.

Figure 6.ER and BR evaluation of segmentation results between
our method and the single-image saliency-aware segmentation ap-
proaches in RC [4], SO [14], and BS [17].

has the different labels in L and GT .
The second measure is the boundary recall, which mea-

sures the percentage of boundary from ground truth that is
close to the edges from segmentation result. The better seg-
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mentation edges are aligned to ground truth, the larger BR
will be. We then calculate BR as follows:

BR =

∑
p∈δ(GT ) φ(minq∈δ(L)||p− q|| < ε)

|δ(GT )| (16)

where δ is an operator that gets boundary from label distri-
butions, and φ(.) is a critical function. If the logical form is
true, then the value of φ is 1, otherwise it is 0. We have set
ε = 2 in our experiments.
The ER and BR statistics between our saliency-aware

method and previous single-image saliency segmentation
approaches with 100 stereo images are shown as the his-
tograms in Fig.6. Our method outperforms the other three
single-image methods for segmenting the stereo images.
The segmentation method in [4] is a refinement process via
grabcut on their saliency map. A trimap is updated by di-
lating and eroding the current segmentation result at each
iteration. This process will lead to details loss of salient ob-
ject regions, which will result in a large value of ER. Both
the segmentation results by [14] and [17] rely on the perfor-
mance of saliency maps, and the boundary of salient objects
will become not accurate when their methods can not pro-
duce the good saliency maps for the complicated scenes.
Therefore, their results will have a high value of ER. Our
high-order energy item is developed by the disparity map-
s and statistical information of corresponding pixels in the
stereo images, which efficiently improves the performance
of saliency-aware stereo segmentation.

4. Conclusion
This paper presents a novel saliency-aware stereo seg-

mentation approach using the high-order energy terms,
which simultaneously cuts out the foreground objects from
stereo image pairs. Our method takes full advantage of the
disparity map and statistical information of stereo images
to enrich the high-order potentials. With the guidance of
saliency maps, not only data term and smooth term but also
the high-order term is added in our high-order energy func-
tion. This energy term contains more prior information of
stereo image pairs, which helps to improve the segmenta-
tion performance by encouraging the corresponding pixels
to obtain the same labels in different stereo images. Our
high-order energy term contains more variables and more
statistics information of stereo image pairs where the penal-
ty function is adaptively determined by the color and tex-
ture information of local patches. The experimental results
have shown that our saliency-aware cut approach achieves
the high quality segmentation results for stereo image pairs.
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