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Abstract

Autism Spectrum Disorders (ASD) are a group of lifelong

disabilities that affect people’s communication and under-

standing social cues. The state of the art witnesses how

technology, and in particular robotics, may offer promising

tools to strengthen the research and therapy of ASD. This

work represents the first attempt to use machine-learning

strategies during robot-ASD children interactions, in terms

of facial expression imitation, making possible an objec-

tive evaluation of children’s behaviours and then giving the

possibility to introduce a metric about the effectiveness of

the therapy. In particular, the work focuses on the basic

emotion recognition skills. In addition to the aforemen-

tioned applicative innovations this work contributes also

to introduce a facial expression recognition (FER) engine

that automatically detects and tracks the child’s face and

then recognize emotions on the basis of a machine learning

pipeline based on HOG descriptor and Support Vector Ma-

chines. Two different experimental sessions were carried

out: the first one tested the FER engine on publicly avail-

able datasets demonstrating that the proposed pipeline out-

performs the existing strategies in terms of recognition ac-

curacy. The second one involved ASD children and it was a

preliminary exploration of how the introduction of the FER

engine in the therapeutic protocol can be effectively used to

monitor children’s behaviours.

1. Introduction

Autism Spectrum Disorders (ASD) are a group of life-

long disabilities that affect people’s communication and

understanding social cues. The state of the art witnesses

how technology may offer promising tools to strengthen

the research and therapy of ASD. In particular, the area of

robotics is introducing tremendous possibilities for innova-

tion in treatment for individuals with ASD. Positive results

in the use of robots as attractors or mediators, as well as

measurement instruments were reported [25, 2].

Advances in recent years have enabled robots to fulfil a

variety of human-like functions and different aesthetic and

functional characteristics, i.e. non humanoid, animal like

and humanoids, which influence on therapy is currently un-

der investigation. In fact, considerable attention has been

given to the robot characteristics, but not as much empha-

sis has been placed on the best ways to integrate the robot

into therapy sessions. Anyhow, the robot is tailored to in-

teract with individuals with ASD. Individual preferences,

responses and reactions to the robot features and actions,

as well as any possible discomfort due the nature of the

disorder, are usually taken into account. Thus, even if

the clinical use of interactive robots with individuals with

ASD has received considerable media attention over the

past decade, the efficacy and effectiveness on such an ap-

proach is in its infancy. Moreover, much of the published

research is in journals that focus on robotics (e.g., Au-

tonomous Robots, Robotics) rather than in prominent ASD

journals or clinically-focused journals. Therefore, it is im-

portant to review existing research on the clinical applica-

tions, rather than focusing on the advances of the technol-

ogy. For this purpose, it is crucial to outline a rationale

for the clinical use of robots [7]. In general individuals

with ASD: (a) exhibit strengths in understanding the phys-

ical (object-related) world and relative weaknesses in un-

derstanding the social world [12, 1], (b) are more respon-

sive to feedback, even social feedback, when administered

via technology rather than a human [17], and (c) are more

intrinsically interested in treatment when it involves elec-

tronic or robotic components [19, 21, 24]. Scientific evi-
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dences show the interaction of individuals with ASD and

robots is useful to elicit pro-social behaviours, to main-

tain attention, to induce spontaneous linguistic behaviour,

as well as to decrease stereotyped and repetitive behaviours.

In this work, our main effort aims to provide a clinical per-

spective by focusing attention on a clinical protocol tailored

to improve the pre-requisite of theory of mind, i.e. eye con-

tact, joint attention, symbolic play, and the basic emotion

recognition skills. The robot serves as a social mediator,

eliciting and enhancing interaction between autistic chil-

dren and people in their surroundings, mainly their thera-

pists and parents [20]. The protocol is organized in levels

at mounting difficulties. Each level is dedicated to train a

different skill. For each level, different triadic exercises, i.e.

