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Abstract

This paper introduces a novel method to separate fluo-

rescent and reflective components in the spectral domain.

In contrast to existing methods, which require to capture

two or more images under varying illuminations, we aim

to achieve this separation task by using a single hyperspec-

tral image. After identifying the critical hurdle in single-

image component separation, we mathematically design the

optimal illumination spectrum, which is shown to contain

substantial high-frequency components in the frequency do-

main. This observation, in turn, leads us to recognize a key

difference between reflectance and fluorescence in response

to the frequency modulation effect of illumination, which

fundamentally explains the feasibility of our method. On

the practical side, we successfully find an off-the-shelf lamp

as the light source, which is strong in irradiance intensity

and cheap in cost. A fast linear separation algorithm is

developed as well. Experiments using both synthetic data

and real images have confirmed the validity of the selected

illuminant and the accuracy of our separation algorithm.

1. Introduction

Hyperspectral information has proven to be useful

in such applications as high-quality color reproduction,

spectra-based material identification, computer-aided med-

ical diagnostics and so on. A great variety of hyperspectral

imaging methods and apparatuses (see [3, 11, 14, 19] and

many others) have been developed and implemented to cap-

ture spectral reflectance of scenes.

Fluorescence is a common optical phenomenon present

in many natural objects, like coral, living organic tissues

and minerals. Fluorescent substances have also been widely

applied to paper and cloth for color augmentation, to cur-

(a) Input (b) Reflectance (c) Fluorescence

(d) Household LED (e) UV

Figure 1. Given a single hyperspectral image of some rocks (a)

under the selected illuminant, our proposed algorithm can sepa-

rate the fluorescent component (c) from the reflective one (b). As

reference, (d) shows the same scene under a household LED lamp,

while (e) shows the scene under a UV light. Since the fluorescent

component in these rocks can only be excited under UV irradiance,

(d) almost contains the reflective component only.

rency notes for anti-counterfeiting, as well as to biochemi-

cal dyes for molecular labeling and tracking.

When the scene contains fluorescence, existing hyper-

spectral reflectance estimation methods, like those in [11,

19], can not provide accurate estimation. This is be-

cause of the well-known wavelength shifting effect of flu-

orescence that, unlike a reflective surface, fluorescent sub-

stances would absorb incident irradiance and re-emit it at

longer wavelengths. Considering that fluorescent and re-

flective components interact with the illumination in quite

different ways, it is necessary to separate them from image

observations [4, 8, 9, 13, 15].

Existing works [6, 8, 15, 22, 23, 26] have addressed this

spectra separation problem, all of which require to capture
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two or more images of the same scene under varying illu-

minations. Given a single image, is it possible to separate

the fluorescent and reflective components? To explore this

problem is not only conceptually interesting but also prac-

tically rewarding. For example, it might simplify the image

capturing process and eliminate the burden of switching be-

tween illuminations.

In this work, we show, for the first time to our knowl-

edge, the separation is feasible when provided a hyper-

spectral image captured under an illumination with high-

frequency components, see Fig.1 for an example of fluo-

rescent rocks. We start our analysis from a purely math-

ematical viewpoint, by first introducing the standard low-

dimensional linear basis expression for the reflectance and

fluorescent emission spectra to reduce the number of vari-

ables, and then retrieving the optimal illumination spec-

trum so as to conquer the dependency issue of these two

bases. We examine the Fourier magnitude distribution of

the retrieved optimal illumination, and find that it contains

substantial high-frequency components. This observation

inspires us to investigate the underlying reason why high-

frequency components are needed for separation, and fi-

nally leads us to recognize a key difference between re-

flectance and fluorescence in response to the frequency

modulation effect of illumination. Specifically, the Fourier

magnitude distribution of the reflective component will

be modulated by the illumination spectrum, while that of

the fluorescent component is independent of illumination

Fourier magnitude distribution. This property of fluores-

cence fundamentally explains the feasibility of separation

by using a single hyperspectral image. On the practical

side, we successfully find an off-the-shelf high-intensity

discharge (HID) lamp as the light source, which is strong

in irradiance intensity and cheap in cost. A fast linear sepa-

ration algorithm is developed to handle high resolution im-

ages as well. Experiments using both synthetic data and

real images have confirmed the validity of the selected illu-

minant and the accuracy of our separation algorithm.

