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Abstract

In this paper we tackle the problem of instance-level seg-

mentation and depth ordering from a single monocular im-

age. Towards this goal, we take advantage of convolutional

neural nets and train them to directly predict instance-level

segmentations where the instance ID encodes the depth or-

dering within image patches. To provide a coherent single

explanation of an image we develop a Markov random field

which takes as input the predictions of convolutional neural

nets applied at overlapping patches of different resolutions,

as well as the output of a connected component algorithm.

It aims to predict accurate instance-level segmentation and

depth ordering. We demonstrate the effectiveness of our ap-

proach on the challenging KITTI benchmark and show good

performance on both tasks.

1. Introduction

Over the past few decades, two main tasks for parsing vi-

sual scenes have received a lot of attention: object detection

where the goal is to place bounding boxes accurately around

each object, and pixel-level labeling which aims to assign a

class label to each pixel in the image. We follow some of

the recent work [9, 39, 36, 10, 37], however we argue that

the next generation of recognition techniques should pro-

vide a more detailed parsing of a scene by labeling each

object instance in an image with an accurate segmentation,

a generic class, and 3D information such as depth order-

ing. This is particularly important for applications such as

driver assistance, where an ideal system needs to be aware

of each individual object and their spatial arrangements. It

is also important for, e.g., image captioning, Q&A and re-

trieval techniques [17, 26, 24], where describing a 3D scene

is easier and potentially more informative than describing a

soup of orderless object detections [17].

The goal of this paper is to predict an accurate pixel-

level labeling of each object instance belonging to the class

of interest, as well as their depth ordering, given a single

∗The first two authors contributed equally to this work.

Figure 1. Our approach uses a CNN to predict instance-level seg-

mentation and depth ordering in an image patch. We sample a

stride of patches at several scales, and combine predictions into

the final labeling by solving an energy minimization problem.

monocular image. This is a very challenging problem since

it requires us to jointly solve for the class labeling of each

pixel, and their combinatorial grouping into objects. More-

over, reasoning about depth from a single image is known

to be a difficult and ill-posed problem, where object-level

priors are typically needed to resolve ambiguities [12].

In this paper, we tackle the autonomous driving sce-

nario [6] and focus on cars which are particularly challeng-

ing in this domain. Each image typically contains many

car instances forming complex occlusion patterns. Shad-

ows, reflectance and saturation present an additional chal-

lenge. We formulate the problem as the one of inference in

a Markov Random Field (MRF) that reasons jointly about

pixel-wise instance level segmentation and depth order-

ing. We build on the success of convolutional neural nets

(CNNs) to object segmentation [25, 8, 33, 3, 29, 32, 41] and

define our unary and pairwise potentials using the output of

convolutional neural networks at multiple resolutions: our

network operates on densely sampled image patches and is

trained to predict a depth-ordered instance labeling of the

patch. We refer the reader to Fig. 1 for an illustration. We

sample a stride of patches at several scales, and combine

predictions into the final labeling via the MRF. Our energy

terms encode the fact that connected components detected

within a patch should be ordered, and the affinity of neigh-

boring pixels depends on the CNN. In contrast to the ma-

jority of existing work [36, 39, 9], no object detections are
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Figure 2. The patches extracted from an image at a large (red),

medium (green) and small (yellow) scale.

needed as input to our method as we reason about detection

and segmentation jointly. Our approach uses 3D informa-

tion (3D bounding boxes and stereo) during training, but re-

quires only a single RGB image at test time. We exploit [2]

to infer object segmentations from available 3D bounding

box annotations which allows us to train our network on a

large scale dataset.

We evaluate our method on the subset of the KITTI de-

tection benchmark [6], labeled with car instance segmenta-

tions [2]. Our experimental evaluations show that our net-

work is capable of accurate prediction for up to 5 object

instances in an image patch. In the remainder of the pa-

per, we review related work, explain our CNN architecture,

present our approach and detail the obtained results.

2. Related Work

We focus our review on techniques operating on a single

monocular image. Our contribution is related to a line of

work that aims at predicting depth ordering using weak ob-

ject information as well as mid-level cues such as junctions

and boundaries [14, 16, 19]. These approaches typically do

not reason about class and instance segmentation, but aim

at assigning each pixel to a particular depth layer.