robot, subject and therapist/parent, at mounting difficulties

are suggested. The therapist begins the subject-robot inter-

action at the lower level and at the easier exercise. Once the

subject is able to comply with the selected exercise, the ther-

apist starts with the next exercise. When all the exercises of

a level were succeeded, the therapist starts with the next

level. By our knowledge, this work represents the first at-

tempt to use machine-learning strategies during robot-ASD

children interactions in terms of facial expression imitation,

making possible an objective evaluation of children’s be-

haviours and then giving the possibility to introduce a met-

ric about the effectiveness of this specific therapy. In par-

ticular, the work focuses on the basic emotion recognition

skills. In addition to the aforementioned applicative innova-

tions this work contributes also to introduce a facial expres-

sion recognition (FER) engine that automatically detects

and tracks the child’s face and then recognize emotions on

the basis of a machine learning pipeline based on HOG de-

scriptor [6] and Support Vector Machines [5]. The FER en-

gine introduces itself a level of innovation since it exploits

HOG descriptor in a more efficient way with respect to ex-

isting works in the state of the art. Besides, it allows real

time recognition making children-robot interactions as nat-

ural and comfortable as possible. In order to give evidence

of the above, two different experimental sessions were car-

ried out: the first one tested the FER engine on publicly

available datasets demonstrating that the proposed pipeline

outperforms the existing strategies in terms of recognition

accuracy. The second one involved ASD children and it

was a preliminary exploration of how the introduction of the

FER engine in the therapeutic protocol can be effectively

used to monitor children’s behaviours. The rest of the paper

is organized as follows: Section 2 is aimed at an overview of

the leading FER approaches presented in literature; Section

3 presents the whole system giving, step by step, a detailed

description of each component and a theoretical presenta-

tion of the FER engine; Section 4 deals with the presenta-

tion and discussion of experimental results, from the prelim-

inary optimization to the tests on field; Section 5 is finally

devoted to the conclusions and future works discussion.

2. Related works

This section reports the most relevant works in the lit-

erature focusing on Facial Expression Recognition (FER).

Proposed solutions can be divided into two main categories:

the first category includes the solutions that classify human

emotions by processing a set of consecutive images while,

the second one, includes the approaches which perform

FER on each single image. By working on image sequences

much more information is available for the analysis. Usu-

ally, the neutral expression is used as a reference and some

characteristics of facial traits are tracked over time in order

to recognize the evolving expression [8]. To this end, the

use of key points and texture information [28], a modified

version of well known Local Binary Patterns (LBP) com-

bined with moments [10], a pyramid of LBP [11], a com-

bination of Independent Component Analysis (ICA), Fisher

Local Discriminant Analysis (FLDA) and Hidden Markow

Models (HMM) [29], optical flow and non-linear features

[27], are some of the most effective approaches used to rep-

resent facial traits to be tracked over time. The major draw-

back of these approaches is the inherent assumption that the

sequence content evolves from the neutral expression to an-

other one that has to be recognized. This constraint strongly

limits their use in real world applications where the evolu-

tion of facial expressions is completely unpredictable. For

this reason, the most attractive solutions are those perform-

ing facial expression recognition on a single image. The

approaches in literature that work on a single image can be

conveniently categorized depending on the strategies they

use to lead towards the recognition of emotions. This way,

two main categories arise: Component Based Approaches

and Global Approaches.

Component Based approaches preliminary extract some

facial components and then try to classify expressions on

the basis of the matching among corresponding components

or comparing the geometrical configuration among different

components. An example is given by Pantic and Rothkrantz

in [18] where a recognition system for facial expression

analysis, from static face images by exploiting ten profile-

contour fiducial points and 19 fiducial points of the con-

tours of the facial components, is presented. Poursaberi et

al. investigate the use of Gauss-Laguerre wavelets in associ-

ation with geometrical position of fiducial points in order to

provide valuable information for the upper/lower face zone

[22].

The work in [32] proposes the use of “salient” distance

features, which are obtained by extracting patch-based 3D

Gabor features, selecting the most discriminative patches

and performing patch matching operations. More recently,

Happy et al. [9] propose a novel framework for expression

recognition by using appearance based features of selected
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facial patches depending on the position of facial landmarks

that are active during emotion elicitation. Then patches are

further processed to obtain the salient ones containing the

most discriminative features for classification.