Our major contributions can be summarized as follows:

(i). We numerically design the optimal illumination spec-

trum to conquer the dependency issue of the fluorescent

emission and reflectance bases; (ii). We analytically dis-

close when and why fluorescence and reflectance separation

by using a single hyperspectral image is feasible; (iii). We

find an off-the-shelf lamp as the light source and develop an

efficient linear separation algorithm.

The remaining parts of this paper are organized as fol-

lows. In Sec.2, we give a more detailed literature review.

Sec.3 includes the numerical design of illuminantion spec-

trum, followed by the theoretical analysis and the linear sep-

aration algorithm. We show some experimental results in

Sec.4, and conclude this work in Sec.5.

2. Related Works

Due to its special wavelength shifting effect and color

constancy, fluorescence has recently received much atten-

tion in computer vision, along with various successful ap-

plications to shape recovery [12, 21, 24], camera photomet-

ric calibration [10] and inter-reflection removal [7].

Fluorescent objects contain both fluorescent and reflec-

tive components. Due to the difference in their mechanisms

when interacting with the illumination, it is necessary to

separate these two components from image observations.

This spectra separation task has shown to be critical for

color relighting [8, 13, 15], coral reef monitoring [9] and

cancer diagnosis in biomedical engineering [4]. In the fol-

lowing, we review the most closely related works on fluo-

rescence and reflectance separation.

Thanks to the color invariance property of fluorescence,

researchers in [25] have been able to separate fluorescence

from reflectance by using two RGB images under differ-

ent yet unknown illuminations via independent component

analysis. Rather than being satisfied with RGB colors of

fluorescence and reflectance, Fu et al. [6] have tried to re-

cover their spectra by using as many as nine RGB images

captured under varying color illuminations.

In addition to wideband RGB cameras, hyperspectral

imaging devices have also been widely used for fluo-

rescence and reflectance spectra separation. For exam-

ple, the well-known bispectral method [16] coordinates a

monochromator and a spectrometer to measure the reflec-

tive and fluorescent spectra of a single scene point in an

exhaustive manner. Lam and Sato [15] used a hyperspec-

tral image sensor instead, and introduced the linear basis

expression of reflectance and fluorescence spectra so as

to reduce the required number of measurements, although

about twenty images are still needed. The bispectral cod-

ing scheme [22] is rooted in the classical bispectral mea-

surement method as well, in which dozens of hyperspectral

images have to be captured under shifting narrow-band illu-

minations.

To further reduce the number of images, Tominaga et al.

[23] implicitly assumed that the scene contains no blue fluo-

rescence, and successfully separated these two components

by using two hyperspectral images under ordinary illumi-

nants. Fu et al. [8] relaxed this assumption, at least in princi-

ple, by using two high-frequency and complementary sinu-

soid illuminations defined in the spectral domain. The rea-

son of using such specialized illuminations lies in their de-

manding requirement that the fluorescent absorption scalars

under two different illuminations should be the same. The

resulting separation algorithm is very simple and its accu-

racy is outstanding. Unfortunately, the specialized illumina-

tion spectra were generated by a programmable light source

in [8], which is expensive in cost and weak in irradiance in-

tensity. As a result, one has to reduce the camera frame rate
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so as to capture a bright enough image. Zheng et al. [26]

introduced one more hyperspectral image, and were able to

use ordinary illuminants instead, but at the added cost of

solving a more complicated bilinear problem via iterations.

To use multiple images under varying illuminations com-

plicates the data capturing process (e.g. synchronization op-

eration of the camera and illumination). This motivates us

to explore the possibility of using a single hyperspectral im-

age for this separation task. In the following, we are going

to examine requirements of the illumination spectrum, look

for an off-the-shelf lamp as the illuminant and develop a fast

linear algorithm for separation.

