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Abstract

In movement analysis frameworks, body pose may of-

ten be adequately represented in a simple, low-dimensional,

and high-level space, while full body joints locations con-

stitute excessively redundant and complex information. We

propose a method for estimating body pose in such high-

level pose spaces directly from a depth image without re-

lying on intermediate skeleton-based steps. Our method is

based on a convolutional neural network (CNN) that maps

the depth-silhouette of a person to its position in the pose

space. We apply our method to a pose representation pro-

posed in [18] that was initially built from skeleton data. We

find our estimation of pose to be consistent with the original

one and suitable for use in the movement quality assessment

framework of [18]. This opens the possibility of a wider

application of the movement analysis method to movement

types and view-angles that are not supported by the skeleton

tracking algorithm.

1. Introduction

Body pose recovery represents a fundamental and exten-

sively researched challenge in computer vision, as its esti-

mation is essential to a large number of tasks, ranging from

activity recognition [33, 2, 7] to movement quality analysis

[18, 8, 13, 27, 19]. Its actual representation is highly depen-

dent on the task and when single actions or movements are

studied, it is usually simplified and tailored to best represent

their ranges of variations. Such tailoring of body pose repre-

sentation typically involves extraction of low-level features

from images followed by dimensionality reduction to dis-

card redundancy and retain only relevant information. With

the advent of affordable depth cameras [34] and the associ-

ated skeleton trackers [25], 3D joint location has become a

popular low-level feature [17, 11]. However, skeletons suf-

fer from a number of limitations, notably a restricted range

of viewing-angles and a poor tolerance to self-occlusion,

which limit considerably the range of movements that can

be analysed. This work proposes an alternative to the use of

a skeleton tracker in a movement quality assessment frame-

work. We design a system based on a Convolutional Neural

Network (CNN), that bridges the gap between depth images

and a high-level representation of pose in a reduced dimen-

sional space. We assume that the pose representation and

its associated space (hereafter referred to as ”pose repre-

sentation space”, or for brevity ”pose space”) have already

been created during a movement model’s learning phase to

support a movement analysis task. This pose space may

have been built using any number of intermediate steps from

depth image to high-level feature, possibly involving skele-

tons. We propose a direct mapping between the depth image

space and the pose space that does not require computation

of these intermediate steps during the movement model’s

testing phase. Such direct mapping offers the possibility of

exploiting the movement model from more general condi-

tions than available during the training phase e.g. due to the

aforementioned skeleton restrictions.

Next in Section 2 we review related work in body pose

estimation for movement analysis. We describe our pro-

posed method in Section 3 and present experimental results

in Section 4. Section 5 concludes this paper and suggests

future works.

2. Background

Pose representation for movement analysis – As men-

tioned in Section 1, previous works that extract a pose rep-

resentation from RGB or depth images in order to build

a model of movement or activity, typically compute low-

level features first, then retain the information relevant to

build their model using a dimensionality reduction tech-

nique. A common low-level feature is the silhouette of a

person, as in [1] where Brand performs action recognition

supported by a pose and dynamics space obtained from sil-

houettes. This space is in effect a Hidden Markov Model

(HMM), learnt from silhouette images using entropy min-

imisation. In [5] a pose space that captures the variations

of the silhouette within a given action is obtained by Lo-

cal Linear Embedding (LLE) [23] of the silhouettes. This

work is quite similar to ours, since it then learns a mapping
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from the visual input (silhouette) to the LLE pose space.

However, this mapping is learnt using a Generalized Radial

Basis Function (GRBF) interpolation framework [20], and

both the pose space and mapping are subject specific as it

is derived from a low-level feature (silhouette) that is not

subject invariant. This issue is addressed in [6] by devis-

ing a fused multi-subjects space and mapping. In our work,

we use a non-subject specific pose space and, although we

also use silhouettes, our mapping can learn invariance to the

person’s appearance.

Depth information may be added to the silhouette for

increased accuracy and robustness of the pose representa-

tion, as in [31] where Uddin et al. create a pose space for

modelling and recognition of different types of gait, by ex-

tracting low-level features from depth silhouettes using Lo-

cal Directional Pattern (LDP) and then applying a Principal

Component Analysis (PCA).