Unfortunately, although the idea of making use of a

preliminary selection of salient facial components and a

subsequent emotion recognition phase based on geometri-

cal or textural matching has been widely investigated, the

achieved classification performances do not fulfill the de-

manding requirements of the technologies that a FER sys-

tem has to serve. The main unresolved issues concern the

alignment of components in different facial images, espe-

cially in case of extreme expressions. Moreover, they ex-

perienced high computational time due to the load for the

fine extraction of the facial components (especially when

iterative strategies are used) and then they appear to be not

suitable for real world applications especially if low-power

systems are involved (e.g. assistive robot, consumer analy-

sis devices).

The above mentioned problems can be overcome by us-

ing ”Global Approaches” i.e. approaches that directly try

to extract a representation of the expressions from the ap-

pearance of the global face. This research area has been

deeply investigated, but there is still much effort to do since

it is very challenging to find a global set of descriptors able

to robustly characterize human expression traits. Some of

the most recent related works that have arisen as a conse-

quence of the theoretical improvements in the definition of

more reliable local descriptors are listed below. In [26]

authors use Local Binary Pattern (LBP) even in low reso-

lution and compressed input images whereas, in [33], the

same descriptors are combined with a kernel-based man-

ifold learning method called Kernel Discriminant Isomet-

ric map (KDIsomap). Rivera et al. propose in [23] a new

descriptor, named local directional number pattern (LDN),

that extracts directional information by the use of compass

masks and encodes such information using the prominent

direction indices. The Sparse Representation-based Clas-

sification (SRC) is used with a Local Phase Quantization

(LPQ) in [34] and Gabor filters in [14]. An algorithm for

facial expression recognition, by integrating curvelet trans-

form and online sequential extreme learning machine (OS-

ELM) with radial basis function (RBF) hidden node, is pro-

posed in [30].

3. System Overview

The proposed system is oriented to automatically man-

age a medical protocol aimed to improve the capacity of

children affected by ASD to associate specific emotions to

specific facial expressions. The protocol implements the

idea to let the robot perform facial expressions and then

ask the child to imitate the expression in order to evaluate

his emotion imitation capability and to measure the elapsed

time between the robot’s request and the child’s action. As

already explained in the introductory section, the common

implementation of this protocol delegates to human oper-

ators two main roles: on one hand the robot management

and on the other hand the evaluation of the children’s inter-

action level. In this way the protocol is affected by a degree

of uncertainty and subjectivity. The introduction of machine

learning techniques can release the protocol from the eval-

uation of human operators making information data about

the therapy progress through the sessions objective. This

paper implements this fundamental advancement by inter-

posing between the two interacting subjects, represented by

the child and the robot, a processing unit aimed to replace

the role of the human operator. In particular a R25 robot,

from the US Robokind 1 has been used as robotic com-

ponent of the system. It is characterized by the capacity

to reproduce facial expressions exploiting the huge number

of micro actuators in ”his” face. The robot has been then

equipped with a processing unit whose main elements are

highlighted in Figure 1.

The processing unit implements the sequence of actions

laid down by the protocol by using three different mod-

ules: the first one is devoted to the implementation of the

robot actions according to the specifications in the proto-

col (protocol management module); the second one per-

forms child’s facial expression recognition and finally the

third one, the metadata storage module, focuses on the stor-

age, retrieval and analysis (through statistical and graphical

tools) of the achieved meta-data in order to evaluate how the

child’s behaviors changes in time, along different therapeu-

tic sessions.

The protocol management module deals with the tempo-

ral execution of the robot and child actions defined by the

protocol. When the therapeutic session starts, the protocol

management module waits until the FER engine detects a

face in the video stream acquired by the camera on the R25

robot. The detection of a face is then considered as the as-

certainment that the interaction between the robot and the

child has started and then the protocol management module

calls the routines supplying the commands to the robot (for

performing expressions and synthesizing vocal messages)

in order to implement the scheduled steps of the protocol.