Combination of detection and segmentation has been the

most common approach to instance segmentation: once an

object is localized with a bounding box, top-down informa-

tion such as shape or appearance can be used to carve out the

object within the box [20]. In [21, 40], the authors propose

an energy minimization framework which jointly identifies

the true positive boxes and labels the pixels with the class

labels. [30] uses Hough voting to obtain object centers and

proposes a CRF model to jointly reason about the assign-

ment of pixels to centers (which define an object instance)

and predict its semantic class.

Approaches that infer 3D objects from RGB images in-

herently reason about instance detection and depth order-

ing, but typically not segmentation. Hoiem et al. [12] and

Wang et al. [37] infer 3D objects from 2D detections us-

ing several geometric cues (ground plane priors, horizon,

typical physical sizes, etc.). In [38], 2D boxes are detected

and the method reasons about learned 3D occlusion patterns

within each box. Occlusion-aware methods implicitly rea-

son about instances and their depth ordering. A popular

approach has also been to use a collection of CAD models

and match them to RGB images [1, 23]. Online object cata-

logs can be used to assign physical size to the CAD models

based on their semantic class, giving rise to a 3D interpreta-

tion of the scene. In indoor scenarios, the Manhattan world

assumption has been leveraged frequently to reason about

the 3D room and object cuboids [4, 31, 22, 11]. This yields

instance segmentation as well as depth ordering, however,

segmentation is typically limited to a simple cuboid-like ob-

ject shape.

Recently several approaches emerged to tackle the prob-

lem of object instance segmentation. The powerful R-CNN

framework [7] was employed by [9] to detect objects. Two

networks were used to segment the objects contained in the

boxes. [34] tries to make an optimal cut in the hierarchical

segmentation tree to yield object instance regions.

Most related to our work are [36, 15, 39] which explic-

itly reason about class and instance segmentations as well

as depth ordering. Tighe et al. [36] first infer a pixelwise

class labeling of the image and detect objects. Then they

solve for instances and depth ordering by minimizing an in-

teger quadratic program. In contrast, our approach directly

predicts instance labeling and depth ordering via a power-

ful CNN network, and a merging procedure phrased as an

energy minimization task. A “scene collage” model is pro-

posed in [15], that, for a given test image, retrieves the clos-

est visualization from a dataset and aims to transform its

object masks into a proper 3D scene interpretation. In [39],

object detectors first provide candidate locations and object

masks, and a probabilistic model is proposed to order them

coherently in depth layers.

3. Instance Segmentation and Depth Ordering

Our goal is to predict an accurate pixel-level labeling of

each object instance given a single monocular image. In

addition, we want to order the objects of interest according

to their distance from the camera. We formulate this task

jointly as a pixel-level labeling where each state denotes an

instance and its label ID encodes the ordering.

Toward this goal, we take advantage of deep learning

and train a CNN to predict both instance segmentations and

depth ordering. To deal with the different scales of objects,

we split a given image into a set of overlapping patches, ex-

tracted at multiple scales, and employ the CNN to estimate

a pixel-level labeling and the depth ordering for each patch.

This provides a distribution across different depth levels as

well as the background state for each patch. We visualize

the extraction of the patches in Fig. 2. In particular, we

horizontally tile the image below a pre-specified height into

the largest patches (red rectangle). For medium (green) and

small (yellow) size patches we only tile the region around

the pre-specified height, as we expect to see small cars only

close to the horizon. This is due to the fact that the KITTI
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dataset [6] was acquired with the camera being mounted on

top of a car and thus the vertical axis in the image is corre-

lated with depth.

Training deep networks typically requires large datasets.

To our knowledge there is unfortunately no such dataset

publicly available to date. Therefore we take advantage of

the weakly labeled approach of [2] which takes as input a

3D bounding box, LIDAR points and stereo imagery, and

generates car segmentations with accuracy as high as me-

chanical turk. This allows us to take advantage of the KITTI

dataset, from which we use 6,446 training images contain-

ing 24,724 cars.

