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Abstract

Video magnification techniques are useful for visualiz-

ing small changes in videos. For instance, Eulerian video

magnification has been used to visualize the flow of blood

in the human face. Such visualizations have possible ap-

plications in remote monitoring or screening for diseases.

However, when visualizing blood flow, the signal of interest

may be similar in amplitude to the noise in the video. This

raises the question of what one is actually seeing in a mag-

nified video: signal or noise? We seek to understand these

signal and noise characteristics with the goal of producing

informative and accurate visualizations. We present a pre-

liminary algorithm for estimating the signal amplitude in

the presence of relatively high noise. We demonstrate that

the algorithm can be used to accurately estimate the sig-

nal amplitude in an uncompressed simulated video, but is

susceptible to compression noise and motion.

1. Introduction

Video magnification can be used to visualize minute

changes in videos that would normally not be visible. Stud-

ies have indicated that there is a signal associated with blood

flow in the skin; this signal is undetectable by the naked

eye, but can be measured using video processing techniques

es and visualized using video magnification. Signals relat-

ing to blood flow (e.g., heart rate) have been obtained from

videos of human faces by applying temporal and spatial fil-

tering [25] or blind source separation [18] to the intensity

signal, or by tracking the motion of the head [4]. Tech-

niques for examining these signals have potential applica-

tions in remote monitoring or screening for diseases relating

to blood flow.

Wu et al. showed that Eulerian linear video magnifica-

tion can be used to visualize the blood flow signal in hu-

man faces [28]. In the context of visualizing blood flow,

the signal of interest (that is, the intensity changes reflect-

ing the flow of blood) can have an amplitude that is similar

to or lower than the noise level in the video. It is important

to understand the signal and noise characteristics in order

to produce accurate and informative visualizations. In this

work, we discuss how the signal is affected by the noise

that is introduced by the acquisition and the compression

processes. We demonstrate a preliminary algorithm for es-

timating the amplitude of a small signal in the presence of

relatively large noise.

2. Related work

Noise Modern images and image sequences are typically

affected by noise introduced by the acquisition process, the

compression process, or other factors such as motion [15].

CCD noise models usually assume that the acquisition noise

level is dependent on the uncorrupted pixel intensity, but is

independent between pixels. The relationship between the

noise level and mean pixel intensity is described by a noise

level function (NLF), which is dependent on the natural be-

havior of photons, the properties of the camera and some

recording parameters [14, 12].

Compression noise can introduce additional artifacts to

an image or video. Many modern image and video compres-

sion standards apply a transform (commonly the discrete

cosine transform, or DCT) in a block-wise fashion to the

image and then quantize the transform coefficients [26, 27].

Images and videos compressed in this fashion typically ex-

hibit “blocking” artifacts.

Noise and signal estimation There is a large body of

literature regarding noise estimation and denoising tech-

niques for images and videos. The NLF of a CCD cam-

era is easy to estimate from a video or multiple images of

a static scene [8, 2, 12]. In the image processing litera-

ture, the signal of interest is typically defined as the uncor-

rupted image; denoising aims to recover this image from a

noisy image. A large class of image denoising techniques

rely on the concept of averaging to reduce noise levels, e.g.,

through Gaussian smoothing or anisotropic filtering [17].

There are also deblocking techniques that remove visible
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block-based compression artifacts by detecting and smooth-

ing block boundaries [23, 22, 3].

Several key differences make it difficult to directly ap-

ply any of these noise estimation and denoising techniques

to video magnification. Firstly, most existing denoising al-

gorithms focus on applications with relatively high input

SNR’s, and may not be accurate enough to estimate a low

amplitude signal. Typically, video denoising algorithms are

evaluated on image sequences with peak signal-to-noise ra-

tio (PSNR) values in the 10-30 dB range, and obtain im-

provements in PSNR on the order of 0-10 dB [6, 19]. In

contrast, in order to visualize blood flow in the human face

using Eulerian video magnification, a magnification factor

of 100 has been reported [28]; this suggests that the ampli-

tude of the color variation in the input video is extremely

low relative to the image intensity, and that the SNR is fre-

quently much lower than 10 dB.