While the robot speaks and changes facial traits, the FER

engine continues to process the face of the child in order to

recognize if he’s imitating the robot. In the meanwhile, the

protocol management module waits that the expression rec-

ognized by the FER engine coincides with that performed

by the Robot and, when this happens, the routines supply-

ing the commands to the robot are again called by the pro-

tocol management module in order to give a positive vocal

feedback to the child and to restore the neutral expression

on the robot face. If the child fails to imitate the robot,

1http://www.robokindrobots.com/
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after a predefined time interval, the system detects an imi-

tation failure. Finally, all the information about the running

child-robot interaction (success/failure, elapsed time, etc.)

is stored by the meta-data storage module and then the pro-

cedure restarts according to the protocol specification.

Figure 1. Child-Robot interaction System: the medical protocol

is automatically managed by the Processing Unit. The protocol

managing module gives to the robot the instructions aimed to stim-

ulate the child response while face expression recognition engine

exploits the robot video stream in order to analyze the child ex-

pression. Finally, the child expression and the response time are

stored in the meta-data storage module

3.1. Robokind™ R25 Robot

As introduced in the previous section, the implemented

system makes use of the R25 robot from Robokind ™. The

R25 social robot has been designed specifically in order to

teach children with autism critical social skills. Since the

robot is intended to be interactive, it’s equipped with a 5-

megapixel autofocus camera in its right eye and 21 motors

that provide it with 21 degrees of freedom (7 for the head,

10 for the arms, 1 for the waist and 3 for the legs). In partic-

ular, with regard to the head, 2 of the 7 degrees of freedom

are related to pitch and yaw; the remaining ones are related

to facial expressions.

In order to control all the devices, which the robot is

provided with, the R25 is equipped with a OMAP 4460

dual core 1.5 GHz ARM Cortex A9 processor with 1GB

of RAM and 16GB of SSD type memory. Regarding to

the networking capabilities, the robot is provided of Wi-

Fi and Ethernet connections. Finally, the operating system

employed is based on Ubuntu Linux and the main software

tools are open source as well, allowing easy and fully robot

customizations.

3.2. Facial Expression Recognition

Facial expression recognition, from generic images, re-

quires an algorithmic pipeline that involves different oper-

ating blocks. The scheme in Figure 2 has been used in

this work: the first step detects human faces in the image

under investigation and then detected faces are registered

[3]. This preliminary operations allow the system to get the

quite similar position for the eyes and in this way the sub-

sequent HOG descriptor may be applied using a coherent

spatial reference. The vector of features extracted by HOG

is finally used for the classification of the facial emotions by

means of SVM strategies. Finally, the managing of the tem-

poral images stream is demanded to an ad-hoc decision rule.

Each operating step is detailed in the following subsections.

Figure 2. Proposed system pipeline: faces are cropped and regis-

tered and then HOG descriptor is applied to build a data vector that

is provided as input to a SVM bank that gives the estimation of the

observed facial expression. Finally, the prediction is queued in the

temporal window exploited by the decision rule in order to filter

possible misclassifications.

Face detection and registration

In this step, human faces are detected in the input images

and then a registration operation is done. The registra-

tion is a fundamental preprocessing step since the subse-

quent algorithms work better if they can evaluate input faces

with predefined size and pose. The face detection is per-

formed by means of the general frontal face detector pro-

posed by [31] which combines increasingly more complex

classifiers in a cascade. Whenever a face is detected, the

face registration is carried out as follows: the system, at

first, fits an ellipse to the face blob (exploiting facial fea-

tures color models) in order to rotate it to a vertical posi-

tion and hence a Viola-Jones based eye detector searches

the eyes. Finally, eye positions, if detected, provide a mea-

sure to crop and scale the frontal face candidate to a stan-

dard size of 65 × 59 pixels. The above face registration

procedure is schematized in Figure 3. The registered face is

then modeled using different features (average color using

red-green normalized color space and considering just the

center of the estimated face container; eyes patterns; whole

face pattern) in order to re-detect it, for tracking purposes,

in the subsequent frames [3]. Finally, it is given as input to

the features extractor based on the HOG descriptor.
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Figure 3. Face registration: the detected face is fitted in an ellipse

used to rotate the face in a perfectly vertical position; successively

eyes are detected and used to scale the image and to crop the area

of interest.