Given the predictions of the network for different over-

lapping patches, we need to create a single coherent labeling

for the image. Towards this goal, we formulate the problem

as inference in an MRF, encoding the segmentation of ob-

jects and the ordering of depth. Importantly we emphasize

that our MRF is not specifically tailored to the way patches

are extracted, i.e., we can fuse an arbitrary patch configura-

tion. In the remainder of the section, we first introduce our

CNN and then discuss our energy minimization framework.

3.1. Instance Segmentation and Depth Ordering
Network

Let x be the input image. We are interested in predict-

ing for every pixel a label indicating the instance it be-

longs to. Thus for the p-th pixel, we represent its state with

yp ∈ {0, . . . , N}, with N the maximum number of cars that

can be present in an image. Furthermore, for each image,

the instances are ordered in depth, i.e., an instance assigned

state i is closer to the camera than an object assigned state

j if and only if i < j.

Given mean-subtracted, differently sized and overlap-

ping patches extracted from an image, we perform for each

patch a forward pass through a CNN. The output of the net-

work is a score F (z,yz, w) which depends on the input

patch z, the parameters w ∈ R
A of the network and the

considered pixel-wise depth-level map yz , restricted to the

pixels in the patch z.

To design such a network we start from the 16-layer

VGG network [35], which was originally designed to pre-

dict a single categorical variable for a given input patch of

size 224 × 224. In contrast, we need a pixel-wise predic-

tion, i.e., a categorical variable for each pixel. Therefore we

first convert the three fully-connected layers of the VGG

network into convolutional units as in [8, 33, 25]. After this

conversion, an increase of the size of the input patches to

306×306 translates into an increased output-space, i.e., we

obtain multiple categorical variables. Importantly, compu-

tational efficiency is retained even after this transformation.

However, due to the 5 pooling layers, each downsampling

its input by a factor of two, we end up with a rather coarse

output being 25 times smaller than the input patch size.

Figure 3. Our convolutional neural network.

To compensate for this loss in resolution, we follow [3]

and skip downsampling at the two top-most pooling layers,

to obtain an output being only 8 times smaller than the in-

put. To ensure that the computations remain identical we

note that pooling at a stride of one rather than two effec-

tively produces four images having their pixels stored in

a spatially interleaved manner. Therefore, the subsequent

convolutional layers need to take into account the fact that

data is no longer consecutively stored in memory. Data sub-

sampling can be efficiently implemented for convolutions,

which has been previously discussed in the work by Mal-

lat [27], known as the ‘à trous (with hole) algorithm’ and

applied to CNNs in recent work [3, 29, 32]. We visualize

the resulting network in Fig. 3.

We assume a maximum of 6 instance levels (including

background) to be present in any given patch. Therefore we

also replace the top-layer matrix of the VGG network with a

corresponding convolution producing an output map of size

40× 40× 6.

To find good parameters of our network for the depth-

ordering task, we take advantage of a training set D =
{(z,yGT

z )} containing |D| pairs of patches z, i.e., extracted

pixels of enlarged, car containing ground-truth bound-

ing boxes, and corresponding ground-truth depth-ordering

maps yGT

z . Importantly, we extract patches and correspond-

ing depth-level maps at different resolutions. To bene-

fit from efficient GPU computation (i.e., consistent mini-

batches) we re-scale all patches within the dataset D to a

size of 306 × 306 pixels and downsample the ground-truth

to 40 × 40 pixels. We learn the parameters w of the CNN

by optimizing cross-entropy. The resulting program is non-
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Figure 4. Illustration of intuition be-

hind the unary conn. component en-

ergy (left), long-range (middle) and

short-range connections (right).

convex and we follow existing literature by using a simple

yet effective stochastic gradient descent procedure. Because

of the GPU memory requirements we train with a batch-size

of 5 using a weight-decay of 0.0005, a moment of 0.9. The

initial stepsize is 0.01 for the top layer and 0.001 for all

subsequent parameters.

3.2. MRF Patch Merging

We next need to combine the output of the CNN at dif-

ferent overlapping patches to produce a single coherent ex-

planation of the image. We formulate the problem as the

one of inference in a Markov random field which reasons

about multiple object instances and their ordering in depth.