Secondly, video magnification is affected by noise that

may be hard to model and/or correlated with the signal. For

instance, when visualizing blood flow, the color change sig-

nal is commonly corrupted by a motion signal with a simi-

lar temporal signature. Many state-of-the art video denois-

ing techniques are capable of removing the types of noise

commonly introduced by imaging devices (e.g., additive,

multiplicative or structural noise [5, 13]), but may not be

applicable to more complex noise models.

3. Signal Estimation for Video Magnification

We discuss the signal and noise in the context of visualiz-

ing blood flow using the Eulerian linear video magnification

technique described in [28]. Specifically, we focus on the

problem of estimating the amplitude of a color change sig-

nal in a video that has been corrupted by acquisition noise

of a similar amplitude, as well as compression noise in-

troduced by the Motion JPEG (MJPEG) compression pro-

cess. The MJPEG scheme is less commonly used than other

video compression schemes such as H.264/AVC or MPEG-

4. However, we choose to study it because it compresses

each frame independently according to the JPEG compres-

sion scheme, and thus does not introduce any inter-frame

correlations.

In [25], the green channel was observed to have the

strongest signal pertaining to blood flow. We focus on the

Y or luminance channel, as it contains much of the green

channel information, and is not subjected to the subsam-

pling process that is applied to the chroma channels during

MJPEG encoding [26].

3.1. Assumptions

We assume that the input video depicts a stationary scene

containing a small color change signal. We assume that the

signal: (1) is smooth and varies slowly in space, so that

we can apply a small spatial averaging filter without signifi-

cantly altering the signal characteristics; and (2) has a small

enough amplitude as to not affect the intensity-dependent

noise level. Earlier, we discussed the difficulty of model-

ing temporally correlated noise terms such as motion. We

assume for now that the subject of the video has been me-

chanically stabilized such that the effect of motion is negli-

gible.

In the image and video denoising literatures, the acqui-

sition noise is commonly assumed to be additive zero-mean

Gaussian noise with a variance that is proportional to the

luminance of the scene [24]. We assume in our model that

each video frame is affected by such acquisition noise, as

well as by JPEG compression.

We further assume that the video scene is smooth, so

that pixels within small neighborhoods exhibit similar noise

levels. We can enforce this assumption in real videos by

excluding parts of the scene that contain high gradients.

3.2. Signal and Noise Model

We model an uncompressed video frame as follows:

I = I0 + φ+ nacq, (1)

where I0 denotes the mean observed image intensity, φ

the signal of interest and nacq the zero-mean Gaussian noise

that is introduced during the acquisition process. These

terms are assumed to be independent. Similarly, we model

a compressed video frame as:

Ic = Q{I0 + φ+ nacq}, (2)

where Q{·} represents the quantization operator that is

applied during the JPEG compression process [26].

In JPEG encoding, the image is first divided into non-

overlapping 8 × 8 blocks. The discrete cosine transform

(DCT) of each block is computed according to the formula:

H(k, l) =
1

4
C(k)C(l)

7
∑

x=0

7
∑

y=0

I(x, y)·

cos

(

(2x+ 1)kπ

16

)

cos

(

(2y + 1)lπ

16

)

,

where C(k), C(l) =
1√
2

for k, l = 0,

C(k), C(l) = 1 otherwise.

H(k, l) describes the DCT coefficient value at location

k, l. Each DCT coefficient is then quantized using an

application-defined quantization table Q as follows:

HQ(k, l) = Q(k, l) · round

(

H(k, l)

Q(k, l)

)

.
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The quantization operation is lossy and may be modeled

differently depending on the image content. DCT coeffi-

cients that are smaller than the corresponding quantization

step are quantized to zero and result in a reduction in image

energy, while larger DCT coefficients contribute noise that

may be modeled as additive random noise [9, 21].

We assumed earlier that the video scene and the signal

are smooth in space. Under the additional assumption that

the noise level is small relative to the quantization step size,

each frame contains little energy in the DCT components

corresponding to high spatial frequencies. In the JPEG stan-

dard, the luminance quantization table applies more aggres-

sive quantization to high-frequency DCT components [1].