HOG descriptor

Local object appearance and shape can often be character-

ized rather well by the distribution of local intensity gra-

dients or edge directions, even without precise knowledge

of the corresponding gradient or edge positions. This state-

ment leads to the definition of the HOG technique that has

been used in its mature form in Scale Invariant Features

Transformation [15] and it has been widely exploited in hu-

man detection [6]. HOG descriptor is based on the accumu-

lation of gradient directions over the pixel of a small spatial

region referred as “cell” and in the subsequent construction

of a 1D histogram whose concatenation supplies the fea-

tures vector to be considered for further purposes. Let L

be an intensity (grayscale) function describing the image to

be analysed. The image is divided into cells of size N ×N

pixels (as in Figure 4 (a)) and the orientation θx,y of the gra-

dient in each pixel is computed (Figure 4 (b-c)) by means

of the following rule:

θx,y = tan−1 L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
(1)

Successively, the orientations θ
j

i i = 1...N2, i.e. be-

longing to the same cell j are quantized and accumulated

into a M-bins histogram (Figure 4 (d-e)). Finally, all the

achieved histograms are ordered and concatenated into a

unique HOG histogram (Figure 4 (f)) that is the final out-

come of this algorithmic step, i.e. the features vector to be

considered for the subsequent processing.

Figure 4. HOG features extraction process: image is divided in

cells of size N × N pixels. The orientation of all pixels is com-

puted and accumulated in an M-bins histogram of orientations. Fi-

nally, all cell histograms are concatenated in order to construct the

final features vector. The example reports a cell size of 4 pixels

and 8 orientation bins for the cell histograms.

SVM prediction

The HOG features vectors are then given as input to a group

of Support Vector Machines (SVMs). SVM is a discrimina-

tive classifier defined by a separating hyperplane. Given a

set of labelled training data (supervised learning), the algo-

rithm computes an optimal hyperplane (the trained model)

which categorizes new examples in the right class.

Further theoretical notions about SVM, together with

related implementation issues, can be found in [5]. The

classical SVM approach is suitable only for a two classes

problem but, unfortunately, FER involves multi-class han-

dling. Multi-class problems can be addressed by the ”one-

against-one” method proposed in [13], an approach based

on the construction of an SVM classifier for each pairwise

of classes and a voting system aided to elect the predicted

class when an unseen item is tested. More specifically, the

multi C-support vector classification (multi C-SVC) learn-

ing task implemented in the LIBSVM library[4] was used

in the experiments reported in Sections 4-6. Radial Basis

Function (RBF) was used as kernel for non-linearly sep-

arable problems with penalty parameter C = 1000 and

γ = 0.05 [4].

Temporal analysis

To make the system suitable for video sequence analysis, a

decision making strategy based on the temporal consistency

of FER outcomes has been introduced. The decision, about

the expression in a video, is taken by analyzing a temporal

window of size m and verifying if at least n (n < m) frames

in the window are classified as containing the same facial

expression. More specifically, the system performs a frame

by frame analysis in the time window w of size m and for

each frame an expression classification outcome is given as

pi where p is the predicted expression and i is the current

frame index.

The expression in the window is classified as the expres-

sion s if
i∑

j=i−m+1

(Λ(pj , s)) ≥ n (2)

where Λ(pj , s) = 1 if pj = s and 0 otherwise.

This procedure allows the system to manage a temporal

stream for a subject avoiding wrong expression predictions

due to sporadic miscalssifications. In the tests on field, val-

ues of n = 4 and m = 5 have been used.

4. Experimental Results

As a preliminary step, a facial expressions dataset has

been set-up in order to have a benchmark for all tests and,

first of all, used in HOG parameters optimization (Subsec-

tion 4.1). The recognition performances have been then an-

alyzed by means of confusion tables (Subsection 4.2) and
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the results compared with those of the leading methods in

the literature (subsection 4.3). Finally, in Subsection 4.4, a

set of ”on-field” tests have been carried out in order to prove

the suitability of the proposed system in a Robot-children

interaction task.