Let yp ∈ {0, . . . , N} denote the depth level prediction

of pixel p in a given image. We use a maximum of N = 9
cars per image. Let us emphasize that the CNN produces a

prediction of up to 5 cars for a patch in the image and the

goal of the MRF is to create a single coherent explanation.

Let y be the joint labeling for each pixel in the image.

To estimate the high level structure, we first run a con-

nected component algorithm on the merged CNN prediction

map. Merging is performed by first averaging for each patch

the predicted probabilities within each connected compo-

nent of the patch prediction. Afterwards we compute the

merged map for each pixel by finding the maximizing state

across possible pixel labels and patches.

We then define the MRF energy to encode the fact that
the final labeling should be consistent with the local CNN
predictions and the connected components in terms of both
the instances as well as the depth ordering. We thus define

E(y) =
∑

p

(ECNN,p(yp) + ECCO,p(yp))

+
∑

p,p′:C(p) 6=C(p′)

Elong,p,p′(yp, yp′)

+
∑

p,p′∈N (p)

Eshort,p,p′(yp, yp′),

with N (p) a 4-neighborhood and C(p) the connected com-

ponent that pixel p belongs to. It is important to note that the

patch predictions that we obtain from the CNN are down-

sampled by a factor of 8. In order to correct for this reduced

resolution, we bi-linearly interpolate each CNN patch out-

put back to its original size. We now explain the different

terms in more detail.

CNN Energy: This term encodes the fact that the local
CNN prediction is always lower than the true global one.
This is valid since the CNN has only access to a subset of
the image, illustrating a subset of cars. We thus include
a unary potential per pixel that favors all states equal to
or higher than the one predicted by the CNN in each lo-
cal patch. Formally, we define the unary energy as a sum
over patches, ECNN,p(yp) =

∑
z ECNN,z,p(yp), with

ECNN,z,p(yp) =

{

−1 if yp ≥ y∗
z,p

0 otherwise
,

where y
∗
z = argmax

yz

F (z,yz, w).

Connected Components Ordering: We order the con-
nected components according to the vertical axis. For traffic
scenarios this is an indication of depth. For each pixel, this
term favors states that are equal to or larger than the order
of its assigned connected component. Note that we do not
include the background as a component. This is illustrated
in Fig. 4 (left) for an example with 3 connected components
(i.e., 3 cars). Our potential is formally defined as:

ECCO,p(yp) =

{

−1 if yp ≥ O(p)

0 otherwise
,

where O(p) denotes the order of the connected component

assigned to pixel p.

Long-range Connections This term prefers pixels to be
assigned to different states if they belong to different com-
ponents. Since fully connecting all the pixels within pairs of
components would make inference very slow, we randomly
sample 20,000 connections per component pair. This is il-
lustrated in Fig. 4 (center) for an example with 3 connected
components (i.e., 3 cars) and 3 sampled connections. The
potential is formally given via

Elong,p,p′(yp, yp′)

=

{

−1 if yp′ > yp, yp 6= 0, O(p′) > O(p)

0 otherwise
.

Short-range Connections: This term encourages nearby

pixels to be assigned the same labeling if this is also the

case in the CNN predictions. On the other hand, if the CNN

predicts different states for two nearby pixels, we encourage

them to be different. This can be done via a weighted Potts-

type potential using the connectivity illustrated in Fig. 4

(right), where we highlight neighboring pixels using two

rectangles connected by a line.
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Exp FIoU BIoU AvgIoU Acc OvrlPr OvrlRe

large 75.2 97.9 86.5 98.0 85.7 85.9

medium 80.0 98.0 89.0 98.1 87.6 90.2

small 75.0 98.0 86.5 98.1 85.7 85.7

[28] 38.3 96.6 67.4 96.7 88.0 40.4

CNNRaw 80.6 98.8 89.7 98.9 88.0 90.6

Unary 80.6 98.8 89.7 98.9 88.0 90.6

Unary+ShortRange 80.8 98.8 89.8 98.9 87.4 91.4

Full 80.7 98.8 89.8 98.9 86.6 92.2

CNNRaw+PP 80.4 98.8 89.6 98.9 88.2 90.2

Unary+PP 80.6 98.8 89.7 98.9 88.1 90.4

Unary+ShortRange+PP 80.6 98.8 89.7 98.9 87.5 91.1

Full+PP 80.5 98.8 89.7 98.9 87.0 91.5

Table 1. Class-level segmentation results on the test set.