3. Fluorescence and Reflectance Separation of

a Hyperspectral Image

3.1. Hyperspectral Fluorescence Imaging Model

For a pure reflective surface, the radiance i1(λ) at wave-

length λ is a direct product of the irradiance l(λ) and the

reflectance coefficient r(λ), i.e., i1(λ) = l(λ)r(λ).

In contrast, a pure fluorescent surface would first absorb

some energy in shorter wavelengths and re-emit it in longer

wavelengths. According to [8, 25], this shifting effect can

be approximately described by i2(λ) =
(∫

l(λ̃)a(λ̃)dλ̃
)

e(λ),

in which a(λ) and e(λ) denote the absorption and emission

intensity at λ, respectively.

Let us recall that a usual fluorescent object contains both

the reflective and fluorescent components. Therefore, the

hyperspectral imaging equation of a fluorescent-reflective

surface reads

i(λ) = i1(λ) + i2(λ) = l(λ)r(λ) +

(∫

l(λ̃)a(λ̃)dλ̃

)

e(λ). (1)

Given a proper illumination spectrum l =
[

lλ1
, lλ2
, · · · , lλn

]T
and its corresponding radiance of a

scene point i =
[

iλ1
, iλ2
, · · · , iλn

]T
recorded by a hypersepc-

tral device with n bands, the imaging equation in Eqn.1 can

be rewritten as

i = Lr +

(∫

l(λ̃)a(λ̃)dλ̃

)

e = Lr + se = Lr + ê, (2)

where L = diag(lλ1
, lλ2
, · · · , lλn

), and r =
[

rλ1
, rλ2
, · · · , rλn

]T

denotes the reflectance spectrum. e =
[

eλ1
, eλ2
, · · · , eλn

]T

represents the fluorescent emission spectrum. We have as-

sumed that the response function of the hyperspectral device

has been normalized.

Note that the absorption spectrum a =
[

aλ1
, aλ2
, · · · , aλn

]T
is also important in describing the

spectral behavior of fluorescence. From Eqn.2, we see

that it simply integrates with the light source to a scalar

s =
∫

l(λ̃)a(λ̃)dλ̃ that scales the emission spectrum e. Due

to a scale ambiguity between s and e, we can without loss

of generality merge them into ê. Our objective is to separate

a hyperspectral measurement i into the reflectance part r

and the fluorescent part ê, by using a proper illumination

spectrum l.

The number of constraints in Eqn.2 is n, thus we can not

directly determine 2n variables in r and ê. A straightfor-

ward idea to resolve this issue is to introduce some low-

dimensional models so as to reduce the number of vari-

ables. Both linear and nonlinear low-dimensional models

have been suggested for reflectance [17,20] and fluorescent

emission spectra [15, 26]. Due to its simplicity, we choose

the linear low-dimensional expression. By embedding lin-

ear basis models into Eqn.2, we obtain

i = Lr + ê = LAααα + Bβββ =
[

LA B
] [

αααT βββT
]T
, (3)

where An×u and αααu×1 are the reflectance bases and coeffi-

cients, while Bn×v and βββv×1 the bases and coefficients for

fluorescent emission. u and v denote the number of bases for

reflectance and fluorescent emission, respectively. We can

use the principle component analysis (PCA) of the training

data to determine data-dependent bases A and B1. Accord-

ing to [15, 17, 20], the number of reflectance bases u is usu-

ally 8, while that of fluorescent emission bases v is about

12.

At first glance, Eqn.3 seems to be well-posed, since the

number of constraints n is usually much greater than the

total number of bases (8 + 12 = 20). Unfortunately, as

recognized in [26], the bases A and B from PCA training

are not completely independent. In other words, when the

illumination is spectrally white, the matrix
[

LA B
]

degen-

erates to
[

A B
]

, whose condition number approaches in-

finity. Under this condition, the coefficients
[

αααT βββT
]T

can

not be uniquely determined, and the separation task is there-

fore infeasible. In the following, to resolve the challenging

basis dependency issue, we first mathematically design the

illumination spectra by minimizing a condition number cri-

terion.