4.1. Experimental data setup

The definition of the facial expression dataset is a key

factor due to its fundamental role for both training and test

purposes. In this work, all the experimental sessions have

been carried out on the Cohn-Kanade (CK+) [16]. CK+ is

made up by image sequences of people performing 6 facial

expressions. Each sequence starts with a neutral face ex-

pression and ends with the expressive face. The variety of

subjects in terms of gender, as well as ethnicity and age,

makes the dataset one of the most used to test the perfor-

mances of FER solutions.

In order to extract, from the available sequences, a bal-

anced (i.e. quite the same number of instances for each con-

sidered expression) subset of images containing expressive

faces, the following images were selected: the last image for

the sequences related to the expression of anger, disgust and

happiness; the last image for the first 68 sequences related

to expression of surprise; the last and the fourth from the

last images for the sequences related to the expressions of

fear and sadness. At the end, a subset of 347 images was ob-

tained with the following distribution among the considered

classes of expressions: anger (45), disgust (59), fear (50),

happiness (69), sadness (56) and surprise (68). An addi-

tional configuration of the previous subset was also intro-

duced in order to test the performance with 7 classes and

in this case 60 facial images, with neutral expression, were

added to the aforementioned ones.

A first use of the so built subset has been the optimiza-

tion of HOG parameters (cell size and number of orientation

bins). More specifically, FER average recall (referred to the

CK+ subset with 6 expression) for different numbers of ori-

entation bins, have been computed and graphically reported

onto the y-axis in Figure 5 where the x-axis reports the cell

size. From Figure 5 it is possible to infer that a cell size of

7 pixels led to the best FER performance. Concerning the

choice of the number of orientations, the best results were

obtained with value set to 7 even if also with 9 or 12 orien-

tations the FER performance did not change significantly.

Choosing the optimal parameters configuration (cell size

of 7 pixels and 7 orientation bins), the proposed pipeline is

able to correctly classify the images, supplied as input dur-

ing the 10-fold cross validation process, with average per-

formance that can been numerically expressed with a recall

of 95.9%, a precision of 95.8%, an accuracy of 98.9% and

a F-score of 95.8%. It is worth noting as the configuration

(cell size of 7 pixels and 7 orientation bins) has resulted the

most performing one also with the dataset with 7 expres-

sions highlighting as, once the preprocessing is given, the

parameter configuration is general for the specific problem.

Figure 5. FER results using different cell sizes and number of ori-

entation bins for the HOG descriptor: the x-axis reports the cell

size in pixel and the y-axis refers to the average recall percentage.

4.2. Confusion matrices for all the datasets

Once established the unique best configuration of the

HOG parameters, the performance of the proposed ap-

proach were better analyzed. In particular, in a multi-class

recognition problem, as the FER one, the use of an average

performance value among all the classes could be not ex-

haustive since there is no possibility to inspect what is the

separation level, in terms of correct classifications, among

classes. To overcome this limitation, for each dataset the

confusion matrices (expressed in terms of recall in order to

keep coherence with other works [9]) are then reported in

Tables 1 and 2.

This makes possible a more detailed analysis of the re-

sults that can point out the missclassification cases and the

interpretation of their possible causes. First of all, from the

confusion tables it is possible to observe that the proposed

pipeline achieved an average performance value rate over

90% for all the tested datasets and that, as expected, its FER

performances decreased when the number of classes, and

consequently the problem complexity, increased. In fact,

in the case of the CK+ dataset with 6 expressions, the re-

call was of 95.9% whereas after the addition of the neutral

expression it decreased to 94.1%.

Going into a more detailed analysis, Tables 1 and 2 high-

light an ambiguity between anger, disgusted and sad expres-

sions. For all the aforementioned expressions, strict lips and

low position of eyebrows are in fact very similar, in both lo-

cation and appearance.

Similarly, the sad expression experimented some erro-

neous classification in the anger face expression due to the

strict lips and low position of eyebrows that are very sim-

ilar for the two expressions. Finally, the happy expression

is the most insensitive to ambiguities and reached the 100%

of classification in all the tests.
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Table 1. Performance of proposed approach (CK+ 6 expressions).