This means that high-frequency DCT components are typ-

ically quantized to 0, while the low frequency components

contribute quantization noise. We observed this effect in

simulated videos compressed using moderate compression

levels. We model this as follows:

I = QL{I0 + φ+ nacq}+ nQ,

where QL{·} represents the spatial lowpass filtering ef-

fect of applying quantization to small DCT coefficients, and

nQ represents the quantization noise that is added. Under

the assumption that the mean image I0 and the signal φ con-

tain little energy in the high-frequency DCT components,

we may rewrite this as:

I = I0 + φ+ nQ +QL{nacq}. (3)

3.3. Signal Estimation Algorithm

Local spatial averaging is used in many image denois-

ing algorithms to reduce noise levels [7]. We present an

algorithm that examines the effect of spatial averaging on

the acquisition noise variance in a video, and extrapolates

this relationship to estimate the theoretical variance of the

video when the acquisition noise variance has been reduced

to zero; the variance of the video should then be comprised

of the signal variance.

Let us first consider the case of an uncompressed video.

Under the assumption that the signal varies slowly in space,

we may apply a spatial averaging filter to reduce the stan-

dard deviation of Gaussian noise without significantly af-

fecting the signal. An averaging filter (or, box filter) M of

size m ×m attenuates the variance of zero-mean Gaussian

noise by a factor of 1

m2 [16]. From Eq. 2, we may write the

variance over time of the filtered frame Im as:

Var
[

Im
]

t
= Var

[

M ∗ (I0 + φ+ nacq)
]

t
, or

σ2

Im
= σ2

φ +
σ2

nacq

m2
. (4)

This relationship is valid under the assumption that each

of the terms I0, φ, nacq are independent, and that nacq is

spatially uncorrelated.

In our algorithm, we choose several box filter sizes and

measure the variance σ2

Imi
for each mi. We then extrapolate

a linear fit of σ2

Im
against 1

m2 to the point at which
σ2

nacq

m2 =
0 and σ2

Im
= σ2

φ; the intercept of the linear fit is an estimate

of the signal variance.

The compression process introduces complications that

require some adjustments to the above algorithm. As we

discussed earlier, QL{·} sets the high-frequency DCT coef-

ficients of nacq to 0. Applying small spatial filters have little

effect on the variance of this compressed noise term since

the high spatial frequency energy that would have been re-

moved by the averaging filter is already zero; we confirmed

this effect in simulations. Using a larger filter size affects

the energy in the remaining spatial frequencies. In simula-

tions, we found that for m ≥ 8,

Var
[

M∗(φ+nQ+QL{nacq})
]

≈ Var
[

M∗(φ+nQ+nacq)
]

.

The resulting variance over time of the filtered image,

σ2

Ic,m
, is approximated by:

σ2

Ic,m
= σ2

φ +
σ2

nQ
+ σ2

nacq

m2
. (5)

This model assumes that the effect of QL{·} can be ig-

nored for m ≥ 8, that nacq and nQ are spatially uncorre-

lated, and that φ, nacq and nQ are independent. We discuss

these limitations later.

Similarly to the uncompressed case, we can apply sev-

eral filters of varying sizes, and estimate a linear fit of σ2

Ic,m

against 1

m2 . The intercept of the fit can be used as an esti-

mate for σ2

φ.

4. Experimental Results

We demonstrate that we can use our algorithm to esti-

mate the variance of a simple sinusoidal signal in the pres-

ence of acquisition noise. We first simulated two videos

of a stationary color calibration target. One video contains

no signal (Fig. 1b); the other has a small sinusoidal signal

added to each pixel (Fig. 1c). We added zero-mean Gaus-

sian acquisition noise with a linear NLF to both videos (Fig.

1a). The videos were then compressed using various levels

of compression. We are able to estimate the signal variance

fairly accurately from the uncompressed videos, as well as

the videos compressed with a high quality factor (QF; a

higher value indicates less aggressive compression). Our

predicted signal suffers from a large degree of error when a

lower compression quality setting is used. Fig. 1c indicates

that even for a high compression quality video, our estimate

becomes inaccurate for pixels with high noise levels.

We applied our signal estimation algorithm to several

real videos captured with a Panasonic Lumix DMC-G2 in
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(a) Simulated video frame (top)

and simulated NLF (bottom).

(b) Mean (over space) estimated signal variance

per mean (over time) luminance, from simulated

videos containing no signal.

(c) Mean (over space) estimated signal variance

per mean (over time) luminance, from simulated

videos containing a spatially invariant, temporally

varying sine wave with RMS = 0.01.

Figure 1: Estimated signal variance from a simulated color calibration target. To assess the effects of compression, we saved

the videos using MJPEG encoding and specified the video quality factor (QF).