3.2. Numerically Optimal Illumination Spectrum

Here, we borrow the concept in linear algebra that a lin-

ear equation becomes more robust as the condition num-

ber of the coefficient matrix reduces. Given the bases A

and B, we try to find an optimal illumination spectrum l∗

such that the condition number of
[

LA B
]

is minimized,

that is, l∗ = argminl cond
([

LA B
])

. Hereafter, we denote
[

LA B
]

as M(l) for brevity.

1In all our experiments, we use PCA on the Munsell reflectance spectra

dataset [20] to obtain the reflectance bases A, while the McNamara fluo-

rescent spectra dataset [18] to train the fluorescent emission bases B.
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(g) Fourier Magnitude Distribution of Illumination Spectra from (a) to (f)
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(h) Fourier Magnitude Distribution of LA Using PCA Bases Modulated by Illumination Spectra from (a) to (f)

Figure 2. Various illumination spectra and their Fourier magnitude distribution. The first row shows the retrieved optimal illumination

spectrum (a), the spiky spectrum generated by ELS (b), the spectrum of the D2C lamp (c), the office fluorescent lamp spectrum (d), the

composite spectrum from five color LEDs (e) and the spectrum of a 5000K white LED lamp (f). Their corresponding condition number of

M(l) is shown in the parentheses. The Fourier magnitude distributions of these six illumination spectra are shown in (g), while those of LA

are shown in (h).

To minimize the condition number of a linearly param-

eterized rectangular matrix is very challenging, since the

objective function is not differentiable, which would frus-

trate most derivative-based minimization algorithms. In the

following, we transform it into a bilinear matrix inequality

(BMI) optimization problem. BMI has been extensively ex-

plored in control theory [1], for which there exist some com-

plimentary off-the-shelf softwares, such as PENLAB [5].

Considering that a univariate quadratic function f (z) =

z2, z ≥ 0, is monotonically increasing, we minimize the fol-

lowing equivalent problem instead

min
l

cond2 (M(l)) = cond
(

M(l)T M(l)
)

. (4)

According to [2], in order to minimize the condition

number of the parametric positive definite matrix, Eqn. (4)

can be rewritten into a fractional matrix inequality problem

min
x,y,l

x, s.t., I1 ≼ y
−1M(l)T M(l) ≼ xI1, y > 0, (5)

in which I1 is the (u + v)-dimensional identity matrix.

Thanks to the Schur complement lemma, the following

equivalence holds

1

y
M(l)T M(l) ≼ xI1, y > 0⇔

[

xI1 M(l)T

M(l) yI2

]

≽ 0, (6)

where I2 is the n-dimensional identity matrix.

Therefore, the condition number minimization problem

in Eqn.4 can be reformulated into the following bilinear ma-

trix inequality problem

min
x,y,l

x, s.t.,

[

xI1 M(l)T

M(l) yI2

]

≽ 0,M(l)T M(l) ≽ yI1, y > 0.

(7)

The bilinearity arises from the multiplication of M(l)T

and M(l), which is the only nonconvex constraint in Eqn.7.

This problem can be directly solved by using the PENLAB

software [5].

Using the 8-D PCA reflectance bases for A and 12-D

PCA fluorescence bases for B, PENLAB returns the re-

trieved optimal illumination spectrum in the 420nm-700nm

range, as shown in Fig.2(a). The corresponding condi-

tion number of M(l) is 1.8. Note that, we have run PEN-

LAB 5000 times by starting from random initialization, and

this reported condition number is the smallest one. In this

sense, we call the retrieved spectrum as the optimal spec-

trum. From Fig.2(a), we see that the optimal spectrum is

very spiky, and contains substantial high-frequency compo-

nents, as revealed by its Fourier magnitude distribution in

the first subfigure of Fig.2(g).