Average performances: recall = 95.9%, precision = 95.8%, accu-

racy = 98.8%, F-score = 95.8%. (orientation bins = 7, cell size

= 7). An=Anger, Di=Disgusted, Fe=Fearful, Ha=Happy, Sa=Sad,

Su=Surprised.

An Di Fe Ha Sa Su

An 88.6 4.5 2.4 0 4.5 0

Di 5.6 89.0 1.8 1.8 0 1.8

Fe 0 0 100 0 0 0

Ha 0 0 0 100 0 0

Sa 0 0 0 0 100 0

Su 1.3 0 1.3 0 0 97.4

Table 2. Performance of proposed approach (CK+ 7 expressions).

Average performances: recall = 94.1%, precision = 94.3%, ac-

curacy = 98.5%, F-score = 94.1%. (orientation bins = 7, cell

size = 7). Ne=Neutral, An=Anger, Di=Disgusted, Fe=Fearful,

Ha=Happy, Sa=Sad, Su=Surprised.

Ne An Di Fe Ha Sa Su

Ne 89.6 1.8 0 0 0 8.6 0

An 4.4 86.8 4.4 0 0 4.4 0

Di 0 5.4 92.9 1.7 0 0 0

Fe 0 0 0 93.9 4.1 0 2.0

Ha 0 0 0 0 100 0 0

Sa 0 0 1.8 0 0 98.2 0

Su 1.3 0 0 1.3 0 0 97.4

4.3. Comparison with the state of the art

In this subsection, achieved results are compared with

those of the leading State-of-the-Art FER solutions. Dif-

ferently from other research fields, in the FER one there

is not a shared dataset to be used as benchmark for a fair

evaluation of different algorithms. In order to avoid errors

introduced by the re-implementation of each method, most

of the works in the literature refer to CK+ dataset that, un-

fortunately, is dramatically unbalanced and, for this reason,

it requires a selection of a subset of available expression

occurrences before to be used. How this selection has to

be performed is not well stated and then the reported com-

parisons are always biased by this important drawback. In

addition, there is not a standardised evaluation procedure

even if most of the works make use of a cross-validation

procedure and then represent the recognition performances

by means of confusion matrices. In order to accomplish this

crucial task, in this paper, the approach implemented in the

most up-to-date works for FER recognition is then used [9],

i.e. a CK+ subset of observations was selected and then a

k-fold cross validation was used to fill the confusion ma-

trix. In this way, the performance of comparing approaches

can be extracted from the relative papers avoiding to affect

them by implementation issues. To be fairest as possible,

for most of the sequences in the dataset, we retained only

one image (we experimentally proved that choosing more

than one image the overall performance increase). For bal-

ancing reasons, for a few sequences also the fourth image

from the last one was retained and, in this way, the largest

possible subset of images (in respecting a reasonable bal-

ancing among categories) was build. Choosing the fourth

from the last image introduces less correlation then the third

from the last or the second from the last.

Table 3 reports the comparison results demonstrating

that the proposed approach gave the best average recogni-

tion rate. In particular, it is worth noting that the perfor-

mance achieved by the approach under investigation exceed

also those of the recent work in [9] that represents the ref-

erence point for the FER problem. A deeper analysis of the

Table 3 evidences that the proposed method suffers more

than competitors to recognize the expression of disgust.

This drawback could be due to the fact that, while perform-

ing this expression, the facial muscles shape is quite similar

to that of the expression of anger hence the edge analysis

performed by HOG, sometimes, cannot be able to bring to

light differences as other approaches based on texture anal-

ysis can instead highlight. However, this is a limitation only

for the recognition of the expression of disgust since for all

the remaining expressions the FER performances of the pro-

posed method largely exceed those of the comparing meth-

ods highlighting that the analysis of the edges is the best

method to recognize facial expressions as it throws away all

possible ambiguity introduced by non-edge based features.

Table 3. Performance comparison of our approach versus differ-

ent State-of-the-Art approaches (CK+ 6 expressions). An=Anger,

Di=Disgusted, Fe=Fearful, Ha=Happy, Sa=Sad, Su=Surprised.