Skeleton data is an increasingly popular source of low-

level features, mostly due to its invariance to subject appear-

ance and it recently becoming easily and cheaply available

from the Kinect camera and SDK. Vemulapalli et al. [32]

used them to recognise actions from a Lie group pose space

derived from the relative geometry between all pairs of body

segments. In [18], Paiement et al. analysed the quality of

movements using a pose representation built from a skele-

ton low-level feature embedded in a high-level 3D space

computed as a Diffusion Map [3]. This pose representation

was passed to a continuous-state HMM to assess quality of

movement via a continuous score that assessed deviation

from the range of ”normal” movements. This method was

further assessed in [29]. We apply our work to Paiement et

al.’s pose representation and propose in Section 3 a map-

ping from depth images to this pose space. Our method is

evaluated in Section 4.3 in the context of their movement

quality assessment method.

Mapping from visual features to pose space – A few

methods have been proposed for learning a mapping from

visual features to a low-dimensional pose space that is pre-

learnt using skeleton data. Tangkuampien and Suter in [28]

used LLE to learn a mapping between an action specific

pose space built using motion capture (MoCap) data and

a silhouette based pose space. Both spaces were created

from the same movement sequences using Kernel Principle

Component Analysis (KPCA) [24]. Rosales et al. [22] es-

timated 3D body pose from multiple views simultaneously

while recovering the positions of the cameras. A Special-

ized Mapping Architecture (SMA), trained from MoCap

data, mapped silhouettes in each camera view to a space of

2D poses, generating several hypotheses per image. The set

of 2D pose hypotheses, for all camera views, was then used

to estimate the most likely positions for the cameras and 3D

pose for the body in an Expectation Maximization frame-

work. In [21], Rosales and Sclaroff trained multi-layer per-

ceptron neural networks to map visual features (extracted

from silhouettes) to clusters of similar body poses. The

clusters were obtained by unsupervised clustering of 2D

body joints, and one neural network was trained per cluster.

Body pose was estimated by selecting the mapping that pro-

duced the most likely hypothesis. Using the recent develop-

ments in deep neural networks, several works [30, 10, 16]

show that it is now feasible to have a single CNN learn both

the visual features best suited and the mapping of all poses.

This removes the need for clustering and separate networks

leading to a simpler, easily adaptable solution.

Deep neural networks for pose estimation – Toshev

and Szegedy [30] and Gkioxari et al. [10] used deep neural

networks to estimate body pose as 2D skeletons from single

RGB images. In [30], a hybrid holistic and local approach

first regresses all joint positions using a CNN, before refin-

ing the 2D position estimates using a cascade of CNNs that

focus on individual joints and small patches around them.

In [10], a single R-CNN [9] is used to regress the 2D joint

positions, with the possibility to combine detection of the

person and classification of their action. Similarly, Li and

Chan [16] integrate the regression of 3D joints locations and

the individual detections of the joints from single RGB im-

ages using a single CNN. The location of each joint is re-

gressed relative the a parent joint, in order to integrate and

learn the relationship between the joints.

These methods focus on detecting full-body joints in

general cases that include all types of movements, thus

learning more information through the CNNs than we do in

our movement specific scenario. In many movement analy-

sis applications, the range of body pose variations that need

to be recovered is limited, thus full-body joints are consid-

ered unnecessarily redundant information. Therefore, al-

though we also base our method on a CNN, we use it to re-

cover a simplified, lower-dimensional pose representation.

This allows us to successfully train our system on a signifi-

cantly reduced amount of data. This low-dimensional pose

representation may be mapped to skeleton configurations –

again specific to the movement – however computing such

mapping is not within the scope of this work. To the best of

our knowledge, this is the first time that a CNN is used to

recover body pose in a low dimensionality and movement

specific pose representation context.