MJPEG format. The frames were converted to linear RGB

space and then to YCbCr space. Fig. 2 shows our results for

a stationary color calibration target, which should contain

no signal. Our signal estimates in Fig. 2b contain a similar

error to the compression noise observed in our simulation

results (although the error in our simulations appears more

discontinuous, likely due to the more discretized pixel in-

tensity values in the simulation). We use the maximum of

this error to conservatively estimate the noise floor of our

signal estimates in the subsequent videos. We took videos

of a human hand and human feet under the same lighting

conditions as in Fig. 2. We used a noise floor estimate of

1× 10−5. Fig. 3 show that the regions of the hand supplied

most directly by arterial flow [11] exhibit a signal with an

amplitude that is above the noise floor. The feet (Fig. 4) ap-

pear to exhibit a strong signal everywhere; however, when

processing this video using Eulerian linear video magnifi-

cation, it was difficult to visualize a signal at the subject’s

heart rate. It is likely that this high signal estimate is actu-

ally caused by motion rather than blood flow in the feet, as

some motion can be observed in the video. In both videos,

the signal estimate appears to be correlated with the mean

luminance (Figs. 3b and 4b); this indicates that our estimate

may be affected by the motion of specularities in the videos.

5. Limitations

Compression noise Figs. 1 and 2 indicate that the ac-

curacy of our signal estimates is affected by the degree of

compression (and thus quantization) applied to the video.

We roughly estimated the quantization noise level from a

video of a static scene with no signal, using a simplistic

model of the compression process (Equations 3 and 5). Our

model does not account for the spatial correlations that are

introduced by the compression process, or the dependence

of the quantization noise on the image content [21]. The

effect of compression might be described more accurately

using existing models. Quantization noise in the DCT do-

main has been modeled as uniformly distributed; it has also

been modeled based on a Laplacian model for DCT coeffi-

cients [21]. Some authors have proposed the use of differ-

ent distributions depending on the quantized image content

[9, 21]. Further studies on the effect of quantization noise

should also be conducted by capturing uncompressed real

videos.

Motion Motion is often observed to be a confounding fac-

tor when attempting to visualize blood flow using video

magnification. Because it often has a similar temporal sig-

nature to the blood flow signal, it cannot be removed from

the video via simple temporal filtering. Figs. 3 and 4 im-

ply that our signal estimate may have been corrupted by the

motion of specularities in the video. It may be possible to

physically stabilize the video subject using mechanical re-

straints. Alternatively, future work can examine the effect

of motion on our model and our estimates. For instance, it

may be possible to use motion estimation techniques such

as optical flow to estimate the amount of variance in each

pixel that is caused by motion.

Camera processes There are camera processes other than

compression that may affect the accuracy of our model. For

example, many demosaicing strategies perform spatial in-

terpolation [20] that introduces spatial correlations. Model-

ing these correlations requires the consideration of covari-

ance terms in Equations 4 and 5. The quantization process

that occurs when the image is exported from the camera
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(a) Estimated signal variance per

pixel.

(b) Mean (over space) estimated signal

variance per mean (over time) luminance.

Figure 2: Estimated signal variance for a stationary color calibration target. The upper right region of the card was excluded

from the visualization as it appeared to have extremely high noise levels that interfere with the visualization scale.

(a) Estimated signal variance (left) and estimated signal that is above

the estimated noise floor of 1× 10
−5 (right).

(b) Mean (over space) estimated signal variance per mean

(over time) luminance.

Figure 3: A healthy female human hand. Video was taken under similar conditions to Fig. 2.

(typically to 8-16 bits per channel) introduces additional

quantization noise [10]. The accuracy of our model and

camera can likely be improved by accounting for these ef-

fects.

6. Conclusion

Video magnification can be used to produce informative

visualizations of human blood flow from consumer-grade

videos. In these videos, the signal of interest may be very

small compared to the noise level. We presented a model

and an algorithm for estimating the signal in this context.

We showed that our algorithm can be used to estimate the

signal variance in a simulated video that is corrupted by

zero-mean Gaussian noise and compressed at a high quality

factor. However, we also demonstrated that our estimates

are highly affected by aggressive compression as well as

motion. Further work is required to assess the performance

of our algorithm in the presence of compression and motion.
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