3.3. Frequency Domain Analysis

Why are high-frequency components needed for our sep-

aration task? By considering the imaging equation in Eqn.3,

we have come up with an explanation from the viewpoint

of frequency modulation. Specifically, we can interpret the

illumination spectrum l as a modulating signal of the re-

flectance bases A, whose spectral distribution has no effect

at all on the fluorescent emission bases B, because of the
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(a) D2C (b) Ballast and Igniter (c) Nikon ELS

Figure 3. The 6000K D2C HID lamp (a) and its driving accessories

(b). The input voltage is 12V and the power is 55W. The whole

set costs about 30 USD, which is much more economical than the

programmable ELS (c).

integration in Eqn.1. The condition number minimization

operation in Eqn.4 is to find a proper modulating signal

such that the correlation between LA and B is as small as

possible. When l contains high-frequency components, the

frequency of A can be lifted significantly, and thus the over-

lap of LA and B in the frequency-domain is greatly reduced.

This point can be easily observed by comparing the Fourier

magnitude distribution of LA in the first and last subfigure

of Fig.2(h).

We have further analyzed the requirements on the illumi-

nation spectrum by means of frequency-domain signal pro-

cessing. This theoretical analysis is presented in the supple-

mentary material, since it is quite lengthy.

3.4. Illumination Spectra in Practice

When a programmable light source is available, we can

generate an illumination spectrum that approximates the nu-

merically optimal spectrum very well. For example, by us-

ing a Nikon Equalized Lighting Source (ELS), we are able

to generate a spiky illumination spectrum with a condition

number of 4.9, as shown in Fig.2(b).

However, the irradiance intensity of this programmable

light source is quite weak, and as a consequence, the cam-

era has to be slowed down so as to capture a bright enough

image. This forces us to find a very strong lamp as the light

source.

We have examined the spectra of tens of ordinary lamps

in daily life. Among them, we recognize that the D2C

(6000K) HID lamp (see Fig.3) has very strong irradiance

due to its special lighting mechanism, and its spectrum is

highly spiky as shown in Fig.2(c). Its corresponding condi-

tion number is 12.4. This lamp is cheap and easily available,

since it is widely used as headlights in many brands of cars.

The office fluorescent lamp has a spiky spectrum as well, as

shown in Fig.2(d). Unfortunately, it has three spikes only,

and the resulting condition number is 55.2.

We have also tried to generate a spiky illumination spec-

trum by combining five narrow-band color LEDs, as shown

in Fig.2(e). It leads to a condition number of 74.0. We be-

lieve that the primary reason lies in that the bandwidth of

the LEDs that we have is not narrow enough.

As comparison, we show the smooth spectrum of a
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Figure 4. Experiment results using synthetic data on the noise sen-

sitivity of our proposed method under the OPTIMAL, ELS, D2C,

OFFICE, COLOR LEDs and WHITE LED illuminations shown in

Fig.2(a-f), as well as that of the ICCV13 method.

5000K white LED lamp in Fig.2(f), whose corresponding

condition number is 301.5.

We present the Fourier magnitude distribution of these

six illumination spectra in Fig.2(g). We can observe that,

similar to the optimal spectrum, both the spiky spectrum

by ELS and the D2C spectrum contain a large amount of

high-frequency components, which substantially lift the fre-

quency of A, as shown in Fig.2(h). As expected, the white

LED spectrum has almost no high-frequency components,

and is inappropriate for the spectra separation task.

3.5. Separation Algorithm

After the illumination spectrum l is determined, on the

basis of Eqn.3, we can easily separate the fluorescent and

reflective components by
[

αααT βββT
]T
=

[

LA B
]+

i = M+i,

in which M+ denotes the Moore-Penrose pseudoinverse of

M =
[

LA B
]

.

When capturing a whole scene by using a hyperspectral

camera, we can separate all pixels simultaneously under the

assumption that the illumination is uniform across the scene

by using the following linear operation

[

ααα1 ααα2 · · · αααm

βββ1 βββ2 · · · βββm

]

= M+
[

i1 i2 · · · im
]

, (8)

where m is the total number of pixels. Note that m can be

very large for a high-resolution hyperspectral image, how-

ever, this causes little difficulty, due to the fact that M+ can

be precomputed offline and one only needs to multiply M+

with the image measurement matrix
[

i1 i2 · · · im
]

. As

for the running time, our algorithm takes about 40 millisec-

onds in MATLAB (2012a) on a desktop with a 4-core i7-

3770 CPU (3.4GHz) and 8GB memory, for a hyperspectral

cube with 57 bands and 640×512 spatial resolution.