3. Methodology

Our proposed method is outlined in Fig. 1. It maps depth

images to a pose space, e.g. of [18], by first extracting and

pre-processing a depth silhouette of a person, then passing

it to a CNN that performs a low-level visual feature extrac-

tion followed by a regression to the output space. These

two main steps – silhouette extraction and CNN based re-

gression – are detailed next.
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on the right of Fig. 1. We use a CNN to perform this step,

thus benefiting from its inherent ability to extract visual fea-

tures from the depth-silhouette image patch, which are op-

timised for the regression task.

Given the low amount of training data available for our

experiments, we fine-tune a pre-built network in order to

reduce the chance of over-fitting. We use the AlexNet net-

work [15] provided with the Caffe Library [14]. Since this

network was originally designed for a classification task

from RGB images, we replace its final fully connected layer

with a 3-element (still fully connected) layer, which pro-

duces the coordinates of a point in the (3D) pose space.

A 3-channel image containing 3 duplicated copies of the

depth-silhouette patch is used in place of the RGB input

image. We found that the usual subtraction of the mean im-

age over the training dataset affected negatively the results

so we discarded this step.

Our training dataset contains depth-silhouette image

patches and the associated points in the pose space obtained

from skeleton data. We augmented this set by flipping the

depth images and skeleton joints horizontally. The frames

of the movement sequences were shuffled to avoid provid-

ing the network with batches of consecutive frames and,

therefore, nearly identical poses. We also maximise the

amount of training data by cross-validating the network on

two left-out subjects.

Training of the CNN was performed using Caffe’s Eu-

clidean (L2) loss function

L =
1

2N

N∑

i=1

‖xi − yi‖
2

2
(1)

where xi and yi are the ith coordinates of x the network’s

estimated point in the pose space, and y the ground-truth

pose vector, respectively. N is the pose space dimensional-

ity (in our case N = 3). The full network is trained from

pre-trained weights in the two first convolution layers, and

random initial weights in the rest of the network, using the

adaptive learning rate method AdaGrad [4]. We found the

weight decay did not affect the results significantly and we

retained a standard value of 0.005. We trained for 50000 it-

erations with a batch size of 25, and observed no over-fitting

effect.

3.3. Personalisation

In addition to the general network trained on multiple

subjects, we also present results of personalised models that

are fine-tuned on the data of a specific person. As will

be demonstrated in Section 4, this personalisation tends to

improve the accuracy of the results, because some dimen-

sions of the used pose space encompass some subject and

style specific aspects of pose and movement. Small single-

subject training sets are prone to cause over-fitting, thus the

number of training iterations needs to be chosen according

to the number of pose samples. We found that training the

network for 10 epochs (i.e. 10 times through the training

data) provided the best results.

4. Experimental results

We apply our proposed method to the estimation of body

pose in the frame of the pose representation of [18] and its

application to movement quality assessment. We evaluate

both the accuracy of predictions in the pose space of [18],

and their suitability as an input to the movement model and

movement quality assessment framework [18].

4.1. Dataset

In our experiments we use the SPHERE-Staircase2014

dataset [12] that was introduced in [18]. This dataset com-

prises 48 depth video sequences of 12 subjects walking up

stairs, captured by an Asus Xmotion RGB-D camera placed

at the top of the stairs in a frontal and downward-looking

position. The dataset divides into a training set made up of

17 sequences of normal walking from 6 subjects, and a test-

ing set containing 31, both normal and abnormal, sequences

from the remaining 6 subjects. Abnormal sequences include

sequences that contain one or two temporary freezes of the

person, and subjects using always the same leg to walk up a

step.

All sequences come with skeleton data, and the skele-

tons of the training set are used to build the pose space us-

ing Diffusion Maps as described in [18]. All other skeletons

may be projected into the pose space using the Nyström ex-

tension (see [18]), thus providing a ground-truth to assess

the accuracy of our pose estimation. We cross-validate the

method on two left-out subjects, training the CNN on 10

subjects and validating on the remaining two. For that pur-

pose, we use the sequences (both normal and abnormal) of

all subjects as potential training data rather than the orig-

inal division of the dataset in [18]. Next, for clarity, we

refer to the original division of the dataset into training and

testing sets as the ”movement model’s training/testing set”,

while our division is the ”CNN’s training/testing set”, or for

brevity ”training/testing set”.