3.3. MRF Inference

Inference in our MRF is NP-hard, since we formulated a

multi-label problem with attractive and repulsive potentials.

Inspired by the α-β-swap algorithm, we designed an infer-

ence procedure that iterates between changes of two sets

of labels. This subproblem is non-submodular in our case,

as our energy is not regular. As a consequence we resort

to quadratic pseudo-boolean optimization (QPBO) to solve

the binary inference problem. We utilize a default value for

the nodes that QPBO is not able to label. Importantly, we

accept the move only if the energy decreases.

3.4. Post processing

Given the result of the previous section, we perform a

few post-processing steps to improve the results. First we

remove spurious isolated groups of object instances smaller

than 200 pixels. This step is based on the intuition that ob-

jects of interest are of a certain size. We then perform hole-

filling, i.e., for each object instance containing a hole, we

simply fill in the hole using the label of the surrounding ob-

ject. Finally, we re-label disconnected instance labelings

and re-order them according to the vertical axis coordinate

of the center of the 2D bounding box around each connected

component.

4. Experimental Evaluation

We used the challenging KITTI benchmark [6] for our

experiments. To evaluate all the approaches we employ the

car segmentation ground-truth of [2], which consists of 301
images labeled by in-house annotators, providing very high-

quality pixel-wise labeling for a total of 1, 229 cars. The rest

of the 6, 744 images from the training set of KITTI’s object

detection benchmark are employed for training the CNN.

Training the CNN: Training a multi-layer convolutional

network requires a sufficiently large training set. We

thus derive a high-quality surrogate ground truth using the

method of [2]. It solves a submodular energy that makes use

of ground-truth 3D bounding box annotations, point cloud,

stereo imagery and shape priors from rendered CAD mod-

els [5] in order to generate a pixel-wise labeling of the ob-

ject. To train the weights that combine different potentials

in [2] we utilize 3 annotated images. We then apply the

method to provide the labeling of all 6, 744 images minus

the 301 samples that have accurate segmentations, and train

the CNN on this subset augmented by the three annotated

images used for learning the model of [2]. We compute

depth ordering by sorting the 3D bounding boxes that are

provided in KITTI. Since we know the distance of each 3D

bounding box to the camera, we can order the car instances

accordingly.

The remaining 298 out of 301 annotated images are di-

vided into 101 validation and 197 test images, and we en-

sure that the validation set and the test set have roughly the

same distribution of the total number of car instances within

an image. Importantly, all our hyper-parameters are tuned

on the validation set only, i.e., we only evaluated our model

on the held-out test set once to generate the numbers re-

ported below. We provide results for the three patch scales

large, medium and small evaluated on a patch-based level.

We also provide an ablation study on our MRF approach

both with (denoted by ‘+PP’) and without post-processing,

and compare to the instance-level segmentation approach

derived from [28] which, taken their detection and orienta-

tion estimation, generates a 3D bounding box and projects

a fitted CAD model back to the image space†. In the abla-

tion analysis we provide the performance of the CNN out-

put (CNNRaw) with different MRF formulations containing

only unary (Unary), containing only unary and short range

(Unary+ShortRange) or containing all defined energy terms

(Full).