[29] [22] [35] [32] [9] PROPOSED

An 82.5 87.1 71.4 87.1 87.8 88.6

Di 97.5 91.6 95.3 90.2 93.3 89.0

Fe 95.0 91.0 81.1 92.0 94.3 100

Ha 100 96.9 95.4 98.1 94.2 100

Sa 92.5 84.6 88.0 91.5 96.4 100

Su 92.5 91.2 98.3 100 98.5 97.4

AV 93.3 90.4 88.3 93.1 94.1 95.8

4.4. Tests on field

This subsection reports a set of preliminary experi-

ments carried out involving 3 children with ASD (high-

functioning autism or Asperger’s syndrome). This experi-

mental phase had a twofold goal: on the one side it was ad-

dressed to verify if the system implements a procedure that

makes the children able to interact in a comfortable and nat-

ural way and, on the other side, to test the system’s compo-

nents (in particular the FER engine) in a real environment.
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As indicated by the medical protocol, 4 different ex-

pressions were investigated (happiness, sadness, anger and

fear).Each child was placed in front of the robot and he/her

was asked to imitate the expression performed by the robot

for 5 times (then the total number of interactions monitored

was 60, 20 for each child). The recognition model trained

using the CK+ subset with 7 expression was used. The pro-

cessing unit was running on an external hardware (e.g. a

MacBook Pro with i7 class processor) wireless connected:

this choice was made in order to get a higher number of

frames processed per second (25fps), assuring this way a

natural interaction. The use of the processing resources

available on board of the robot may be afterwards taken into

consideration only following an algorithmic optimization of

the procedures that must be optimize to exploit at best the

limited computational resources of the on board processing

architecture. In Figure 6 the experimental environment is

shown. The system was able to successfully complete the

protocol for all the children. In particular 31 interactions

were successfully completed with the imitation by the chil-

dren (9 happiness, 6 sadness, 8 anger and 8 fear) and cor-

rectly recognized by the system. On the other hand, the imi-

tation completely failed for 26 interactions. More precisely

in 19 interactions children did not put in place the imita-

tion since they were attracted by the robot components or

they were tired/annoyed whereas, in the remaining 7 ones,

the imitation was wrong performed and consequently not

matched by the system. The imitation results were con-

firmed by the personnel who attended the experiments. The

remaining 3 interactions have to be deeply analyzed since

in those cases the FER engine did not match the child’s ex-

pression with the expected one (1 anger and 2 fear) even if

the child tried the imitation (as pointed out by the attend-

ing personnel). An off-line analysis of the images acquired

by the camera on board of the robot (notice that during the

experiments all the images were stored for debug purposes)

revealed that in 1 case the face was not detected since the

child strongly rotated it while imitating the expression of

fear whereas, in the last two cases, the expressions of anger

were misclassified as fear.

5. Conclusion and Future Works

This work introduced machine-learning strategies during

robot-ASD children interactions in order to make possible

an objective evaluation of children’s behaviours and then

to give the possibility to introduce a metric about the ef-

fectiveness of the therapy. In particular, the work focused

on the basic emotion recognition skills and it contributed

to introduce a facial expression recognition (FER) engine

that automatically detects and tracks the child’s face and

then recognize emotions on the basis of a machine learning

pipeline based on HOG descriptor and Support Vector Ma-

chines. Two different experimental sessions were carried

(a) External view (b) Robot view

Figure 6. An example of interaction: the child is in front of the

robot. The FER engine exploits the robot view in order to process

the child expression

out: the first one tested the FER engine on publicly avail-

able datasets demonstrating that the proposed pipeline out-

performs the existing strategies in terms of recognition ac-

curacy; the second one involved ASD children and it was a

preliminary exploration of how the introduction of the FER

engine in the therapeutic protocol can be effectively used to

monitor children’s behaviours. Future works will deal with:

1) the optimization of the algorithms involved in the FER

engine in order to exploit the processing resources available

on board of the R25 robot 2) evaluate the systems along

multiple therapeutic sessions involving the same children in

order to take advantage of the analysis tools implemented

by the meta-data handling module.
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