3.6. Comparison with the State-of-the-Art [8]

As mentioned in Sec.2, the method in [8] also uses high-

frequency illuminations. Therefore, it would be interesting

to disclose the difference between our method and [8] in
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more detail. The fundamental requirement in [8] is that the

absorption scalars under two different illuminations should

be the same. Specifically, given two illuminations l1 and

l2, we can obtain two equations on the basis of Eqn.2 as

follows

i1 = L1r +

(∫

l1(λ̃)a(λ̃)dλ̃

)

e = L1r + s1e,

i2 = L2r +

(∫

l2(λ̃)a(λ̃)dλ̃

)

e = L2r + s2e.

(9)

To make sure that s1 equals s2, a natural choice is to use

two high-frequency and complementary illumination spec-

tra. What makes the illuminations difficult to generate is

the complementary restriction over the whole working spec-

tral range, although a spectrum with high-frequency compo-

nents is not uncommon. This might be the reason why [8]

used a less widely available programmable lighting source

as the illuminant.

In contrast, our method relies on the difference in fluo-

rescent and reflective components, when responding to the

frequency modulation effect of illumination. The specific

spectrum shape does not matter that much, as long as it

contains sufficient high-frequency components. This point

allows us to find an off-the-shelf lamp as the illuminant, as

shown in Sec.3.4.

4. Experiments

4.1. Synthetic Data

We first evaluate the accuracy of our proposed method

under various illumination spectra by using synthetic data,

and show how it compares with that of the state-of-the-art

method [8] using two high-frequency and complementary

sinusoid illuminations (referred to as ICCV13). For our sep-

aration algorithm, we evaluate all the six illumination spec-

tra shown in Fig.2(a-f).

At each independent trial, we randomly select one spec-

trum from the 18 color patches on the Macbeth color

checker as reflectance, and randomly choose one fluores-

cent absorption-emission spectra pair from the fluorescent

spectra dataset [18]. To simulate image disturbance, Gaus-

sian noise is added onto the synthesized hyperspectral sig-

nals, whose standard deviations vary from 0 to 5% relative

magnitude. At each noise level, we calculate the root mean

square error (RMSE) between the estimated spectra and

their corresponding ground truth. According to the anal-

ysis in [8], we set the period of the high-frequency sinusoid

illuminations to be 40 nm.

Fig.4(a) and Fig.4(b) show the average RMSE over 100

independent trials for reflectance and fluorescent emission.

As expected, the theoretically optimal spectrum (OPTI-

MAL) makes the separation quite accurate and robust to

image noise. Although the ELS spectrum has almost the
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Figure 5. Comparison of the estimated spectra of four color fluo-

rescent patches from our method under the D2C and ELS illumi-

nations, as well as those from the ICCV13 method.

same effect as OPTIMAL, its real applications are still lim-

ited, due to the weak irradiance intensity of the program-

ming light source. The separation accuracy of our selected

D2C illumination is sufficiently close to that of OPTIMAL

and ELS. The results from using the office fluorescent lamp

spectrum (OFFICE), the composite spectrum from multiple

color LEDs (COLOR LEDs) and the white LED spectrum

(WHITE LED) are not accurate, since their corresponding

condition numbers are large.

4.2. Real Images

We use an EBA Japan NH-7 hyperspectral camera to

capture images, whose spatial resolution is 1280×1024 pix-

els. It has 57 bands from 420nm to 700nm, with an in-

terval of 5nm. We use the Nikon ELS to generate high-

frequency sinusoid illumination spectra for the ICCV13

method, whose period is 40 nm. Note that, since the irradi-

ance intensity of the ELS is weak, the capture speed under

our selected D2C lamp is more than 100 times faster than

under the ELS.