We assess the quality of our approach using a wide range

of metrics which we describe briefly in the following. Since

we combine pixel-wise instance-level segmentation with

depth ordering we need to compare using metrics that assess

the respective performance. We divide our evaluation into

three parts, ‘class-level’ measures, ‘instance-level’ metrics

†We didn’t succeed in running the method of [36].
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Exp MWCov MUCov AvgPr AvgRe AvgFP AvgFN ObjPr ObjRe

large 36.7 29.3 81.1 53.0 0.0751 0.457 49.5 36.4

medium 40.3 35.2 78.1 68.1 0.115 0.174 57.7 52.6

small 34.6 31.1 77.0 67.1 0.124 0.126 56.4 55.8

[28] 45.4 40.1 86.3 45.9 0.015 1.650 95.1 48.5

CNNRaw 51.1 33.3 82.5 65.3 0.081 0.569 42.9 21.9

Unary 69.2 53.8 82.8 65.3 0.198 0.569 68.3 58.1

Unary+ShortRange 54.5 37.2 81.8 66.8 0.117 0.533 47.4 26.1

Full 68.1 53.5 81.7 68.8 0.168 0.528 64.7 56.1

CNNRaw+PP 68.8 53.4 83.4 63.5 0.274 0.751 60.1 56.2

Unary+PP 69.6 54.1 83.2 64.3 0.259 0.751 66.6 58.3

Unary+ShortRange+PP 71.3 55.9 82.5 65.5 0.320 0.685 63.0 58.8

Full+PP 70.3 55.4 79.2 66.5 0.411 0.675 59.2 59.0

Table 2. Instance-level metrics on the test set.

Exp #Ins %RcldIns #InsPair %RcldInsPair InsPairAcc %CorrPxlPairFgr

large 1749 36.4 2085 9.4 99.0 80.8

medium 1977 52.6 1662 17.1 98.2 82.7

small 2176 55.8 1318 21.1 96.8 74.2

[28]+Y 804 48.5 1740 21.1 92.4 14.8

[28]+Depth 804 48.5 1740 21.1 94.3 14.8

[28]+Size 804 48.5 1740 21.1 89.4 14.8

CNNRaw 804 21.9 1740 1.7 100.0 57.5

Unary 804 58.1 1740 28.2 92.4 80.9

Unary+ShortRange 804 26.1 1740 3.4 100.0 62.1

Full 804 56.1 1740 25.5 93.0 77.4

CNNRaw+PP 804 56.2 1740 26.6 83.2 79.0

Unary+PP 804 58.3 1740 28.3 92.5 81.2

Unary+ShortRange+PP 804 58.8 1740 29.5 84.8 81.4

Full+PP 804 59.0 1740 29.3 90.4 83.1

Table 3. Depth ordering assessment on the test set.

and ‘depth ordering’ assessment.

Class-level segmentation: We first assess the

foreground-background prediction performance of our

approach, i.e., how accurately we are able to differentiate

cars from other objects and the background. We use

the intersection over union (IoU) metric and provide

foreground IoU (FIoU) evaluating the accuracy of the car

detections, background IoU (BIoU) assessing the accuracy

of the background prediction, the average of both referred

to as average IoU (AvgIoU). We also provide pixel-wise

prediction accuracy (Acc), overall precision (OvrlPr) being

the number of true positive pixels over the sum of true and

false positive pixels, and overall recall (OvrlRe) being the

number of true positive pixels over the sum of true positive

and false negative pixels. We summarize our results on the

test set in Tab. 1. We note that the medium sized patches

seem to perform slighly better on average than the small

and large ones. We also emphasize that the three top rows,

evaluated on patch level, are not directly comparable to

the bottom nine rows, i.e., only the bottom nine rows are

evaluated on the image level. We observe that our full MRF

formulation achieves the best average IoU irrespective of

whether we apply post-processing or not and performs

well on other IoU metrics, accuracy as well as recall. The

approach derived from [28] achieves a better precision but

has much worse recall. We also observe the post-processing

to harm the binary prediction performance in general.

Instance segmentation: We evaluate instance-level seg-

mentation using a variety of metrics including mean

weighted coverage (MWCov), mean unweighted coverage

(MUCov), average precision (AvgPr), average recall (Av-

gRe), average false positives (AvgFP) and average false

negative (AvgFN), as well as object precision (ObjPr) and

object recall (ObjRe). Mean weighted coverage and mean

unweighted coverage was introduced by [13, 34]. For each

ground truth region we find the maximally possible IoU

score using the predictions. We obtain the weighted and

unweighted coverage by summing the maximum IoU scores

for all ground-truth regions, in the weighted case multiplied

by the ground-truth region size. We evaluate the average

precision/recall on a pixel-level for every predicted/ground-

truth instance and average their results. We compute false

positives and false negatives as described in the following.