4.2. Quantitative accuracy

We measure the accuracy of our pose estimation by com-

puting the estimation error as the Euclidean L2 distance

(1) between ground-truth and predicted points in the pose

space. Table 1 reports the mean and standard deviation of

the errors for both normal and abnormal video sequences of

each subject, using either the general or personalised mod-

els. Three examples of normal and abnormal sequences are

shown in Figs. 3 and 4.

In general we found close agreement between the

ground-truth and predicted positions in the pose space. For

4 73



Figure 3: Example of estimated pose using the general (left) and personalised (right) models in the case of a normal move-

ment. The first 3 rows show the 3 dimensions of the pose space, with estimated pose in blue and ground-truth pose computed

from skeletons in red. The estimation error is displayed in the bottom row.

Subject
Sequence Average mean / std error

type General model Personalised

Subject 1 Normal 0.12 / 0.16 0.12 / 0.15

Subject 2 Normal 0.39 / 0.37 0.23 / 0.25

Subject 3 Normal 0.16 / 0.28 0.15 / 0.27

Subject 4 Normal 0.16 / 0.11 0.09 / 0.10

Subject 5 Normal 0.16 / 0.15 0.08 / 0.08

Subject 6 Normal 0.20 / 0.19 0.09 / 0.10

Subject 7 Abnormal 0.12 / 0.14 0.11 / 0.14

Subject 8 Abnormal 0.05 / 0.07 0.08 / 0.10

Subject 9
Normal 0.11 / 0.10 0.07 / 0.09

Abnormal 0.09 / 0.09 0.08 / 0.09

Subject 10 Abnormal 0.19 / 0.24 0.16 / 0.24

Subject 11
Normal 0.13 / 0.11 0.05 / 0.05

Abnormal 0.15 / 0.12 0.09 / 0.08

Subject 12
Normal 0.19 / 0.25 0.17 / 0.24

Abnormal 0.16 / 0.13 0.11 / 0.10

All

Normal 0.18 / 0.23 0.12 / 0.17

Abnormal 0.13 / 0.16 0.11 / 0.15

All 0.16 / 0.19 0.11 / 0.16

Table 1: Pose estimation error: mean and std of errors be-

tween estimated and ground-truth pose space coordinates.

the general models it was observed that in some sequences

the predictions of the 2nd and 3rd coordinates would match

the form of the ground truth but at a slight offset, as illus-

trated in the second row of Fig. 3. It was found that the

personalised models were able to correct this, leading to an

average reduction in error of 0.0436. We believe this is due

to these dimensions of the pose space encompassing some

of the personal style variations of the individuals.

The accuracy of the skeleton estimation system [25] is

limited outside an optimum range of 1.2-3.5 m. The great-

est errors of our proposed method were found at the begin-

ning and end of sequences, when they are slightly outside

this range. In most of these cases, studying the original

skeleton showed there to be a clear miss-measurement by

the skeleton tracker [25]. This was also found to be the

case in some frames where the subject’s trailing leg was

occluded by their leading leg. In the majority of these situa-

tions our method estimated a pose that appeared consistent

when compared with similar images that had correctly la-

belled skeletons. Thus in such cases we conclude that the

estimations of our method are more accurate than that of

the skeleton tracker. Instances where our method is actu-

ally accountable for large errors (i.e. with accurate skele-

tons) generally occurred in the fringes of the normal range

of poses, where there are not enough examples in our train-

ing set from which the network can infer. We expect a larger

and more evenly distributed training dataset could reduce

the size of these errors.