We first measure the reflectance and fluorescent emission

spectra of the four fluorescent patches in the right most col-
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(a) Input (b) Ref (Ours) (c) Fluo (Ours) (d) Ref (ICCV13) (e) Fluo (ICCV13) (f) UV

(g) Blue (h) Relighted w/ Fluo (i) Relighted w/o Fluo (j) Green (k) Relighted w/ Fluo (l) Relighted w/o Fluo

Figure 6. Fluorescence and reflectance spectra separation of the plastic roller scene. From left to right, the first row shows the scene under

the D2C illuminant, the separated reflective and fluorescent components from our method and those from the ICCV13 method using high-

frequency sinusoid illuminations. The scene under a UV lamp is shown at the right most for visual comparison. The second row shows the

original image and its relighted image with/without fluorescence under blue and green lights.

(a) Input (b) Ref (Ours) (c) Fluo (Ours) (d) Ref (ICCV13) (e) Fluo (ICCV13) (f) UV

(g) Blue (h) Relighted w/ Fluo (i) Relighted w/o Fluo (j) Green (k) Relighted w/ Fluo (l) Relighted w/o Fluo

Figure 7. Fluorescence and reflectance spectra separation of the mesh-like pad scene and relighting under novel color illuminations. The

subfigures are arranged in the same way as that of Fig.6.

umn of Fig.5, which are used as ground truth. Fig.5 shows

the comparison between the ground truth and the estimated

spectra from our method under ELS and D2C, as well as

the results from ICCV13. From Fig.5, we observe that our

method under the ordinary D2C illuminant is comparable to

the state-of-the-art method in [8].

We have also used our method under the D2C lamp to

separate some other scenes with fluorescence, such as the

plastic roller scene in Fig.6 and the mesh-like pad scene in

Fig.7. Both our method and the ICCV13 method achieve

satisfactory separation results for these two scenes with

strong fluorescence. The cloth scene in Fig.8 contains weak

blue fluorescence in the white area. It is a common practice

in the printing and painting industry to add some blue flu-

orescence for whitening. Although the ICCV13 method it-

self can handle scenes with blue fluorescence, the used ELS

illuminant contains almost no UV irradiance, and the blue

fluorescence is thus rarely excited. Our D2C lamp has some

irradiance in the UV range, and is able to excite blue fluo-

rescence. This explains why our separated results are better

than those of ICCV13 in Fig.8. We believe that the capabil-

ity of our method to handle scenes with weak fluorescene

in the blue range would significantly widen the application

scope of hyperspectral fluorescence imaging.

One important application of the separated fluorescence

and reflectance spectra is to relight the scene under novel

color illuminations. To this end, we further estimate the ab-

sorption spectra from the separated fluorescent component

ê in Eqn.2, by using the sparse dictionary method in [8].

The second row of Fig.6 and Fig.7 shows the captured and

relighted scenes under blue and green illuminations. When

fluorescence is considered, color discrepancy between the

relighted scene and the captured one can be drastically al-

leviated. This justifies the necessity of taking fluorescence

into consideration for fluorescent-reflective scenes.

Our selected strong illuminant and fast separation algo-

rithm pave the way for hyperspectral fluorescence imaging

of dynamic scenes. Unfortunately, due to the speed limita-

tion of our current hyperspectral camera, we are not able to

capture real-time hyperspectral video. In spite of that, we

have tried to demonstrate this potential by slowly moving

scene objects, and obtained some preliminary results for an
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Figure 8. Fluorescence and reflectance spectra separation of the cloth scene with weak green and blue fluorescence.

image sequence of a tennis ball, which are provided in the

supplementary materials.

5. Conclusions and Discussions

We have explored the requirements for illumination

spectra so as to enable the challenging task of separating

fluorescence and reflectance by using a single hyperspec-

tral image. Guided by our numerically optimal design of

the illumination spectrum, we have successfully found an

off-the-shelf and high-intensity lamp as the light source.

Our proposed separation algorithm is simple to implement

and fast enough to handle high-resolution hyperspectral im-

ages. Experiments have verified the accuracy of our pro-

posed method.

As shown in Fig.5, the estimated spectra from our

method tend to be oversmoothed, or to be slightly oscil-

lating when the original spectral segment is flat. This is a

common problem when using linear basis expression for in-

verse inference with noise. To alleviate this issue by finding

an even better illuminant is left as future work.
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