If a prediction does not overlap with any ground-truth in-

stance, it is a false positive. The average false positive

metric is then the number of false positive object instances
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Figure 5. Successful prediction compared to the ground truth (middle) given the image (left).

within an image averaged across images. Similarly for false

negatives where a ground-truth instance has no overlap with

any prediction. The object precision and recall are eval-

uated purely on the instance level. For each ground-truth

instance we find a prediction with IoU larger than 50%, i.e.,

the number of correctly classified instances, and either we

divide this number by the total number of predictions (Ob-

jPr) or we divide it by the total number of ground-truth in-

stances (ObjRe). We provide the numbers for the test set

in Tab. 2. We note that again the medium sized patches
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Figure 6. Failure cases compared to the ground truth (middle) given the image (left).

perform very well. Further, we observe that the baseline

again achieves good precision but very bad recall, while our

full MRF approach performs well on all other metrics com-

pared to the baseline. We want to particularly highlight the

‘MWCov’ and ‘MUCov’ metrics which are true instance

level evluation where we outperform the baseline signifi-

cantly. Importantly we note that our post-processing step

improves performance significantly by around 2%. In our

ablation analysis we observe that unary performance out-

performs the full approach when no post-processing is ap-

plied. After post-processing the pairwise MRF formulation

clearly outperforms the usage of unary potentials only.

Depth ordering: We evaluate depth ordering quality us-

ing yet another set of metrics. Given the total number of

object instances (#Ins), we provide the number of correctly

predicted instances (%RcldIns), i.e., this is the fraction of

instances for which we are able to find a ground truth in-

stance having a IoU larger than 50%. In addition we in-

dicate the number of possible object instance pairs (#In-

sPair) and a metric measuring for how many ground-truth

pairs we are able to find predictions for both having an IoU

larger than 50% (%RcldInsPair). Instance pair accuracy (In-

sPairAcc) measures how many recalled instance pairs are

also predicted correctly in the depth ordering. We also com-

pute the percentage of correctly classified foreground pixel

pairs (%CorrPxlPairFgr). Since this is oftentimes a very

large number of possible pairs, we randomly sample 5% of

the all possible pixel pairs and check their correctness. Note

that 5% of the pairs is still around 30 million pairs per im-

age on average. We provide the depth ordering evaluation

in Tab. 3.

To assess the quality of depth ordering we compare our

approach to three baselines each ordering the predicted in-

stances of [28] with a different method. The first method

orders the detected instances by their lowest pixel location

along the vertical axis ([28]+Y). The second baseline orders

detected instances by their mean depth value ([28]+Depth).

The depth map for each image is computed using the depth-

from-single-image method of [18]. The third approach or-

ders the instances by their size ([28]+Size).

We observe our approach to work reasonably well, get-

ting 83.1% of the randomly sampled foreground pixel pairs

ordered correctly. Using an ablation analysis we note that

our pairwise MRF formulation improves upon the raw CNN

output and its converted unaries only after post-processing.

Indeed, without post-processing, the pairwise connections

harm performance.

Qualitative results: We provide successful test set pre-

dictions in Fig. 5 and illustrate failure modes in Fig. 6. Our

method performs well on scenes where cars are easily sep-

arable as, e.g., illustrated in the top rows of Fig. 5. This

is to a large extent due to the connected component algo-

rithm which is successfully able to disambiguate the in-

stances. On the other hand we observe challenges for tiny

cars, e.g., missed by the CNN prediction, and instances that

are merged by the connected component algorithm. Illustra-

tions for the former case are given in row 1, while merged

instances are illustrated in row 2 through 4 of Fig. 6.

5. Conclusion

In this paper we have presented an approach that exploit

a convolutional neural network as well as a Markov random

field to produce accurate instance level segmentations and

depth orderings from a single monocular image. We have

demonstrated the effectiveness of our approach on the chal-

lenging KITTI benchmark and show that we can learn to

segment from weak annotations in the form of 3D bound-

ing boxes. In the future we plan to apply our approach to

indoor scenes, which might have higher degree of clutter.
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