4.3. Application to movement quality assessment

Next, we assess the suitability of our pose estimation for

use in the movement analysis method of [18, 29]. This test

is necessary to ensure that the level of noise in the estimated

values is acceptable and does not hinder the movement anal-

ysis. In [18, 29], this analysis aimed at quantifying the qual-

ity of movements. Thus, we evaluate our method both on

the normal and abnormal sequences of Table1, in order to
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Figure 4: Example of estimated pose using the general (left) and personalised (right) models in the cases of a movement with

the ”right leg lead” (top) and ”freeze” (bottom) abnormalities. The first 3 rows show the 3 dimensions of the pose space, with

estimated pose in blue and ground-truth pose computed from skeletons in red. The estimation error is displayed in the 4th

row. The two bottom rows display the pose and dynamics scores of the movement quality analysis of [18].

verify its effect on the performance of the movement qual-

ity assessment method. Since the subjects of the movement

model’s training set were used to produce the movement

model of [18, 29], we only use subjects of the movement

model’s testing set (Subjects 7 to 12) to perform this anal-

ysis. We apply a temporal smoothing over a 5-frame win-

dows to the estimated coordinates in the pose space, equiva-

lent to the smoothing of the skeleton joints coordinates used

in [18].

As in [29], we produce the ROC curve of frame classi-

fication accuracy (Fig. 5) and compute the area under the

curve (AUC), reported in Table 2. The AUC values ob-
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Figure 5: ROC curve of abnormal frame detection when

using our estimated and the ground-truth poses. Blue: esti-

mated pose from our general model, green: estimated pose

from our personalised model, and red: ground-truth pose.

General model Personalised model Ground-truth

0.67 0.63 0.64

Table 2: Area under the ROC curve for abnormal frame

detection of [18] using our estimated pose representation.

tained using the estimated and ground-truth locations in the

pose space are consistent, and our estimation did not hinder

the movement analysis method of [18]. We also compute

the precision and recall values for abnormal event detection

when varying the detection threshold, displayed in Fig. 6.

Again, the results are similar when using the estimated and

original pose representations. We conclude from this test

that our method produces pose estimates with an accuracy

that is suitable for the movement analysis of [18].

4.4. Timing

We implemented our method on a GeForce GTX 750

GPU and a Linux operating system. Training our network

takes just under 7 hours, and testing is performed in real

time at near 100 fps. The average forward pass time of the

CNN is 9.7 ms.

5. Conclusion and future work

We proposed a method for direct mapping from depth

image to a simplified pose representation embedded in a

low dimensional space that is suitable for movement analy-

sis tasks. This method is based on depth silhouettes and a

CNN to perform regression to the pose space. We applied

it to the pose representation of [18] and its application to
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Figure 6: Precision and Recall values of abnormal event de-

tection using our estimated and the ground-truth pose. Blue:

estimated pose from our general model, green: estimated

pose from our personalised model, and red: ground-truth

pose.

assessing movement quality. We found that the accuracy of

our method was suitable for the movement quality analysis

task. This accuracy was attained with much less training

data than usually required for pose estimation methods that

aim to recover the position of all body joints. We argue that

such over-complete representation of pose is not necessary

for most movement analysis which typically exploits a sim-

pler and less redundant pose representation. Our method is

suitable for such cases and, by providing a direct mapping

from depth image to the simplified pose space, it eliminates

the need to compute and rely on noisy skeleton data.

The replacement of skeleton based intermediate steps

from depth images to a high-level pose representation space

presents significant advantages that will be explored in fu-

ture work. First, it may allow the exploitation of viewing-

angles that were not available during the movement model’s

training phase due to skeleton restrictions. Second, it

may enable a more general exploitation of the movement-

modelling framework through the handling of movement

types impossible to capture using skeleton due to their high

level of self-occlusion, such as bending to reach down. Such

movement models and their pose representations may be

built from other sources of data, e.g. MoCap, and then be

used with depth images during their testing phase.

Other future work includes further evaluation of our

framework, notably against other methods for mapping vi-

sual features to a high-level pose space, e.g. the LLE based

mapping of [28]. The use of MoCap data, as in e.g. [21, 22],

as opposed to the noisy Kinect skeletons, for building a pose

space is a change we expect to improve performance in our
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system. Similarly rendering synthetic training data from

multiple angles as in [25] would be a smart way of improv-

ing our viewing angle tolerance.
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